UsiING EXTERNAL EPS
GRAPHICS IN METAPOST
THE exteps MODULE
VERSION 0.41

Palle Jorgensen

26th September 2006

CONTENTS

I INTRODUCTION

k Drawing commandd s e

15

1. INTRODUCTION

This document describes the use of the exteps module for inclusion of exter-
nal EPS figures in METAPOST figures. Unlike the previous attempt (epsincl)
it make no use external programs’; it is entirely written in METAPOST.

The EPS graphics is included using the special command in METAPOST.

IThis is only partly true, as METAPOST is unable to handle large files; a workaround is
described in appendix[Bl on page

2. USING exteps

To illustrate the use of the exteps module an example is given below. Be-
tween the begineps and endeps commands both settings can be set, as well
as special drawing commands can be added. The output of the example and
the original picture can be seen in figure m

input exteps
prologues:=2;

beginfig(1);
begineps "pallej.eps”;
base := (25,25);
clipping := true;
grid := true;
epsdrawdot(36pct,80pct) withpen pencircle scaled 10pct withcolor blue;
epsdrawdot(60.5pct,80pct) withpen pencircle scaled 10pct withcolor blue;
epsdraw (35pct,60pct)..(48pct,54pct){right}..(61pct,60pct) withpen pencircle
scaled 2pct withcolor red;

endeps;

draw origin withpen pencircle scaled 50 withcolor red + green;

endfig;

130%
120%
110%
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

M e o @ e e ® o
N I A A I =R =R ==
ﬁoﬁﬁﬁoﬁﬁcﬁoﬁﬁ%

Figure 1: The original (left) and the with exteps modified picture (middle).
To the right there is one without the grid and the dot at the origin.

1. SETTINGS

The parameters of the settings and their defaults can be seen the table below.

Parameter Type Default Description

angle numeric 0 The counterclockwise rotation of the
EPS figure.

clipping? boolean false If true, the EPS figure is clipped to
its bounding box.

clippath path Bounding Path to which the EPS picture is

box of the clipped, if the clipping switch is true.
EPS file

base pair (0,0) The offset of the lower left corner of
the EPS picture.

scale pair (1,1) The scaling of the picture.

width numeric No default Specify the width of the picture;
overrules the scale setting.

height numeric No default Specify the height of the picture;
overrules the scale setting.

grid boolean false If true a grid is draw on top of the
picture; mostly (only?) meant to
help when drawing on top of the
EPS figure.

gridstep numeric 10 The distance in percent between the
lines of the grid.

gridllx numeric 0 The x-part of the lower left corner of
the grid; in pct

gridlly numeric 0 The y-part

gridurx numeric full width The x-part of the upper rightt corner
of the grid

gridury numeric full height The y-part

2. SPECIAL VALUES

begineps saves the original bounding box of the EPS picture in the values
11x, 11y, urx and urx. These values can be used in the settings, and for
drawing commands. Furthermore a numeric value pct is set. This is a length
that is one percent of the width of the picture.

2In version 0.1 named clip

If for instance one wants the picture to be placed at the same place on the
page as the original picture it is simply typing

base:=(1lx lly);

between begineps and endeps.

3. DRAWING COMMANDS

When begineps is called a special picture, epspicture, is created. To draw on
this picture, and whence drawing on the EPS picture the special commands
epsdraw, epsfill, epsfilldraw, epsdrawdot and epslabel are defined. They
work as the normal drawing commands, but now adds to the epspicture.

At endeps the epspicture is scaled, rotated and translated in the same way
as the included EPS figure.

4. CLIPPING THE EPS PICTURE

From version o.2 it is possible to do advanced clipping of the EPS picture.
This is done by specifying the path clippath along which the EPS picture is
to be clipped, and setting clipping to true.
A minor example and the result in figure Bl on page
beginfig(4);
begineps "pallej.eps";
base := (25,25);
clipping := true;
clippath := (50pct,10pct)..(15pct,70pct)..(50pct, 130pct)..(85pct,70pct)..cycle;
endeps;
endfig;

Please note that this does not clip the epspicture. You can do this manu-
ally by specifying

clip epspicture to clippath;
or

setbounds epspicture to clippath;

The section about the grid on page [l also provides an example of the clip-
ping commands.

%
0,
0,
0,
0,
0,
0,
%
0,
%001

Figure 2: The clipped picture to the right, and the original with a grid to the
left. The clippath is marked with blue. The picture in the midlle is
created by keeping the blue line on top of the clipped picture.

5. THE GRID

It is possible to finetune the settings og the grid, for instance when clipping
the picture. The example below shows the impact of setting the values of
gridstep, gridllx, gridlly, gridurx, and gridury. The result can be seen
in figure g on page [
beginfig(6);
begineps "pallej.eps”;
clipping := true;
clippa’ch1 := (20pct,40pct)——(80pct,40pct) — —(80pct,110pct) — —(20pct,110pct) — —
cycle;

setbounds epspicture to clippath;

scale := (1.5,1.5);

grid := true;

gridstep := 5;

gridllx := 20;

gridlly := 40;

gridurx := 80;

gridury := 110;

endeps;

endfig;
end.

110%
105%
100%
95%
90%
85%
80%
5%
0%
65%

Figure 3: The picture with the finetuned grid, and some clipping.

3. LIMITATIONS OF exteps

exteps only looks at the first line in the document that says
%%BoundingBox: ...

Thus it will cause trouble if this line does not provide the bounding
box; some PostScript drivers may write %%BoundingBox: (atend). This
is not supported.

As all of the graphics inclusion is done with METAPOST, it is limited by
METAPOST’s memory capacity. More specific on the string pool size.

Read more about this problem, and about the delfin workaround perl
script in Appendix [Bl on page

As the module makes it possible to include external EPS pictures it may
not be possible to use the output with PDFTEX.

A way to get around this is to use the program epstopdf.

epstopdf is located on CTAN at
http://tug.ctan.org/tex-archive/support/epstopdf/.

Another possible work-around for this is to use the program purifyeps
to “clean up” the PostScript picture.

purifyeps is located on CTAN at
http://tug.ctan.org/tex-archive/support/purifyeps/.

Yet another work-around is to use the program pstoedit to generate
METAPOST code form EPS files and include this into your METAPOST
file.

http://tug.ctan.org/tex-archive/support/epstopdf/
http://tug.ctan.org/tex-archive/support/purifyeps/

See http://www.pstoedit.net/pstoedit/.

4. CHANGES

1. FROM VERSION 0.1 TO 0.2
- Adding advanced clipping, see section g on page
- Renaming the clip switch to clipping.

- Eliminating the showpage “problem” in version o.1.

2. FROM VERSION 0.2 TO 0.3

- Improvement of the grid drawing commands. The grid is now drawn
after the scaling of the picture.

- Introducing a workaround for large files. This includes a Perl script.

5. COMMENTS AND BUG REPORTS

All comments, questions and bug reports, both on the module itself as well
as this document may be sent to Palle Jorgensen, hamselv@pallej.dk.

6. THIS DOCUMENT

© 2006 by Palle Jorgensen.
The license of this document is GNU General Public License. Source of this
document and the used example can be found athttp://pallej.dk/exteps/.

http://www.pstoedit.net/pstoedit/
mailto:hamselv@pallej.dk
http://pallej.dk/exteps/

A. SOURCE CODE OF exteps

picture epspicture;
string extra_begineps; extra_begineps = "";

string extra_endeps; extra_endeps ="";
boolean extepsverbose; extepsverbose = true;

%% String handling tool
string string_split[];
def splitstring expr S =
begingroup
save __splitctr; numeric __splitctr; _ splitctr = 0;
save __prevchar; string _ prevchar, _ currentchar; _ prevchar =
for i = 0 upto infinity:
__currentchar := substring(i, i+1) of S;
if (__currentchar ="_") and (__prevchar ="_"):

"o,
— 7

[

relax;
elseif (__currentchar <> "_") and (__prevchar ="_"):
string_split[__splitctr] :== __currentchar;

"non

elseif (__currentchar <>"_") and (__prevchar <>"_"):
string_split[__splitctr] := string_split[__splitctr] & __currentchar;
elseif (__currentchar ="_") and (__prevchar <>"_"):
__splitctr := __splitctr+1;
fi
__prevchar := __currentchar;
endfor
endgroup;
enddef;
%% End string handling tool

— /

def begineps text F =
begingroup;

save file; string file; file = F;
save angle; numeric angle; angle = 0;
save clipping; boolean clipping; clipping = false;
save scale; pair scale; scale = (1,1);
save base; pair base; base = origin;
save __bbxfound; boolean _ bbxfound; _ bbxfound = false;
save grid; boolean grid; grid = false;
save gridstep; numeric gridstep; gridstep = 10;
save __base; pair __base;
save __eps__currentline; string __eps__currentline;
save __bbxline; string __bbxline;
save lIx, lly, urx, ury; numeric llx, lly, urx, ury;

save pct; numeric pct;
save width; numeric width;
save height; numeric height;
save clippath; path clippath;
save largefile; boolean largefile; largefile = false;
save gridllx; numeric gridllx;
save gridlly; numeric gridlly;
save gridurx; numeric gridurx;
save gridury; numeric gridury;
%% Finding the bounding box
forever:
__eps__currentline := readfrom F;
if substring(0,14) of __eps__currentline = "%%BoundingBox:":
exitif __eps__currentline = EOF; % PATCH D. Roegel 23—sep—2006
__bbxline := substring(14, infinity) of __eps__currentline;
__bbxfound := true;
splitstring __bbxline;
lIx = scantokens string_split[0];
lly = scantokens string_split[1];
urx = scantokens string_split[2];
ury = scantokens string_split[3];
fi
exitif __bbxfound;
endfor
if not __ bbxfound:
message "Warning:_, No,_bounding,_box_found.";
message "oetting bounding, box _to_0 0_1 1"
lIx =1y =0;
urx = ury = 1;
fi
closefrom F;
scantokens extra_begineps;
__base = —(lIx 1ly);
pct = (urx — 1Ix)/100;
%% To ensure the right bounding box of the output file
% % a picture with the same size as the eps figure is added.
epspicture := nullpicture;
clippath = (0,0)——(0,ury—1ly)— — (urx—llx,ury —lly) — — (urx—1lx,0) — —cycle;
setbounds epspicture to clippath;
enddef;

def endeps =
%% Calculating scale if width and/or height is known
if (known width) and (known height):
scale := (width/(urx — llx),height/(ury — lly));

10

elseif known width:
scale := (width/(urx — llx),width/(urx — llx));
elseif known height:
scale := (height/(ury — lly) height/(ury — lly));
fi
%% The graphics inclusion commands
special "gsave";
if base <> origin:
special decimal.xpart.base & "_" & decimal.ypart.base & "_translate";
fi
if angle <> 0O:
special decimal angle & "_rotate";
fi
if _ base <> origin:
special decimal.xpart.__base & "_" & decimal.ypart.__base & "_translate";
fi
if scale <> (1,1):
epspicture := epspicture scaled xpart.scale
if xpart.scale <> ypart.scale:
yscaled (ypart.scale/xpart.scale)
special decimal xpart.scale & "_" & decimal ypart.scale & "_scale";
fi
if angle <> 0:
epspicture := epspicture rotatedaround(origin)(angle);
fi
% % Drawing the grid !! After the scaling :—)
if unknown gridllx:

gridllx = 0;

fi

if unknown gridlly:
gridlly = 0;

fi

if unknown gridurx:
gridurx = (urx — llx)/pct;
fi
if unknown gridury:
gridury = (ury — lly)/pct;
fi
if grid:
save __gridpicture; picture __gridpicture; __gridpicture := nullpicture;
for i = gridllx+pct step gridstep*pct until (epsilon + gridurxspct):
addto __gridpicture doublepath (i*xpart.scale,gridlly+pct+ypart.scale)——(i+
xpart.scale,gridury*pct+ypart.scale) withpen currentpen;

11

addto __gridpicture also thelabel.bot(((decimal.(i/pct) & "%") infont
defaultfont) rotated —90, (ixxpart.scale,gridlly+pct+ypart.scale));
endfor
for i = gridlly+pct step gridstep*pct until (epsilon + gridury=pct):
addto __gridpicture doublepath (gridllx+pct+xpart.scale,irypart.scale) ——(
gridurxspctsxpart.scale,irypart.scale) withpen currentpen;
addto __gridpicture also thelabel.lft(((decimal.(i/pct) & "%") infont
defaultfont), (gridllx+pct+xpart.scale,irypart.scale));
endfor
if angle <> 0:
__gridpicture := __gridpicture rotatedaround(origin)(angle);

addto epspicture also __gridpicture;
fi
if clipping:
save __clippath; path __clippath;
__clippath=clippath shifted (llx,lly);
special "newpath_" & decimal.xpart.point 0 of __clippath
& " " & decimal.ypart.point 0 of __clippath & "_moveto";
for i = 0 upto length.__clippath—1:
special decimal.xpart.postcontrol i of _ clippath & " " &
decimal.ypart.postcontrol i of _ clippath & " " &
decimal.xpart.precontrol (i+1) of _ clippath & " " &
decimal.ypart.precontrol (i+1) of _ clippath & " " &
decimal.xpart.point (i+1) of _ clippath & " " &
decimal.ypart.point (i+1) of __clippath & "_curveto";
endfor;
special "closepath,_clip";
fi
special "save";
special "userdict_begin";
special "/showpage_(},_def";
special "%%BeginDocument: " & file;
if largefile:
special "%%,_MetaPost_exteps_large,_file—>" & file;
if extepsverbose:
message "exteps,_notification:_,_File " & file & "_not,_inserted,_into_" &

"o

jobname & "." & decimal.charcode;

message " i Run, delfing " & jobname & " &
decimal.charcode & "_to_insert_ " & file;
message " e e This,_is_caused_by, setting,
largefile:=true”;
message "";
fi
else:

12

if extepsverbose:
message "Inserting,_" & file & "_into_" & jobname & "." & decimal.
charcode;
fi
forever:
__eps__currentline := readfrom file;
exitunless __eps__currentline <> EOF;
special __eps__currentline;
endfor
fi
special "%%EndDocument:_," & file;
scantokens extra_endeps;
special "end, restore";
special "grestore";
closefrom file;
if base <> (0,0):
epspicture := epspicture shifted base;
fi
addto currentpicture also epspicture;
endgroup;
enddef;

%% Special drawing commands
def epsfill expr ¢ = addto epspicture contour ¢ _op_ enddef;

def epsdraw expr p =
addto epspicture
if picture p:
also p
else:
doublepath p withpen currentpen
fi
op
enddef;

def epsfilldraw expr c =
addto epspicture contour ¢ withpen currentpen
op enddef;
def epsdrawdot expr z =
addto epspicture contour makepath currentpen shifted z

op enddef;

def epslabel = epsdraw thelabel enddef;

13

endinput

14

B. LARGE EPS FILES

In case of a too large EPS file, the exteps module causes an error message
from METAPOST, due to the limited memory capacity of METAPOST.
The error message looks somewhat like this:

camel25:”/tmp’, mpost et.mp

This is MetaPost, Version 0.641 (Web2C 7.5.2)
(/usr/local/TeX/texmf/web2c/cp8bit.tcx)

(et.mp (/users/pallej/texmf/metapost/exteps.mp)
Inserting sk.eps into et.1

! MetaPost capacity exceeded, sorry [pool size=476396].
<read>

<forever> __eps

currentline:=readfrom.file;

exitunless.__eps__currentline<>E...

endeps->...<>EQF;special.__eps__currentline;endfor

.fi.special"%%EndDocument:. ..

1.14 endeps

A workaround for this problem is to set the value largefile to true:
largefile:=true;
exteps now writes
% % MetaPost exteps large file—>file.eps

into the METAPOST output file. Afterwards one must run the Perl script
delfin onto the METAPOST output file.
First run METAPOST:

This is MetaPost, Version 0.641 (Web2C 7.5.2)
(/usr/local/TeX/texmf/web2c/cp8bit.tcx)
(et.mp (/users/pallej/texmf/metapost/exteps.mp)
exteps notification: File sk.eps not inserted into et.1
Run ’delfin et.1’ to insert sk.eps
This is caused by setting ’largefile:=true’
(11)
1 output file written: et.1
Transcript written on et.log.
camel25:~/tmp

15

and then delfin

camel25:”/tmp’, delfin et.1

This is delfin version 0.1

Delfin, the Exteps Large File INserter
Inserting sk.eps into et.1
camel25:~/tmp’

It is possible to turn off the exteps notification; just set the (global) value
extepsverbose to false

extepsverbose = false;

If you are unable to use the delfin program, it is still possible to do the
finishing. Just open the METAPOST output file in your favourite editor, and
replace the line mentioned above with the entire EPS file.

1. USING delfin

Usage of the delfin program:

delfin [options] file.n [file.m [file.l ... 1]
Options:

-h Print this message end exit

-q Be quiet

-v Display version and license and exit
-V Display version number and exit

2. SOURCE OF delfin

#! fusr/bin/perl —w
[license stuff etc.]

use strict;
our($opt_h,$opt_q,$opt_v,$opt_V,$opt_i);

use Getopt::Std;
getopts('—helpvqVi’);

use Env qw(HOME);

my $progversion = 0.12;

16

my $progname = "delfin";

my $prognamelong = "Delfin,_the_Exteps_Large _File INserter";
if ($opt_h) { version(); help(); exit; }

if ($opt_v) { version(); exit; }

if ($opt_V) { versionbrief(); exit; }

unless ($opt_q) {
print "This_is_$progname_version_$progversion\n';
print "$prognamelong\n";

}

foreach (@ARGV) {
my $mpsfile = $_;
my $elffound = 0;
open (MPSIN, "$mpsfile") or die "Cannot,_open, file_$mpsfile";
my @OUT;
foreach (<MPSIN>) {
if ($_ =~ /"%% MetaPost exteps large file—>/) {
$elffound = 1;
my $epsfile = (split(/—>1\n/,$_))[1];
unless ($opt_q) {
print "Inserting,_$epsfile_into_$mpsfile\n";
}
open(EPS, "$epsfile") or die "cannot,_open_file S$epsfile";
push (@OUT, <EPS>);
} else {
push (@OUT, $_);
}

}
close MPSIN;

if ($elffound) {
open (MPSOUT, ">$_") or die "Cannot_write_to_file_$_";
print MPSOUT @OUT;
close MPSOUT;
}
else {
unless ($opt_q) {
print "No_file_to_insert_into_$mpsfile\n"

}

}
sub help {

print << "EOF";
Usage:

17

$progname [options] file.n [file.m [file.l ...]]
Options:
—h\tPrint this message end exit
—q\tBe quiet
—i\tIgnore configuration file
—v\tDisplay version and license and exit
—VA\tDisplay version number and exit
See exteps.pdf for further documentation
(texdoc exteps on most unix systems)
EOF

}

sub version {
print << "EOF"
This is $progname version $progversion
$prognamelong
Copyright 2005 by Palle Jorgensen
The license of $progname is GNU General Public License (GPL)
EOF
}

sub versionbrief {
print "$progversion\n';

}

18

	Introduction
	Using exteps
	Limitations of exteps
	Changes
	Comments and Bug Reports
	This document
	Source code of exteps
	Large EPS files

