
Extending METAPOST to 3D and 4D

L. Nobre G.

July 27, 2013

Abstract

Many authors have been working with three dimensions in METAPOST but, up to now,
these works have not been integrated in the core of METAPOST. Since I am one of those
authors, I would like to propose now a framing for that integration.

Contents

1 Projecting from 3D into 2D 1
1.1 Exactly how? 2

2 The whole package 3
2.1 Already on the Tracker 3

2.2 Cross product 3

2.3 angle 3

2.4 Commands to be adapted . . . 3

2.5 New commands 3

2.6 Commands that should not be
touched 4

Since colors and cmykcolors were introduced in METAPOST, it became a simulation machine.
Ordinary differential equations could be solved in 3D or 4D using the exact same Runge–Kutta
code as for 2D.

But some way of projection had to be developed by the user in order to draw the results of
the simulation.

1 Projecting from 3D into 2D

Many different kinds of projections exist, I tried a few and I think it is enough to project through
a single point ~f onto a plane1. This kind of projection can take advantage of METAPOST’s linear
equations. Take, for instance, the following figure.

~R

~f

~p

~o

v̂

ĥ

1When the point is at infinity, the projection is parallel and it defines only a direction.

1

Point ~p can be calculated from the following equations: ~R+ λ
(
~R− ~f

)
= ~o+ ~p(

~h× ~v
)
· ~p = 0

(1)

which can be coded as below:

color p;

R + whatever*(R-f) = o + p;

(h crossproduct v) dotproduct p = 0;

where R, f, o, h and v are known colors. Of course, this requires that one defines crossproduct,
the cross product of two vectors2. This kind of projection is called “perspective” and can easily
be transformed into a parallel projection, like this:

color p;

R + whatever*(o-f) = o + p;

(h crossproduct v) dotproduct p = 0;

There are a few problems, though:

• Depending on the positions of ~f and ~R the linear equations may produce divisions by zero.
But these equations are quite simple and can be solved in advance so that divisions by zero
can be caught as is done in FEATPOST.

• ~p is a color, not a pair, so it must be converted. But this is very easy:

x = p dotproduct h;

y = p dotproduct v;

• if both ~R is a node or control point of a 3D path and the projection is a perspective then
the path perspective is no longer a Bézier spline, it is a non-uniform rational basis spline
(NURBS). The only way around this is to ignore the problem.

1.1 Exactly how?

Given that the actual way to draw a 3D path depends not only on the definition of that path but
also on the kind of projection being used, I propose that the projection be done only at shipout
time.

A perspective is not an affine transform and cannot be inverted by linear equations. A per-
spective is a new thing for METAPOST.

The parallel projection is an affine transform but METAPOST has not yet a framework neither
for 3D nor for 4D transforms.

The transition from the actual METAPOST to a full–fledged 3D METAPOST depends critically
on the support for smooth 3D and 4D paths.

Once METAPOST is beyond this transition what will certainly show up is the need for full
path tansforms which may either be affine or not. I propose to call these “generic” transforms
as maps. But note that these full path transforms cannot be perspectives because they only map
each node and control point of a given path3.

2I don’t know how to define the cross product in 4D.
3A map may be regarded as an approximation of a perspective.

2

2 The whole package

2.1 Already on the Tracker

The next most basic 3D and 4D capability that needs to be added to METAPOST is already
published as Tracker item # 104: both abs and unitvector must be expanded to accept colors
and cmykcolors as arguments.

2.2 Cross product

A good crossproduct for METAPOST would accept numerics, pairs and colors as arguments.

numerics the result is 0

pairs A and B the result is a color with all parts null except that the bluepart=Ax*By-Ay*Bx

colors the result is the standard cross product

2.3 angle

color A, B;

angle(A, B) = angle(abs(A crossproduct B), A dotproduct B);

2.4 Commands to be adapted

The following commands should be adapted to accept 3D (and 4D) points and paths:

draw undraw drawarrow drawdblarrow

fill unfill filldraw unfilldraw

reverse

precontrol postcontrol

arclength arctime

label dotlabel

slanted shifted rotated scaled xscaled yscaled

rotatedaround reflectedabout

bbox

subpath

path

transform transformed identity inverse

direction of

point of

And the following commands should be adapted to accept the new 3D and 4D transforms

xpart ypart xxpart xypart yxpart yypart

cyanpart magentapart yellowpart blackpart

2.5 New commands

Colors and cmykcolors should have analogues to z to be wiped–out on beginfig. I propose C

for colors and D for cmykcolors. There should exist predefined names for unitary 4D vectors
like purecyan = (1,0,0,0); puremagenta = (0,1,0,0), etc.

zscaled tdtransform tdtransformed fdtransform fdtransformed

xzpart yzpart zzpart zpart zxpart zypart

ccpart cmpart cepart ckpart

mcpart mmpart mepart mkpart

3

ecpart empart eepart ekpart

kcpart kmpart kepart kkpart

mapped

This last one mapped is perhaps the most messy of all. It should work like this:

anypath mapped NameOfUserMap;

where NameOfUserMap is the name of a macro that uses as a single argument each node and control
point of the anypath. It returns a new path that may have different dimensionality4

2.6 Commands that should not be touched

One of the problems of extending METAPOST is that somethings really cannot be extended. This
is related with the smoothness of 2D paths. With the exception of cusp points, the direction

is well–behaved on a 2D path. But on a 3D path (and specially on a 4D path) most directions
cannot be found. Also, intersections become exceedingly hard to find.

4Standard affine transforms keep the dimensionality.

4

	Projecting from 3D into 2D
	Exactly how?

	The whole package
	Already on the Tracker
	Cross product
	angle
	Commands to be adapted
	New commands
	Commands that should not be touched

