
fontinst

Font installation software for TEX

tfm

afm

pl vplfd

vf pfa pfbtex

dvi

ps

fontinst

pltotf vptovf

latex

dvips

Alan Jeffrey and Rowland McDonnell

fontinst v1.8 · 30 June 1998

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 2

This is the tutorial part of the 1998 fontinst manual, chiefly written by Rowland

McDonnell and conveying his then-view on related subjects. Although most of it

is still correct, the passing of time has rendered it somewhat antiquated, and the

average current (2004) user new to fontinst would probably find Philipp Lehman’s

The Font Installation Guide (http://www.ctan.org/tex-archive/info/Type1fonts/

fontinstallationguide/) more relevant.

Contents

1 Introduction 3

1.1 What does fontinst do? . 4
1.2 Installation . 4
1.3 Why do we need fontinst? . 5
1.4 How do you use fontinst? . 7

2 Installing your own font family 10

3 More on the \latinfamily command 14

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 3

1 Introduction

The fontinst package is a set of TEX macros written to create virtual fonts for
use with TEX. Its main use is creating the files needed so you can use PostScript
Type 1 fonts with LATEX.

Fontinst needs information about the fonts it works with. This information
needs to be supplied in an Adobe Font Metric (afm) or TEX Property List (pl)
file. pl files can be created from tfm files using tftopl, a program normally
included with a TEX system.

The job that fontinst does is complicated, but it can be used for many tasks
by people who are not TEX font wizards. Having said that, you do need to
understand at least the basics of LATEX 2ε’s font selection mechanism, which is
documented in fntguide.tex, part of the standard LATEX distribution. ftp://
ftp.tex.ac.uk/tex-archive/macros/latex/base/fntguide.tex will fetch a
copy if you don’t have one to hand.

To get the most benefit out of fontinst, it’s important to understand and
use Karl Berry’s ‘Fontname’ naming scheme. The definitive version of this is
available from your nearest CTAN server. The following URL will fetch all
the files needed compressed into a single ZIP archive: ftp://ftp.tex.ac.uk/

tex-archive/info/fontname.zip. I suggest that you print out the Fontname
documentation and have it handy when you’re learning about fontinst.

The fontinst package:

• Is written in TEX, for maximum portability (at the cost of speed).

• Supports the OT1 (Computer Modern) and T1 (Cork) encodings.

• Allows fonts to be generated with arbitrary ‘fake’ characters; for example
the ‘ij’ character can be faked if necessary by putting an ‘i’ next to a ‘j’.

• Allows caps and small caps fonts with letter spacing and kerning.

• Allows kerning to be shared between characters, for example ‘ij’ can be
kerned on the left as if it were an ‘i’ and on the right as if it were a ‘j’. This
is useful, since many PostScript fonts only include kerning information for
characters without diacriticals.

• Allows the generation of math fonts with nextlarger, varchar, and ar-
bitrary font dimensions.

• Allows more than one PostScript font to contribute to a TEX font, for
example the ‘ffi’ ligatures for a font can be taken from the Expert encoding,
if you have it.

• Can automatically generate a fd file for use with LATEX 2ε.

• Can be customized by the user to deal with arbitrary font encodings.

Fontinst has been a stable piece of software since mid-1994. All further updates
will be upwardly compatible with the interface described in this document.

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 4

1.1 What does fontinst do?

Fontinst is a tool written in TEX that can create the various extra files needed
so you can use PostScript fonts with LATEX and TEX. It can read in afm files, and
produces the necessary vpl, pl, and fd files to use the fonts (the human-readable
vpl and pl files produced by fontinst are turned into the machine-readable
vf and tfm forms by vptovf and pltotf). It does not help you configure your
DVI driver.

There also exists a perl front-end to fontinst, intended specifically for use
with a Unix TEX system, which takes care of routine tasks such as running
vptovf and pltotf on the generated files after fontinst has finished it’s job.
It also generates a font map file for use with dvips.

Fontinst’s main job is creating vf files (virtual fonts). Not all TEX systems
can use them. As far as I know, all current (1998) free and shareware TEX
systems can; virtual fonts have been in widespread use with TEX since 1990.
If you have a TeX system that can’t use virtual fonts, fontinst is most likely
useless to you.

There are some nice things about having a tool written in TEX to do this: it’s
completely portable and you can modify its behaviour using TEX commands.
The only real problem is that it’s relatively slow: you can expect a typical
fontinst run to take something like 10–20 minutes on, say, a 40 MHz 80486SX
PC or a 25 MHz 68LC040 Macintosh.

Fontinst can do its work on any font for which you have a corresponding afm

or tfm metric file, so it’s not limited to working with PostScript fonts; I have
used it to produce the files I needed to use TrueType fonts with LATEX. Whether
or not you can do this depends on whether or not you have suitable metric files
and whether or not your TEX system can use TrueType fonts. In particular,
the pdfTEX program supports TrueType fonts and includes a utility ttf2afm

to generate afm files from ttf fonts.

Some people have used fontinst to produce ‘special effects’ with normal TEX
fonts. One example is the eco set of fonts (available from CTAN: ftp://

ftp.tex.ac.uk/tex-archive/fonts/eco/). These fonts are the same as the
standard EC (European Modern) fonts, but with normal numerals replaced with
old style numerals –  rather than 12345 – everywhere except in maths
mode.

1.2 Installation

To install fontinst, put the contents of the inputs/tex, inputs/etx, inputs/
mtx and examples directories into a directory read by TEX, for example TEXMF/

tex/generic/fontinst.

When you use fontinst, you need to make sure that the afm and pl files it
will work on are in a directory searched by TEX.

If you are using web2c TEX on a Unix system with the TEX directory structure
(TDS), you might put all the afm files in subdirectories of TEXMF/fonts/afm/*.
And then say:

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 5

setenv TEXINPUTS $TEXMF/fonts/afm//::

Note that pl files are not normally kept in TEX installations, so if you want to
use MF fonts with fontinst you have to generate the corresponding pl files
from tfm files and put them in your working directory before running fontinst.

You could adopt a similar strategy with other TEX systems: create directories
for the required files and then change the relevant parameter (input folders

in the default configuration file with OzTEX, for example).

The approach I use is this: I write a file containing commands for fontinst

to process, and put the afm and pl files needed in the same directory as that
file. When fontinst has finished working, I delete the afm and pl files because
they are not needed and waste space on my hard disc drive. Some application
programs on some computers need afm files, so it’s not always a good idea to
remove them completely.

1.3 Why do we need fontinst?

TEX refers to characters by number when it’s typesetting. When you use a
command like \i, TEX puts a number (16 if you’re using OT1, 25 if you’re
using T1) into the dvi file. If you’re using a font designed for use with TEX,
this number will correspond to the character ‘ı’. Assuming OT1 encoding for
the moment, when you come to print out your dvi file, the DVI driver will
see the number 16 in the dvi file, and select the character that sits in position
16 of the corresponding printer font file (a pk file in the case of normal TEX
fonts). Unless something has gone wrong, that will result in the character ‘ı’
being placed on the page.

It’s useful to think of these numbers and the actual characters corresponding
to each number as sets called ‘encodings’. A particular set of characters are
assigned particular numbers. An example of an encoding is shown in table 1.

TEX began life using 7-bit fonts. This means the original TEX fonts used the
numbers 0–127 to represent characters: 128 characters per font. TEX can now
use 8-bit fonts: 256 numbers from 0–255, but even so, most typesetting with TEX
still uses the original 7-bit encoding, now called ‘OT1’ (Old TEX 1 encoding).
This has a correspondance between numbers and characters shown in table 1.
The numbers used in that table are hexadecimal and octal because it makes for
a neat table and anyway I stole the code to generate it from Donald Knuth and
that’s how he did it.

Returning to the example above, if you’ve a number 16 in your dvi file (ex-
pecting ‘ı’, a dotless i), but rather than printing with an OT1 encoded font,
you print using a non re-encoded PostScript font in Adobe standard encoding,
you’ll get a blank, because the Adobe standard encoding has nothing in that
character position.

There are several ways round this problem; I’ll consider two cases here. If
you are using LATEX you can tell it about a new encoding and re-define the
commands that produce characters like ‘ı’ that live in different positions in

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 6

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x Γ ∆ Θ Λ Ξ Π Σ Υ
˝0x

0́1x Φ Ψ Ω ff fi fl ffi ffl

0́2x ı  ` ´ ˇ ˘ ¯ ˚
˝1x

0́3x ¸ ß æ œ ø Æ Œ Ø

0́4x ! ” # $ % & ’
˝2x

0́5x () * + , - . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : ; ¡ = ¿ ?

1́0x @ A B C D E F G
˝4x

1́1x H I J K L M N O

1́2x P Q R S T U V W
˝5x

1́3x X Y Z [“] ˆ ˙

1́4x ‘ a b c d e f g
˝6x

1́5x h i j k l m n o

1́6x p q r s t u v w
˝7x

1́7x x y z – — ˝ ˜ ¨

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 1: The OT1 font encoding

different encodings, or you can use a tool to re-encode the font so that it has
the expected characters in the appropriate positions.

Re-encoding is the approach fontinst uses: it can produce files to map the
characters in the new font to one of TEX’s existing encodings; this works with
formats other than LATEX.

The first approach is used to define the standard encodings that LATEX uses. See,
for example, the file ot1enc.def that comes with the current LATEX distribution,
which defines the a few commands that refer to characters which aren’t in the
positions TEX would otherwise assume. This works only with modern versions
of LATEX.

The second approach is used to allow you to use fonts in other encodings with
any dialect of TEX. It has the some advantages over the first method: it works
with any TEX format; and it improves portability, because you can typeset a
document using a standard TEX encoding, sure that the same document will
print correctly on a different kind of computer using a font with a different
encoding. For example, you might say:

\usepackage{times}

in the preamble of your document. On my computer, that means my DVI driver
will use a Macintosh encoded TrueType version of Times. On your computer,

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 7

it might mean the dvi driver will use a Unicode encoded PostScript version of
Times-Roman. The results will be identical in either case, without needing to
modify the document.

1.4 How do you use fontinst?

Fontinst works on afm files named (more-or-less) according to Karl Berry’s
font naming scheme (see ftp://ftp.tex.ac.uk/tex-archive/info/fontname
at CTAN). Let’s say you want to use the Adobe Times fonts. You can get the
metric files for this font from CTAN:

Location of file at CTAN Rename to

fonts/psfonts/adobeafm/base35/tib .afm ptmb8a.afm

fonts/psfonts/adobeafm/base35/tibi .afm ptmbi8a.afm

fonts/psfonts/adobeafm/base35/tii .afm ptmri8a.afm

fonts/psfonts/adobeafm/base35/tir .afm ptmr8a.afm

The new name is the name you should give the tfm files so that fontinst un-
derstands what each file contains. The initial ‘p’ means ‘Adobe’; ‘tm’ means
‘Times’; ‘b’ bold, ‘r’ roman, ‘i’ italic; and ‘8a’ means ‘Adobe standard encod-
ing’.

The simplest use of fontinst is to put the four afm files in the same directory
as fontinst.sty and run TEX on fontinst.sty. At the * prompt type:

*\latinfamily{ptm}{} \bye

Some time later (about 17 minutes on my rather old computer), fontinst will
have finished, having created:

• Two pl files for each afm file

• One vpl file for each TEX font

• One fd file for each family

The pl files come in pairs: for example, ptmb8a.pl and ptmb8r.pl. The 8a

version has the same encoding as the original font; the 8r version is re-encoded
to TeXBase1 (8r) encoding, and is the font that is the base on which the T1
and OT1 encoded versions are based on. The raw 8a (Adobe standard) encoded
font is not normally used.

These can be converted to TEX fonts using pltotf or vptovf. If you have
OzTEX, launch OzMF, select pltotf (or vptovf) from the Tools menu, and
say ‘Do all files’.

If you use the bash shell on a Unix system, you can process all files using these
one-liners at the $ prompt:

$ for f in in *.pl; do pltotf $f; done

$ for f in in *.vpl; do vptovf $f; done

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 8

(This assumes that pltotf and vptovf can deduce the file names of the cor-
responding tfm and vf files automatically.)

You should then:

• Move the tfm files to your TEX fonts directory
(e.g. TEXMFLOCAL/fonts/tfm/*).

• Move the vf files to your virtual fonts directory
(e.g. TEXMFLOCAL/fonts/vf/*).

• Move the fd files to your TEX inputs directory
(e.g. TEXMFLOCAL/tex/latex/psfonts/*).

If your TEX installation is organized using the TEX directory structure (TDS),
it is customary to subdivide the tfm and vf files into subdirectories by supplier
and typeface name.

The pl, vpl, and mtx files are debris that can now be deleted. mtx files are font
metric files fontinst creates for its own use from afm and pl files. They’re just
more convenient for TEX to read than other forms – think of them as fontinst

readable afm and pl files.

By now, you have all the files in place to produce a dvi file using the new fonts.
You can make Adobe Times the default roman font in your document by putting
this in your preamble:

\renewcommand{\rmdefault}{ptm}

TEX will now happily produce a perfectly good dvi file including the new font,
which your DVI driver will choke on because you’ve not yet told it about the
new fonts. Exactly how you do this depends on the dvi driver, but they all
need the same information: the name of a TEX font; the printer font name it
corresponds to; some information to handle an re-encoding needed; and (in the
case of a PostScript driver) perhaps an instruction to download the font to the
printer. You don’t need to download the Times font to a PostScript printer,
because Times is built in to every PostScript printer.

If you use dvips, these lines added to your psfonts.map file will do the job:

ptmr8r Times-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmri8r Times-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmb8r Times-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmbi8r Times-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmro8r Times-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

ptmbo8r Times-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

And now you can print a dvi file containing the new fonts. If you really do
want to use the ‘raw’ 8a encoded fonts for some reason, you need to add these
lines to your psfonts.map file:

ptmr8a Times-Roman

ptmri8a Times-Italic

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 9

ptmb8a Times-Bold

ptmbi8a Times-BoldItalic

ptmro8a Times-Roman "0.167 SlantFont"

ptmbo8a Times-Bold "0.167 SlantFont"

Assuming that you’re using the fd file that fontinst has produced, and that
you’ve asked for the Adobe Times family (ptm) in medium series (m) and upright
shape (n for normal) using the NFSS font selection commands:

\renewcommand{\rmdefault}{ptm}

\rmfamily \mdseries \upshape

Assuming further that you are using the fd file t1ptm.fd produced by font-

inst, the TEX font (tfm file) ptmr8t.tfm will be selected by the above com-
mands, as you can see from the relevant line in t1ptm.fd:

\DeclareFontShape{T1}{ptm}{m}{n}{<-> ptmr8t}{}

This is what happens:

• TEX typesets your document using the font metric file ptmr8t.tfm; this
is the font that is put in the dvi file.

• Dvips looks at the dvi file, and sees a reference to the font ptmr8t.

• Dvips searches for a vf file corresponding to ptmr8t; when it finds
ptmr8t.vf, it knows it has a virtual font on its hands.

• Dvips follows the instructions in the vf file, which map characters in
ptmr8t.tfm to characters in the font ptmr8r.tfm. That is, when it sees
a number 25 in the dvi file (dotless i – ‘ı’ – in T1 encoding), it replaces it
with a number 17, which is a dotless i in 8r encoding.

• Then dvips looks up the name of each number according to the scheme
given in the file 8r.enc, and replaces each number with the name of the
character, in this case, number 17 is listed as ‘dotlessi’.

• And finally, dvips tells the printer to print the named character.

Not all DVI drivers can manage re-encoding as well as dvips can. For example,
OzTEX’s built-in non-PostScript dvi driver can only work with numbers, so if
I’m using a PostScript font, I can’t print characters (such as Eth) that don’t
have a number in Macintosh text encoding unless I use dvips and print on a
PostScript printer. Dvips works with character names, so it’s not subject to
this restriction. In the example above, OzTEX would replace the number 17
for ‘dotlessi’ in 8r encoding with a number 245 for ‘dotlessi’ in Macintosh text
encoding.

The details of the LATEX 2ε font selection scheme are described in LATEX2ε font

selection (distributed with LATEX 2ε as the file fntguide.tex) and The LATEX

Companion (Goossens, Mittelbach and Samarin, Addison-Wesley).

The files you need to use Times, Helvetica, Courier, and the rest of the ‘standard’
PostScript fonts are distributed as part of the PSNFSS bundle available from
CTAN, so there’s no need to create new files to use these fonts.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 10

A more involved example of fontinst use can be seen in the file fontptcm.tex
which creates the files you need to use a combination of Times, Symbol, Zapf
Chancery and Computer Modern as TEX math fonts.

2 Installing your own font family

The fontinst package has a command \latinfamily meant to do most of
the work to install a ‘normal’ set (family) of roman text fonts from Adobe.
Assuming you have a set of afm files to match the fonts you wish to use, the
first step is to rename the afm files according to the Fontname naming scheme.

A ‘normal’ set of text fonts usually includes the basic upright roman version,
bold, italic, and bold italic. Sometimes there will also be small caps versions,
perhaps some ‘expert’ fonts, and maybe some other weights such as light, me-
dium, semi bold, black or ultra bold.

The most important point to note is this: no matter what sort of computer
you’re using and no matter what font encoding it uses normally, afm files for
text fonts are almost always in 8a encoding (Adobe standard encoding), so the
afm files when renamed normally end in 8a.

A typical set of four afm files re-named for use with fontinst is this:

ptmr8r.afm Times-Roman

ptmri8r.afm Times-Italic

ptmb8r.afm Times-Bold

ptmbi8r.afm Times-BoldItalic

Not all afm files use 8a encoding. If you open an afm file using a text editor,
you’ll see a line looking like this somewhere near the top:

EncodingScheme AdobeStandardEncoding

and if you see exactly that, the afm file should end with 8a. If you see something
like this:

EncodingScheme FontSpecific

have a look at the name of the font in the afm file. If you see something like
this:

FontName AGaramondExp-Regular

FullName Adobe Garamond Regular Expert

you have an ‘expert’ encoded font on your hands, and the afm file should end
with 8x to indicate this to fontinst. An 8x encoded font contains extra glyphs
like old style numerals, small capital letters, more ligatures, and so on.

The \latinfamily command is used like this:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 11

\latinfamily{〈family〉}{〈commands〉}

This installs a Latin family of fonts.

For example, to install Adobe Times, you say:

\latinfamily{ptm}{}

The commands issued by LATEX each time a font from that family is loaded.
This is most often used with typewriter fonts, to switch off hyphenation. For
example, Adobe Courier can be installed with:

\latinfamily{pcr}{\hyphenchar\font=-1}

Once the installation is over (which may take some time) the fonts can be used
in LATEX by selecting an appropriate \fontfamily, for example Adobe Times
can be selected with:

\fontfamily{ptm}\selectfont

If the fourth letter of the family name is ‘x’ then fontinst will use expert fonts
in creating the fonts. If the fourth letter is ‘j’ (or for backward compatibility
‘9’) then fontinst will use expert fonts to create fonts with old style digits.

For example, to install Adobe Garamond using expert fonts, you say:

\latinfamily{padx}{}

To install Adobe Garamond using expert fonts with oldstyle digits, you say:

\latinfamily{padj}{}

When you have expert fonts, and you’ve told fontinst to use them, it will
carry on as normal, but the resulting font family will have the name ‘padx’ or
‘padj’, and it will use expert glyphs whenever possible, so you’ll have a real
(rather than faked) small caps font, real (rather than faked) ‘ffl’ ligatures, and
so on.

Before using these commands, you will need to make sure that you have the
Adobe Font Metric (afm) files for the fonts, and that they have appropriate
names. The fontinst package uses the LATEX convention for naming fonts, and
uses a font family name which consists of:

• a supplier (or foundry), such as ‘p’ for Adobe.

• a typeface, such as ‘ad’ for Adobe Garamond.

• up to two variants, such as ‘j’ or ‘x’ for ‘old style digits’ or ‘expert’.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 12

b Bitstream
f ‘free’ (public domain)
h Bigelow & Holmes
i ITC
l Linotype
m Monotype
p Adobe (p for PostScript)
r ‘raw’ (obsolete)
u URW
z bizarre

Table 2: A partial list of foundries

a alternate
d display, titling
f fraktur, handtooled
j oldstyle digits
n informal, casual
p ornaments
s sans serif
t typewriter
w script, handwriting, swash
x expert

Table 3: A partial list of variants

c small caps
i italic
o oblique (i.e., slanted)
u unslanted italic

Table 4: A partial list of shapes

ac Adobe Caslon
ad Adobe Garamond
ag Avantgarde
bb Bembo
bd Bodoni
bk Bookman
bv Baskerville
ca Caslon
ch Charter
cr Courier
fr Frutiger
fu Futura
gl Galliard
gm Garamond
gs Gill Sans
hv Helvetica
mn Minion
lc Lucida
lh Lucida Bright
ls Lucida Sans
nb New Baskerville
nc New Century Schoolbook
op Optima
pl Palatino
sy Symbol
tm Times
ut Utopia
zc Zapf Chancery
zd Zapf Dingbats

Table 5: A partial list of faces

So the family name ‘padj’ indicates Adobe Garamond with old style digits.
Note that the variants ‘j’ or ‘x’ are interpreted by fontinst itself and do not
appear in external font names, whereas other variants are passed through as
part of the font names. (This is needed for families which have a sans serif or
typewriter variant.)

The supplier must be one letter, and the typeface must be two (this is an
attempt to fit all filenames into MS-DOS format). Each variant is one letter.
The full list of foundries, typefaces, shapes and variants is given in Karl Berry’s
‘Filenames for fonts ’ (available by anonymous FTP from ftp://ftp.tex.ac.

uk/tex-archive/info/fontname), but the more common ones are given in
Tables 2–5.

The fontinst package uses Karl Berry’s naming scheme for afm files. The full
naming scheme is rather more flexible than the subset used by fontinst, which
uses filenames consisting of:

• a supplier, such as ‘p’ for Adobe.

• a typeface, such as ‘hv’ for Helvetica.

• a weight, such as ‘r’ for regular.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 13

b bold
c black
d demibold
h heavy
k book
l light
m medium
r regular
s semibold
u ultra bold
x extra bold

Table 6: A partial list of weights

c condensed
n narrow
w wide
x extended

Table 7: A partial list of widths

8a Adobe Standard
8x Adobe Expert
8r TEX 8-bit ‘raw’ (TeXBase1)
8y TEX 8-bit ‘raw’ (TeXnANSI)
7t TEX 7-bit text (OT1)
7m TEX 7-bit math italic (OML)
7y TEX 7-bit math symbol (OMS)
7v TEX 7-bit math extension (OMX)
8t TEX 8-bit text (T1)
8c TEX 8-bit text symbols (TS1)
9t TEX 7-bit text with expert glyphs
9o TEX 7-bit text with expert glyphs

and old-style digits
9e TEX 8-bit text with expert glyphs
9d TEX 8-bit text with expert glyphs

and old-style digits
9c TEX 8-bit symbols with expert glyphs

and old-style digits

Table 8: A partial list of encodings

• up to two shapes or variants, such as ‘o’ for oblique.

• an encoding, such as ‘7t’ for Knuth’s 7-bit TEX encoding.

• an optional width, such as ‘n’ for narrow.

• a file extension, such as ‘.tfm’ for TEX Font Metric.

So the filename name ‘phvro7tn.tfm’ indicates Adobe Helvetica regular oblique
narrow, in the 7-bit TEX encoding.

The full list of shapes, encodings and weights is given in Karl Berry’s ‘Filenames

for fonts ’, but the more common ones are given in Tables 4–6.

For example, to install Adobe Garamond including the expert fonts, you would
need to rename the afm files:

Adobe name ATM name Fontinst name

AGaramond-Bold.afm gdb_____.afm padb8a.afm

AGaramond-BoldItalic.afm gdbi____.afm padbi8a.afm

AGaramond-Italic.afm gdi_____.afm padri8a.afm

AGaramond-Regular.afm gdrg____.afm padr8a.afm

AGaramond-Semibold.afm gdsb____.afm pads8a.afm

AGaramond-SemiboldItalic.afm gdsbi___.afm padsi8a.afm

AGaramondExp-Bold.afm geb_____.afm padb8x.afm

AGaramondExp-BoldItalic.afm gebi____.afm padbi8x.afm

AGaramondExp-Italic.afm gei_____.afm padri8x.afm

AGaramondExp-Regular.afm gerg____.afm padr8x.afm

AGaramondExp-Semibold.afm gesb____.afm pads8x.afm

AGaramondExp-SemiboldItalic.afm gesbi___.afm padsi8x.afm

AGaramond-RegularSC.afm gdsc____.afm padrc8a.afm

AGaramond-SemiboldSC.afm gdsbs___.afm padsc8a.afm

You can then run TEX on the following document to install the Adobe Garamond
family:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 14

\input fontinst.sty

\latinfamily{padx}{}

\latinfamily{padj}{}

\bye

Not all font families can be installed using the \latinfamily command, nor
does it always produce optimal results. The main interfaces to fontinst are
at a slightly lower level, where all font names appear explicitly in command
arguments, and at that level it is possible to fine tune the font generation. The
\latinfamily command is mainly a clever collection of macros which expand
to a mostly fixed1 sequence of lower level fontinst commands.

Descriptions of the sub-\latinfamily commands can be found in the

main fontinst manual.

3 More on the \latinfamily command

The \latinfamily command is essentially a short-cut to save you preparing a
huge file with many different fontinst commands in it.

It takes afm or mtx files as the source of font metric data to work with. Usually,
you have a set of afm files. They must be named according to a subset of the
Fontname naming scheme. To illustrate the process, here is an edited part of
the console log from a use of \latinfamily:

\latinfamily{pad}{}

This log does not show fontinst ‘in action’; it’s just to illustrate which fonts
are looked for when you use the \latinfamily command.

INFO> to make LaTeX font shape <pad,m,n,> seek padr8r.mtx

INFO> to make LaTeX font shape <pad,m,sc,> seek padrc8r.mtx

INFO> to make LaTeX font shape <pad,m,sl,> seek padro8r.mtx

INFO> to make LaTeX font shape <pad,m,it,> seek padri8r.mtx

INFO> to make LaTeX font shape <pad,m,n,c> seek padr8rn.mtx

INFO> to make LaTeX font shape <pad,m,sc,c> seek padrc8rn.mtx

INFO> to make LaTeX font shape <pad,m,sl,c> seek padro8rn.mtx

INFO> to make LaTeX font shape <pad,m,it,c> seek padri8rn.mtx

The important point to notice is that fontinst needs an 8r encoded mtx file
for each font when you are using the latinfamily command. If it can’t find
an 8r encoded mtx file, it’ll look for for an 8a encoded afm file. It will auto-
matically turn the file it finds into an 8r encoded mtx file. So when fontinst

says ‘seek padr8r.mtx’, it is in fact looking for padr8r.mtx and padr8a.afm.
Whatever it finds, it will end up with padr8r.mtx to work on.

1Commands that would refer to files which are not present are skipped, and in some cases

there is a “Plan B” when “Plan A” would have made use of such a nonexistent file, but that

is about it.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 15

The first line of the log shows that fontinst is trying to create a vpl file for
pad/m/n. That is, font family pad (Adobe Garamond), font series m (normal
‘book’ or ‘regular’ weight), and font shape n (normal upright).

If it finds what it’s looking for, it will create the files:

padr7t.vpl

padr8t.vpl

padr8c.vpl

And add these lines to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{n}{<-> padr7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{n}{<-> padr8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{n}{<-> padr8c}{}

This means you will have three new fonts to use in LATEX: the OT1, T1 and
TS1 encoded versions of pad/m/n. You’ll be able to select (say) T1/pad/m/n by
saying:

\fontencoding{T1}\fontfamily{pad}\fontseries{m}\fontshape{n}\selectfont

This is the clumsiest way of selecting that particular font, but I’ve done it to
illustrate exactly what’s happening.

The next line:

INFO> to make LaTeX font shape <pad,m,sc,> seek padrc8r.mtx

shows that fontinst is trying to install a small caps font. If you have a real
small caps metric file named padrc8r.mtx (don’t forget it’ll look for an 8a

encoded afm file), fontinst will go ahead and create the vpl file and fd file
entry as expected.

But you don’t normally have a real small caps font, so fontinst will quite
happily produce a fake small caps font. To do this, it looks for a suitable metric
file by dropping the ‘c’:

‘Hmm. . . I can’t find padrc8r, so I’ll look for padr8r.’

And you will eventually have:

padrc7t.vpl

padrc8t.vpl

And add these lines to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{sc}{<-> padrc7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{sc}{<-> padrc8t}{}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 16

(Note that it won’t install a TS1-encoded small caps font because TS1 is a text
symbol font, which would look the same in the upright and small caps shape.)

The next log line shows fontinst trying to create a vpl for the oblique version
of Adobe Garamond:

INFO> to make LaTeX font shape <pad,m,sl,> seek padro8r.mtx

It’s quite usual for an oblique version to be unavailable, but fontinst has a
way round this: it can fake an oblique font from the corresponding ‘straight’
version:

‘Oh dear: I can’t find padro8r, so I’ll look for padr8r and use clever
maths to fake a slanted version.’

This is not as straightforward as the small caps case. Fontinst only works out
what the metrics ought to be if the entire font is slanted to the right. It’s up to
the DVI driver to actually print a slanted font. Dvips can do this.

You will eventually have:

padro7t.vpl

padro8t.vpl

padro8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{sl}{<-> padro7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{sl}{<-> padro8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{sl}{<-> padro8c}{}

The next line is straightforward:

INFO> to make LaTeX font shape <pad,m,it,> seek padri8r.mtx

If fontinst can’t find a suitable metrics file (padri8r.mtx or padri8a.afm),
it carries on without doing anything. If it does find a suitable metrics file, it
churns away until you will eventually have:

padri7t.vpl

padri8t.vpl

padri8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{it}{<-> padri7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{it}{<-> padri8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{it}{<-> padri8c}{}

The next line is a bit different. Fontinst is now trying to create a vpl file for
a condensed font:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 17

INFO> to make LaTeX font shape <pad,m,n,c> seek padr8rn.mtx

If it finds a suitable metric file (Adobe Garamond, medium weight, normal
upright shape, condensed), it will eventually produce:

padr7tn.vpl

padr8tn.vpl

padr8cn.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{mc}{n}{<-> padr7tn}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{mc}{n}{<-> padr8tn}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{mc}{n}{<-> padr8cn}{}

There is no standard LATEX command like \bfseries to select the medium
condensed (mc) series created here. If you want to use this font, you must do
something like:

\fontfamily{pad}\fontseries{mc}\selectfont

If it doesn’t find a suitable metric file for a narrow series, fontinst will just
skip over and continue, unless you specifically tell it to fake a narrow series.

And so the process continues: fontinst attempts to create vpl files for con-
densed versions of all the font shapes met so far, and then goes on to:

INFO> to make LaTeX font shape <pad,b,n,> seek padb8r.mtx

And again, if it finds a suitable metric file (padb8r.mtx or padb8a.afm), it’ll
potter off and create the files:

padb7t.vpl

padb8t.vpl

padb8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{b}{n}{<-> padb7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{b}{n}{<-> padb8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{b}{n}{<-> padb8c}{}

With this step done, fontinst will try to create vpl files for the small caps,
slanted, and italic versions of pad/b; and then it’ll try to create condensed
versions of all those:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 18

INFO> to make LaTeX font shape <pad,b,n,> seek padb8r.mtx

INFO> to make LaTeX font shape <pad,b,sc,> seek padbc8r.mtx

INFO> to make LaTeX font shape <pad,b,sl,> seek padbo8r.mtx

INFO> to make LaTeX font shape <pad,b,it,> seek padbi8r.mtx

INFO> to make LaTeX font shape <pad,b,n,c> seek padb8rn.mtx

INFO> to make LaTeX font shape <pad,b,sc,c> seek padbc8rn.mtx

INFO> to make LaTeX font shape <pad,b,sl,c> seek padbo8rn.mtx

INFO> to make LaTeX font shape <pad,b,it,c> seek padbi8rn.mtx

If it manages to find the files it needs to create the vpl files to use all those
fonts with LATEX, you’ll end up with the following lines in the T1 fd file (I’ve
ignored the OT1 fd file to save some space):

\DeclareFontShape{T1} {pad}{b} {n} {<-> padb8t}{}

\DeclareFontShape{T1} {pad}{b} {sc}{<-> padbc8t}{}

\DeclareFontShape{T1} {pad}{b} {sl}{<-> padbo8t}{}

\DeclareFontShape{T1} {pad}{b} {it}{<-> padbi8t}{}

\DeclareFontShape{T1} {pad}{bc}{n} {<-> padb8tn}{}

\DeclareFontShape{T1} {pad}{bc}{sc}{<-> padbc8tn}{}

\DeclareFontShape{T1} {pad}{bc}{sl}{<-> padbo8tn}{}

\DeclareFontShape{T1} {pad}{bc}{it}{<-> pckbi8tn}{}

To translate into English: Adobe Garamond bold in ‘normal’, small caps,
slanted, and italic versions, as well as condensed versions of all four.

Again, because there’s no convenient way of selecting the condensed versions
with existing LATEX commands, you need to say something like:

\fontfamily{pad}\fontseries{bc}\selectfont

to use the bold condensed (bc) versions of this font; you can of course use
\itshape, \scshape, \slshape, and upshape to switch between the italic, small
caps, slanted, and ‘normal’ versions of Adobe Garamond bold condensed once
you’ve got pad/bc selected.

So far, you’ve seen \latinfamily look at two different weights and two different
widths. For each weight, \latinfamily will try and install eight different fonts
as you can see above. It will try and install the same eight different fonts for
each of the following different weights:

LATEX Fontname description

ul a ultra light
el i extra light
l l light
m k, r book, regular
mb m medium
db d demi bold
sb s semi bold
b b bold
eb c, h, x black, heavy, extra bold
ub u ultra bold

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 19

The LATEX column contains the label that will be used in the \DeclareFontShape
command to specify the font series. The Fontname column contains the width
specifier used to name the font metric file that fontinst will look for in that
case.

In other words, at some stage fontinst will look for:

INFO> to make LaTeX font shape <pad,sb,n,> seek pads8r.mtx

and if it finds a suitable metric file (pads8r.mtx or pads8a.afm), it will create:

pads7t.vpl

pads8t.vpl

pads8c.vpl

and fd file entries like this:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{sb}{n}{<-> pads7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{sb}{n}{<-> pads8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{sb}{n}{<-> pads8c}{}

and since sb is not a normal LATEX font series, you’ll need to use something like:

\fontfamily{pad}\fontseries{sb}\selectfont

to use this font.

The basicex.tex file in the examples directory of the main fontinst distri-
bution is an annotated command file which does roughly the same things as the
\latinfamily command for the pad family of fonts.

