
MetaUML: A Manual and Test Suite

Copyright c©2005-2019 Ovidiu Gheorghieş. Permission is granted
to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.

1

This page is intentionally left blank.

2

MetaUML: A Manual and Test Suite

Ovidiu Gheorghieş

February 2, 2019

Abstract

MetaUML is a MetaPost [1] library for creating UML [2] diagrams
by means of a textual notation. While presenting the inner workings of
MetaUML, this manual doubles as a step-by-step tutorial. More impor-
tantly, its source code contains many useful examples of diagrams, ranging
from the very basic to the more advanced and customized.

1 Introduction

Here is a quick MetaUML showcase:

A Class Diagram
Client <<interface>>

Component

Leaf

+ Operation()

Composite

B Activity Diagram
Eat something good

from the kitchen

Read a book Listen to music
(and ignore it)

still hungry

had enough

C Notes
An important
UML note Another note

D Use Case Diagram

User

Authenticate user Query database

Database

Authenticate by
username, password

Authenticate by
smartcard

E State Machine Diagram
Working

Reading commands

Processing commands

error

Preparing error report

Writing result

F Package Diagram

A Bnet.foo

net.foo.bar

A B

3

Test
~
~
~
~

a1
a2
a3
aLongMethod():void

nw n ne

e

sessw

w c

top

bottom

left right

height

width

Figure 1: Layout properties of MetaUML objects. Here, a Class object is
depicted.

The code that generates these diagrams is quite straightforward, combining
a natural object-oriented parlance with the power of MetaPost equation solving.

For example, a UML class is drawn as follows:

Class.A("MyClass")

("attr1: int", "attr2: int")

("method1(): void",

"method2(): void");

A.nw = (0, 0); % optional, implied

drawObject(A);

MyClass
~
~
~
~

attr1: int
attr2: int
method1(): void
method2(): void

This code creates a visual object, referenced by its name A, of the MetaUML-
defined type Class. Object A has the following content properties: a name
(MyClass), a list of attributes (attr1, attr2) and a list of methods (method1,
method2). To set the object’s location, we assign a value to the so-called “north-
west” point of the encompassing rectangle, A.nw — a point which in actual fact
references the upper-left corner.

Every MetaUML visual object has the layout properties shown in figure 1.
These properties may be used to set the location of any given object, either by
assigning to them absolute values, or by linking them relatively to other objects
via equations.

The following example demonstrates, respectively, the use of absolute and
relative positioning for two classes, A and B.

A.nw = (0,0);

B.w = A.e + (20, 0);
A B

After the objects have been drawn, it becomes possible to attach links to
them. In a class diagram, inheritance or association relations are meaningful

4

links between classes, while in a state machine diagram, transitions between
states can be used. Here is the general pattern used by MetaUML for drawing
links:

link(<how-to-draw-information>)(<path-to-draw>);

The “how-to-draw-information” is an object which defines the style of the
line (e.g. solid, dashed) and the appearance of the heads (e.g. nothing, arrow,
diamond). One such object, appropriately called inheritance, defines a solid
line style and a white triangle head. The other parameter, the “path-to-draw”,
is simply a MetaPost path.

For example, the following call draws an inheritance relation from class B to
class A.

link(inheritance)(B.e -- A.w);

The direction of the path is important, as MetaUML uses it to determine
the type of adornment to attach to the link ends (if applicable). In our example,
a white triangle, denoting inheritance, points towards the end of the path, that
is towards class A.

Let us sum up with a diagram typical for MetaUML use. Firstly, we define
the objects that we want to include in our diagram. Secondly, we position these
objects relative to each other. Thirdly, we draw the objects. Finally, we draw
the links, by referencing the layout properties of the previously drawn objects.
Note that in our example the positioning of A need not be set explicitly because
“floating” objects are automatically positioned at (0,0) by their draw method.

input metauml;

beginfig(1);

Class.A("A")()(); % 1. Define the objects

Class.B("B")()();

B.w = A.e + (20, 0); % 2. Position the objects

drawObjects(A, B); % 3. Draw the objects

link(inheritance)(B.w -- A.e); % 4. Draw links between objects

endfig;

end

A B

As far as a user is concerned, this is all there is to MetaUML. With a reference
describing how the UML elements are created, arbitrarily complex diagrams can
be crafted.

2 Class Diagrams

A class is created as follows:

5

Class.<name>(<class-name>)

(<list-of-attributes>)

(<list-of-methods>);

The suffix <name> specifies an identifier for the newly created Class object
(which, of course, represents a UML class). The name of the UML class is a
string given by <class-name>; the attributes and methods are given as list of
strings, <list-of-attributes> and <list-of-methods> respectively. The list
of attributes and the list of methods may be void.

An attribute or a method string may begin with a visibility marker: “+” for
public, “#” for protected, “−” for private, and “˜” for package private. The
default visibility is package private.

Class.A("Point")

("#x:int", "#y:int")

("+set(x:int, y:int)",

"+getX():int",

"+getY():int",

"-debug():void",

"test():void");

drawObject(A);

Point
#
#
+
+
+
-
~

x:int
y:int
set(x:int, y:int)
getX():int
getY():int
debug():void
test():void

To disable showing the visibility markers, use Class noVisibilityMarkers,
as shown below:

Class.A("Point")

("#x:int", "#y:int")

("+toString():String");

Class_noVisibilityMarkers.A;

drawObject(A);

Point
x:int
y:int
toString():String

2.1 Stereotypes

After a class is created, but before it is drawn, its stereotypes may be specified
by using Class stereotypes:

Class_stereotypes.<name>(<list-of-stereotypes>);

Here, <name> is the object name of a previously created class and <list-of-stereotypes>

is a comma-separated list of strings. Here is an example:

Class.A("User")()();

Class_stereotypes.A("<<interface>>","<<home>>");

drawObject(A);

<<interface>>
<<home>>

User

6

2.2 Interfaces and Abstract Classes

At times it is preferred to write the name of an interface in an oblique font,
rather than using the “interface” stereotype. This can be easily achieved by
using the macro Interface:

Interface.name(class-name)

(list-of-methods);

Here is an example:

Interface.A("Observer")

("+update(src:Object)");

drawObject(A);

Observer
+ update(src:Object)

Since internally Interface treated as a special kind of Class, the code above
is equivalent to:

EClass.A(iInterface)("Observer")()

("+update(src:Object)");

Abstract classes can be drawn similarly using the iAbstractClass style:

EClass.A(iAbstractClass)("Observable")

("observers: Observer[0..*]")

("+addObserver(o: Observer)",

"+notify()");

drawObject(A);

Observable
~
+
+

observers: Observer[0..*]
addObserver(o: Observer)
notify()

If you prefer, you can use equivalent construct:

AbstractClass.A("Observable")

("observers: Observer[0..*]")

("+addObserver(o: Observer)",

"+notify()");

2.3 Displaying Class Name Only

If you want the empty methods and attributes compartments in a class not
being displayed, one way is to set the spacing at their top and the bottom to
0:

Class.A("MyModel")()();

A.info.iName.top := 10;

A.info.iName.bottom := 10;

A.info.iAttributeStack.top := 0;

A.info.iAttributeStack.bottom := 0;

A.info.iMethodStack.top := 0;

A.info.iMethodStack.bottom := 0;

drawObject(A);

MyModel

7

The same effect can be achieved by using the formatting information object
iClassNameOnly or the ClassName macro:

EClass.A(iClassNameOnly)("MyModel")()();

ClassName.B("AnotherModel");

Class_stereotypes.B("<<smart>>");

topToBottom(20)(A, B);

drawObjects(A, B);

MyModel

<<smart>>

AnotherModel

To customize the space around the class name globally, you can set the val-
ues of iClassNameOnly.iName.top and iClassNameOnly.iName.bottom. In-
dividually, for a given object, say B, the attributes B.info.iName.top and
B.info.iName.bottom can be used.

2.4 Objects (or Class Instances)

A UML object (or class instance) is created as follows:

Instance.name(object-name)

(list-of-attributes);

The suffix name gives a name to the Instance object. The name of the
object (given by object-name) is typeset underlined. The attributes are given
as a comma-separated list of strings, list-of-attributes.

Instance.order("o: Order")

("name=’book’", "{placed}", "{payed}");

drawObject(order);

o: Order
name=’book’
{placed}
{payed}

2.5 Parametrized Classes (Templates)

The most convenient way of typesetting a class template in MetaUML is to
use the macro ClassTemplate. This macro creates a visual object which is
appropriately positioned near the class object it adorns.

ClassTemplate.name(list-of-templates)

(class-object);

The name is the name of the template object, list-of-templates is a
comma-separated list of strings and the class-object is the name of a class
object.

Here is an example:

8

Class.A("Vector")()();

ClassTemplate.T("T", "size: int")(A);

drawObjects(A, T);

Vector
T
size: int

The macro Template can also be used to create a template object, but this
time the resulting object can be positioned freely.

Template.name(list-of-templates);

Of course, it is possible to specify both stereotypes and template parameters
for a given class.

2.6 Types of Links

In this section we enumerate the relations that can be drawn between classes
by means of MetaUML macros. Suppose that we have the declared two points,
A (on the left) and B (on the right):

pair A, B;

A = (0,0);

B = (50,0);

link(association)(X.e -- Y.w)

X Y

link(associationUni)(X.e -- Y.w)

X Y

link(inheritance)(X.e -- Y.w)

X Y

link(realization)(X.e -- Y.w)

X Y

link(aggregation)(X.e -- Y.w)

X Y

link(aggregationUni)(X.e -- Y.w)

X Y

link(composition)(X.e -- Y.w)

X Y

link(compositionUni)(X.e -- Y.w)

X Y

link(dependency)(X.e -- Y.w)

X Y

9

2.7 Associations

In UML an association typically has two of association ends and may have a
name specified for it. In turn, each association end may specify a multiplicity, a
role, a visibility, an ordering. These entities are treated in MetaUML as pictures
having specific drawing information (spacings, font).

The first method of creating association “items” is by giving them explicit
names. Having a name for an association item comes in handy when referring
to its properties is later needed (see the non UML-compliant diagram below).
The last parameter of the macro item is an equation which may use the item’s
name to perform positioning.

Class.P("Person")()();

Class.C("Company")()();

% drawing code ommited

item.aName(iAssoc)("works for")

(aName.s = .5[P.w, C.w]);

draw aName.n -- (aName.n + (20,20));

label.urt("association name" infont "tyxtt",

aName.n + (20,20));

Person Bankworks for

association name

However, giving names to every association item may become an annoying
burden (especially when there are many of them). Because of this, MetaUML
also allows for “anonymous items”. In this case, the positioning is set by an
equation which refers to the anonymous item as obj.

% P and C defined as in the previous example

item(iAssoc)("employee")(obj.nw = P.s);

item(iAssoc)("1..*")(obj.ne = P.s);

% other items are drawn similarly

Person

Company

employee1..*

employer0..*

works for

2.8 Dependencies and Stereotypes

Stereotypes are frequently used with dependencies. Below is an example.

10

Class.F("Factory")()();

Class.O("Object")()();

O.n = F.s - (0, 50);

drawObjects(F, O);

clink(dependency)(F, O);

item(iStereo)("<<creates>>")(obj.w = .5[F.s,O.n])

Factory

Object

<<creates>>

3 Notes

A note is created as follows:

Note.name(list-of-lines);

The suffix name is the name of the Note object. The contents of the note
is given by a comma-separated list of strings, list-of-lines, gives the text
contents of the note object, each string being drawn on its own line.

Here is an example:

Note.A("This note", "has two lines.");

drawObject(A);
This note
has two lines.

3.1 Attaching notes to diagram elements

Notes can be attached to diagram elements by using a link of type dashedLink.

Note.A("This is a class");

Class.C("Object")()();

A.sw = C.ne + (20, 20);

drawObject(A, C);

clink(dashedLink)(A, C);

This is a class

Object

Now let us see a more complex example, which demontrates the ability of
accessing sub-elements in a MetaUML diagram.

11

Note.nA("This is the class name");

Note.nB("This is a key attribute");

Note.nC("This is a nice method");

Class.C("Object")("+id:int")

("+clone()", "+serialize()");

topToBottom.left(10)(nA, nB, nC);

leftToRight(10)(C, nB);

drawObjects(C, nA, nB, nC);

clink(dashedLink)(C.namePict, nA);

clink(dashedLink)(C.attributeStack.pict[0], nB);

clink(dashedLink)(C.methodStack.pict[1], nC);

Object
+
+
+

id:int
clone()
serialize()

This is the class name

This is a key attribute

This is a nice method

Macros like leftToRight and topToBottom are presented in section 10.

3.2 Using mathematical formulae

MetaUML notes can contain mathematical formulae written in TeX [3]. Re-
gretably, LaTeX [4] support for formulae is not available. Limited as it may
be, this feature is considered experimental, as it is not always straightforward
to use. In the example below, note that the MetaPost package TEX is imported.

input metauml;

input TEX;

beginfig(1);

Note.A("This class implements the formula:",

TEX("$\sum_1^n f(x) \cdot dx$"));

drawObjects(A);

endfig;

end

This class implements the formula:∑n
1 f(x) · dx

For taller formulae, you must be prepared to do some advanced stunts.
Remark: "aaa" & "bbb" is MetaPost’s way to concatenate the strings into
"aaabbb"; the string containing the formula was split in two for layout reasons.

Note.A("Can you do it?",

TEX("$\sum_1^n f(x) \cdot dx " &

"\over \sum_1^m g(y) \cdot dy$"));

A.stack.info.spacing := 30;

A.stack.pict[1].info.ignoreNegativeBase := 0;

drawObject(A);

Can you do it?∑n

1
f(x)·dx∑m

1
g(y)·dy

12

Alas, this trick does not entirely solve the problem: a third line in the note
would be badly aligned. Therefore, until MetaUML’s Note class is upgraded to
better support this scenario, you may want to limit yourself to two lines per
note — at least when tall formulae are involved.

4 Packages

MetaUML allows for the creation of packages in various forms. Firstly, we have
the option of writing the package name in the middle of the main box. Secondly,
we can write the name on the tiny box above the main box, leaving the main
box empty. Lastly, we can write the package name as in the second case, but
the main box can have an arbitrary contents: classes, other packages, or even
other UML items.

The macro that creates a package has the following synopsis:

Package.name(package-name)(subitems-list);

The parameter package-name is a string or a list of comma-separated strings
representing the package’s name. The subitems-list parameter is used to
specify the subitems (tipically classes or packages) of this package; its form is
as a comma-separated list of objects, which can be void.

Package.P("java.lang")();

drawObject(P); java.lang

Below is another example:

Package.P("An important", "package")();

drawObject(P); An important
package

If you wish to leave the main box empty, you can use the following code:

Package.P("java.lang")();

P.info.forceEmptyContent := 1;

drawObject(P);

java.lang

The same effect as above can be achieved globally by doing:

iPackage.forceEmptyContent := 1;

More information on MetaUML’s way of managing global and per-object
configuration data can be found in section 11 and section 13.

Here is an example involving items contained in a package.

13

Class.A("A")()();

Class.B("B")()();

Package.P("net.metauml")(A, B);

leftToRight(10)(A, B);

drawObject(P);

net.metauml

A B

4.1 Types of Links

The nesting relation between packages is created by using the nest link infor-
mation.

link(nest)(X.e -- Y.w)
X Y

5 Component Diagrams

A component is created by the macro Component:

Component.name(component-name)

(subitems-list)

The parameter component-name is a string representing the component’s
name. The subitems-list parameter is used to specify the subitems of this
component (possibly classes, packages or other components); its form is as a
comma-separated list of objects, which can be void.

Component.C("Business Logic")();

drawObject(C); Business Logic

Here is an example involving subitems in a component:

Class.A("A")()();

Package.B("B")();

Component.C("C")();

Component.BigC("Big Component")(A, B, C);

leftToRight(10)(A, B);

topToBottom(10)(A, C);

drawObject(BigC);

Big Component

A B

C

14

5.1 Types of Links

link(requiredInterface)(A.e -- .5[A.e, B.w]);

A B

link(providedInterface)(.5[A.e, B.w] -- B.w);

A B

The requiredInterface and providedInterface visual constructs can be
easily combined, as shown in the following example:

Component.A("A")();

Component.B("B")();

leftToRight(80)(A, B);

drawObjects(A, B);

link(providedInterface)(A.e -- .5[A.e, B.w]);

link(requiredInterface)(B.w -- .5[A.e, B.w]);

A B

6 Use Case Diagrams

6.1 Use Cases

An use case is created by the macro Usecase:

Usecase.name(list-of-lines);

The list-of-lines is a comma-separated list of strings. These strings are
placed on top of each other, centered and surrounded by the appropriate visual
UML notation.

Here is an use case example:

Usecase.U("Authenticate user",

"by name, password");

drawObject(U);

Authenticate user
by name, password

6.2 Actors

An actor is created by the macro Actor:

Actor.name(list-of-lines);

15

Here, list-of-lines represents the actor’s name. For convenience, the
name may be given as a list of strings which are placed on top of each other, to
provide support for the situations when the role is quite long. Otherwise, giving
a single string as an argument to the Actor constructor is perfectly fine.

Here is an actor example:

Actor.A("User");

drawObject(A);

User

Sometimes it may be preferable to draw diagram relations positioned rela-
tively to the visual representation of an actor (the “human”) rather than rel-
atively to the whole actor object (which also includes the text). Because of
that, MetaUML provides access to the “human” of every actor object actor by
means of the sub-object actor.human.

Actor.A("Administrator");

drawObject(A);

draw objectBox(A);

draw objectBox(A.human); Administrator

In MetaUML, objectBox(X) is equivalent to X.nw -- X.ne -- X.se --

X.sw -- cycle for every object X. A.human is considered a MetaUML object,
so you can use expressions like A.human.n or A.human.midx.

6.3 Types of Links

Some of the types of links defined for class diagrams (such as inheritance, asso-
ciation etc.) can be used with similar semantics within use case diagrams.

7 Activity Diagrams

7.1 Begin, End and Flow End

The begin and the end of an activity diagram can be marked by using the
macros Begin and End or FlowFinal, respectively. The constructors of these
visual objects take no parameters:

Begin.beginName;

End.endName;

Below is an example:

16

Begin.b;

End.e;

FlowFinal.f;

leftToRight(20)(b, e, f);

drawObjects(b, e, f);

7.2 Activity

An activity is constructed as follows:

Activity.name(list-of-strings);

The parameter list-of-strings is a comma-separated list of strings. These
strings are centered on top of each other to allow for the accommodation of a
longer activity description within a reasonable space.

An example is given below:

Activity.A("Learn MetaUML -",

"the MetaPost UML library");

drawObject(A);

Learn MetaUML -
the MetaPost UML library

7.3 Fork and Join

A fork or join is created by the macro:

Fork.name(type, length);

The parameter type is a string and can be either of "h", "horiz", "horizontal"
for horizontal bars, and either of "v", "vert", "vertical" for vertical bars. The
length gives the bar’s length.

Fork.forkA("h", 100);

Fork.forkB("v", 20);

leftToRight(10)(forkA, forkB);

drawObject(forkA, forkB);

7.4 Branch

A branch is created by the macro:

Branch.name;

Here is an example:

17

Branch.testA;

drawObject(testA);

7.5 Types of Links

In activity diagrams, transitions between activities are needed. They are typeset
as in the example below. In section 8.1 such a transition is showed. This type
of link is also used for state machine diagrams.

link(transition)(pointA -- pointB);

8 State Diagrams

The constructor of a state allows for aggregated sub-states:

State.name(state-name)(substates-list);

The parameter state-name is a string or a list of comma-separated strings
representing the state’s name or description. The substates-list parameter is
used to specify the substates of this state as a comma-separated list of objects;
this list may be void.

An example of a simple state:

State.s("Take order")();

drawObject(s);
Take order

8.1 Composite States

A composite state is defined by enumerating at the end of its constructor the
inner states. Interestingly enough, the composite state takes care of drawing
the sub-states it contains. The transitions must be drawn after the composite
state, as seen in the next example:

Begin.b;

End.e;

State.c("Component")();

State.composite("Composite")(b, e, c);

b.midx = e.midx = c.midx;

c.top = b.bottom - 20;

e.top = c.bottom - 20;

composite.info.drawNameLine := 1;

drawObject(composite);

link(transition)(b.s -- c.n);

link(transition)(c.s -- e.n);

18

Composite

Component

8.2 Internal Transitions

Internal transitions can be specified by using the macro:

stateTransitions.name(list-transitions);

Identifier name gives the state object whose internal transitions are being
set, and parameter list-transitions is a comma-separated string list.

An example is given below:

State.s("An interesting state",

"which is worth mentioning")();

stateTransitions.s(

"OnEntry / Open eyes",

"OnExit / Sleep well");

s.info.drawNameLine := 1;

drawObject(s);

OnEntry / Open eyes
OnExit / Sleep well

An interesting state
which is worth mentioning

8.3 Special States

Similarly to the usage of Begin and End macros, one can define history states,
exit/entry point states and terminate pseudo-states, by using the following con-
structors.

History.nameA;

ExitPoint.nameB;

EntryPoint.nameC;

Terminate.nameD;

9 Drawing Paths

The link macro is powerful enough to draw relations following arbitrary paths:

19

path cool;

cool := A.e .. A.e+(20,10) ..

B.s+(20,-40) .. B.s+(-10,-30)

-- B.s;

link(inheritance)(cool);

link(aggregationUni)

(A.n ..(30,30)..B.w);

Amusing as it may be, this feature gets old soon. When typesetting UML
diagrams in good style, rectangular paths are usually preferred. It is for this
kind of paths that MetaUML offers extensive support, by means of “syntactic
sugar” constructs which are not only self-documenting, but reduce the amount
of typing and thinking required.

9.1 Manhattan Paths

The “Manhattan” path macros generate a path between two points consisting of
one horizontal and one vertical segment. The macro pathManhattanX generates
first a horizontal segment, while the macro pathManhattanY generates first a
vertical segment. In MetaUML it also matters the direction of a path, so you
can choose to reverse it by using rpathManhattanX and rpathManhattanY (note
the prefix “r”):

pathManhattanX(A, B)

pathManhattanY(A, B)

rpathManhattanX(A, B)

rpathManhattanY(A, B)

20

Here is an example:

Class.A("A")()();

Class.B("B")()();

B.sw = A.ne + (10,10);

drawObjects(A, B);

link(aggregationUni)

(rpathManhattanX(A.e, B.s));

link(inheritance)

(pathManhattanY(A.n, B.w));

A

B

9.2 Stair Step Paths

These path macros generate stair-like paths between two points. The “stair”
can “rise” first in the direction of Ox axis (pathStepX) or in the direction of
Oy axis (pathStepY). How much should a step rise is given by an additional
parameter, delta. Again, the macros prefixed with “r” reverse the direction of
the path given by their unprefixed counterparts.

pathStepX(A, B, delta)

pathStepY(A, B, delta)

rpathStepX(A, B, delta)

rpathStepY(A, B, delta)

Here is an example:

stepX:=60;

link(aggregationUni)

(pathStepX(A.e, B.e, stepX));

stepY:=20;

link(inheritance)

(pathStepY(B.n, A.n, stepY));

A

B

stepX

stepY

9.3 Horizontal and Vertical Paths

There are times when drawing horizontal or vertical links is required, even
when the objects are not properly aligned. To this aim, the following macros
are useful:

pathHorizontal(pA, untilX)

pathVertical(pA, untilY)

21

rpathHorizontal(pA, untilX)

rpathVertical(pA, untilY)

A path created by pathHorizonal starts from the point pA and continues
horizontally until coordinate untilX is reached. The macro pathVertical con-
structs the path dually, working vertically. The prefix “r” reverses the direction
of the path.

Usage example:

untilX := B.left;

link(association)

(pathHorizontal(A.e, untilX));

untilY:= C.bottom;

link(association)

(pathVertical(A.n, untilY));
A

B
~ b

C
~ foo: int

untilX

untilY

9.4 Direct Paths

A direct path can be created with directPath. The call directPath(A, B) is
equivalent to A -- B.

9.5 Paths between Objects

Using the constructs presented above, links between diagram objects are drawn
easily like this:

link(transition)(directPath(objA.nw, objB.se));

There are times however when this direct approach may yield unsatisfactory
visual results, especially when the object’s corners is round. To tackle these
situations, MetaUML provides the macro pathCut, whose aim is to limit a
given path exactly to the region outside the actual borders of the objects it
connects. The macro’s synopsis is:

pathCut(thePath)(objectA, objectB)

Here, thePath is a given MetaPost path and objectA and objectB are two
MetaUML objects. By contract, each MetaUML object of type, say, X defines
a macro X border which returns the path that surrounds it. Because of that,
pathCut can make the appropriate modifications to thePath.

The following code demonstrates the benefits of the pathCut macro:

22

z = A.se + (30, -10);

link(transition)

(pathCut(A, B)(A.c--z--B.c));
A

B

9.5.1 Direct Paths between Centers

At times is quicker to just draw direct paths between the center of two objects,
minding of course the object margins. The macro which does this is clink:

clink(how-to-draw-information)(objA, objB);

The parameter how-to-draw-information is the same as for the macro
link; objA and objB are two MetaUML objects.

Below is an example which involves the inheritance relation:

clink(inheritance)(A, B);

A

B

10 Arranging Diagram Items

Using equations involving cardinal points, such as A.nw = B.ne + (10,0), is
good enough for achieving the desired results. However, programs are best to
be written for human audience, rather than for compilers. It does become a bit
tiresome to think all the time of cardinal points and figure out the direction of
positive or negative offsets. Because of that, MetaUML offers syntactic sugar
which allows for an easier understanding of the intent behind the positioning
code.

Suppose that we have three classes, A, B, C and their base class Base. We
want the base class to be at the top, and the derived classes to be on a line
below. This code will do:

A.ne = B.nw + (20,0);

B.ne = C.nw + (20,0);

Base.s = B.n + (0,-20);

Unfortunately, writing code such as this makes it hard for fellow program-
mers to visualize its intent upon reading it. And “fellow programmers“ include
the author, five minutes later.

Perhaps the next version of the code will drive home the point. The outcome
is the same as before, but the layout is stated in a more human-friendly way. You
might even infer by yourself that the numeric argument represents the distance
between the objects.

23

leftToRight(20)(A, B, C);

topToBottom(20)(Base, B);
Base

A B C

Below there are examples which show how these macros can be used. Sup-
pose that we have the following definitions for objects X, Y, and Z; also, let’s
assume that spacing is a numeric variable set to 5.

Picture.X("a");

Picture.Y("...");

Picture.Z("Cyan");

leftToRight.top(spacing)(X, Y, Z);
a ...

Cyan

leftToRight.midy(spacing)(X, Y, Z); a ... Cyan

leftToRight.bottom(spacing)(X, Y, Z); a ... Cyan

topToBottom.left(spacing)(X, Y, Z);

a
...

Cyan

topToBottom.midx(spacing)(X, Y, Z);

a
...

Cyan

topToBottom.right(spacing)(X, Y, Z);

a
...

Cyan

To make things even easier, the following equivalent contructs are also al-
lowed:

leftToRight.midy(spacing)(X, Y, Z);

leftToRight(spacing)(X, Y, Z);

topToBottom.midx(spacing)(X, Y, Z);

topToBottom(spacing)(X, Y, Z);

If you want to specify that some objects have a given property equal, while
the distance between them is given elsewhere, you can use the macro same. This
macro accepts a variable number of parameters, but at least two. The following
table gives the interpretation of the macro for a simple example.

24

same.top(X, Y, Z); X.top = Y.top = Z.top;

same.midy(X, Y, Z); X.midy = Y.midy = Z.midy;

same.bottom(X, Y, Z); X.bottom = Y.bottom = Z.bottom;

same.left(X, Y, Z); X.left = Y.left = Z.left;

same.midx(X, Y, Z); X.midx = Y.midx = Z.midx;

same.right(X, Y, Z); X.right = Y.right = Z.right;

Relative positions of two points can be declared more easily using the macros
below, above, atright, atleft. Let us assume that A and B are two points
(objects of type pair in MetaPost). The following constructs are equivalent:

B = A + (5,0); B = atright(A, 5);

B = A - (5,0); B = atleft(A, 5);

B = A + (0,5); B = above(A, 5);

B = A - (0,5); B = below(A, 5);

11 The MetaUML Infrastructure

MetaPost is a macro language based on equation solving. Using it may seem
quite tricky at first for a programmer accustomed to modern object-oriented
languages. However, the great power of MetaPost consists in its versatility.
Indeed, it is possible to write a system which mimics quite well object-oriented
behavior. Along this line, METAOBJ [5] is a library worth mentioning: it
provides a high-level objects infrastructure along with a battery of predefined
objects.

Surprisingly enough, MetaUML does not use METAOBJ. Instead, it uses a
custom written, lightweight object-oriented infrastructure, provisionally called
“util”. METAOBJ’s facilities, although impressive, were perceived by me as
being a bit too much for what was initially intented as a quick way of getting
some UML diagrams layed out. Inspired by METAOBJ, “util” was designed
to fulfill with minimal effort the specific tasks needed to confortably position,
allign or group visual objects which include text.

Another library having some object-oriented traits is the boxes library,
which comes with the standard MetaPost distribution. Early versions of MetaUML
did use boxes as an infrastructure, but this approach had to be abandoned even-
tually. The main reason was that it was difficult to achieve good visual results
when stacking texts (more on that further on). For all it’s worth, it did not fit
well with the way in which MetaUML’s layout mechanism was shaping up at
the time.

11.1 Motivation

Suppose that we want to typeset two texts with their bottom lines aligned, using
boxit:

25

boxit.a ("yummy");

boxit.b ("cool");

a.nw = (0,0); b.sw = a.se + (10,0);

drawboxed (a, b); % or drawunboxed(a,b)

draw a.sw -- b.se dashed evenly

withpen pencircle scaled 1.1;

yummy cool

yummy cool

Note that, despite supposedly having their bottom lines alligned, “yummy”
looks slightly higher than “cool”. This would be unacceptable in a UML class
diagram, when roles are placed at the ends of a horizontal association. Re-
gardless of the default spacing being smaller in the util library, the very same
unfortunate misalignment effect rears its ugly head:

Picture.a("yummy");

Picture.b("cool");

% comment next line for unboxed

a.info.boxed := b.info.boxed := 1;

b.sw = a.se + (10,0);

drawObjects(a, b);

yummy cool

yummy cool

However, the strong point of util is that we have a recourse to this problem:

iPict.ignoreNegativeBase := 1;

Picture.a("yummy");

Picture.b("cool");

% the rest the same as above

drawObjects(a, b);

yummy cool

yummy cool

11.2 The Picture Macro

We have seen previously the line iPict.ignoreNegativeBase := 1. Who is
iPict and what is it doing in our program? MetaUML aims at separating the
“business logic” (what to draw) from the “interface” (how to draw). In order to
achieve this, it records the “how to draw” information within the so-called Info

structures. The object iPict is an instance of PictureInfo structure, which
has the following properties (or attributes):

left, right, top, bottom

ignoreNegativeBase

boxed, borderColor

26

The first four attributes specify how much space should be left around the
actual item to be drawn. The marvelous effect of ignoreNegativeBase has
just been shown (off), while the last two attributes control whether the border
should be drawn (when boxed=1) and if drawn, in which color.

There’s one more thing: the font to typeset the text in. This is specified
in a FontInfo structure which has two attributes: the font name and the font
scale. This information is kept within the PictureInfo structure as a contained
attribute iFont. Both FontInfo and PictureInfo have “copy constructors”
which can be used to make copies. We have already the effect of these copy
constructors at work, when we used:

Picture.a("yummy");

a.info.boxed := 1;

A copy of the default info for a picture, iPict, has been made within the
object a and can be accessed as a.info. Having a copy of the info in each object
may seem like an overkill, but it allows for a fine grained control of the drawing
mode of each individual object. This feature comes in very handy when working
with a large number of settings, as it is the case for MetaUML.

Let us imagine for a moment that we have two types of text to write: one
with a small font and a small margin and one with a big font and a big margin.
We could in theory configure each individual object or set back and forth global
parameters, but this is far for convenient. It is preferable to have two sets
of settings and specify them explicitly when they are needed. The following
code could be placed somewhere in a configuration file and loaded before any
beginfig macro:

PictureInfoCopy.iBig(iPict);

iBig.left := iBig.right := 20;

iBig.top := 10;

iBig.bottom := 1;

iBig.boxed := 1;

iBig.ignoreNegativeBase := 1;

iBig.iFont.name := defaultfont;

iBig.iFont.scale := 3;

PictureInfoCopy.iSmall(iPict);

iSmall.boxed := 1;

iSmall.borderColor := green;

Below is an usage example of these definitions. Note the name of the macro:
EPicture. The prefix comes form “explicit” and it’s used to acknowledge that
the “how to draw” information is given explicitly — as a parameter, rather than
defaulted to what’s recorded in iPict, as with the Picture macro. Having
predefined configurations yields short, convenient code.

27

EPicture.a(iBig)("yummy");

EPicture.b(iSmall)("cool");

% you can still modify a.info, b.info

b.sw = a.se + (10,0);

drawObjects(a, b);

yummy
cool

11.2.1 Fixed Sizes

By default, the size of a Picture object is set by its contents. However, it is pos-
sible to specify fixed dimensions both the width and the height, independently.
This can be done by setting the info’s attributes fixedWidth and fixedHeight

to values greater than 0. If any of these attributes is left to its default value, -1,
then for the corresponding axis the dimension is set according to the dimension
of the content. Nevertheless, the fixed dimensions are enforced, even though the
contained object would have needed additional space.

PictureInfoCopy.myFixed(iPict);

myFixed.ignoreNegativeBase := 1;

myFixed.fixedWidth := 15;

myFixed.fixedHeight := 20;

myFixed.boxed := 1;

EPicture.a(myFixed)("a");

EPicture.b(myFixed)(".-.");

EPicture.c(myFixed)("toolong");

leftToRight.bottom(10)(a, b, c);

drawObjects(a, b, c);

a .-. toolong

11.2.2 Content alignment

When fixed dimensions are used, one most likely would prefer a centered aligne-
ment of the contents in the Picture box. This option can be expressed in-
dependently for each of the axes, by setting the info’s attributes valign and
halign to descriptive string values. For horizontal alignement, halign can be
set to "left" or "center", and for vertical alignement, valign can be set to
"bottom or "center". The default values for these attributes are "left" and
"bottom", respectively.

The next example uses horizontal centered alignement and a bottom aligne-
ment with a 4.5 base offset, for vertical alignement. This vertical alignement
gives a better visual result than the centered one, at least for the situations in
which there are texts to be placed horizontally.

28

PictureInfoCopy.myFixed(iPict);

myFixed.ignoreNegativeBase := 1;

myFixed.bottom := 4.5;

myFixed.valign := "bottom";

myFixed.halign := "center";

myFixed.fixedWidth := 25;

myFixed.fixedHeight := 15;

myFixed.boxed := 1;

EPicture.a(myFixed)("a");

EPicture.b(myFixed)("yum");

EPicture.c(myFixed)("b");

leftToRight.bottom(10)(a, b, c);

drawObjects(a, b, c);

a yum b

11.3 Stacking Objects

It is possible to stack objects, much in the style of setboxjoin from boxes

library.

Picture.a0("yummy");

Picture.a1("cool");

Picture.a2("fool");

setObjectJoin(pa.sw = pb.nw);

joinObjects(scantokens listArray(a)(3));

drawObjects(scantokens listArray(a)(3));

% or drawObjects (a0, a1, a2);

yummy
cool
fool

The listArray macro provides here a shortcut for writing a0, a1, a2. This
macro is particularly useful for generic code which does not know beforehand
the number of elements to be drawn. Having to write the scantokens keyword
is admittedly a nuisance, but this is required.

11.4 The Group Macro

It is possible to group objects in MetaUML. This feature is the cornerstone
of MetaUML, allowing for the easy development of complex objects, such as
composite stats in state machine diagrams.

Similarly to the macro Picture, the structure GroupInfo is used for spec-
ifying group properties; its default instantiation is iGroup. Furthermore, the
macro EGroup explicitely sets the layout information.

Here is an example:

29

iGroup.left:=20;

iGroup.right:=15;

iGroup.boxed:=1;

iPicture.boxed:=1;

Picture.a("yummy");

Picture.b("cool");

Picture.c("fool");

b.nw = a.nw + (20,20); % A

c.nw = a.nw + (15, 40); % B

Group.g(a, b, c);

g.nw = (10,10); % C

drawObject(g);

yummy

cool

fool

After some objects are grouped, they can only be drawn by invoking the
drawObject macro on the group that aggregates them, and not individually.
Conveniently, once the relative positioning of objects within a group is set (line
A and B), the whole group can be “moved” do the desired position (line C),
and all the contained objects will move along.

11.5 The PictureStack Macro

The PictureStack macro is a syntactic sugar for a set of pictures, stacked
according to predefined equations and grouped together.

iStack.boxed := 1;

iStack.iPict.boxed := 1;

PictureStack.myStack("foo",

"bar: int" infont "tyxtt",

"nicely-centered" infont defaultfont,

"nice")("vcenter");

drawObject(myStack);

foo

bar: int

cool-man-centered

nice

Note the last parameter of the macro PictureStack, here vcenter. It is
used to generate appropriate equations based on a descriptive name. The spac-
ing between individual picture objects is set by the field iStack.spacing. Cur-
rently, the following alignment names are defined: vleft, vright, vcenter,
vleftbase, vrightbase, vcenterbase. All these names refer to vertical align-
ment (the prefix “v”); alignment can be at left, right or centered. The variants
having the suffix “base” align the pictures so that iStack.spacing refer to the
distance between the bottom lines of the pictures. The unsuffixed variants use

30

iStack.spacing as the distance between one’s bottom line and the next’s top
line.

The “base” alignment is particularly useful for stacking text, since it offers
better visual appearance when iPict.ignoreNegativeBase is set to 1.

12 Components Design

Each MetaUML component (e.g. Picture, PictureStack, Class) is designed
according to an established pattern. This section gives more insight on this.

In order to draw a component, MetaUML categorizes the required informa-
tion as follows:

• what to draw, or what are the elements of a component.

• how to draw, or how are the elements positioned in relation to each other
within the component

• where to draw

For example, in order to draw a picture object we must know, respectively:

• what is the text or the native picture that needs to be drawn

• what are the margins that should be left around the contents

• where is the picture to be drawn

Why do we bother with these questions? Why don’t we just simply draw
the picture component as soon as it was created and get it over with? That is,
why doesn’t the following code just work?

Picture.pict("foo");

Well, although we have the answer to question 1 (what to draw), we still
need to have question 3 answered. The code below becomes thus a necessity
(actually, you are not forced to specify the positioning of an object, because its
draw method positions it to (0,0) by default):

% question 1: what to draw

Picture.pict("foo");

% question 3: where to draw

pict.nw = (10,10);

% now we can draw

drawObject(pict);

31

How about question 2, how to draw? By default, this problem is addressed
behind the scenes by the component. This means, for the Picture object, that
a native picture is created from the given string, and around that picture cer-
tain margins are placed, by means of MetaPost equations. (The margins also
come in handy when stacking Picture objects, so that the result doesn’t look
too cluttered.) If these equations were defined within the Picture constructor,
then an usability problem would have appeared, because it wouldn’t have been
possible to modify the margins, as in the code below:

% question 1: what to draw

Picture.pict("foo");

% question 2: how to draw

pict.info.left := 10;

pict.info.boxed := 1;

% question 3: where to draw

pict.nw = (0,0);

% now we can draw

drawObject(pict);

To allow for this type of code, the equations that define the layout of the
Picture object (here, what the margins are) must be defined somewhere after
the constructor. This is done by a macro called Picture layout. This macro
defines all the equations which link the “what to draw” information to the
“how to draw” information (which in our case is taken from the info member,
a copy of iPict). Nevertheless, notice that Picture layouts is not explicitly
invoked. To the user’s great relief, this is taken care of automatically within the
Picture draw macro.

There are times however, when explicitly invoking a macro like Picture layout

becomes a necessity. This is because, by contract, it is only after the layout

macro is invoked that the final dimensions (width, height) of an object are defi-
nitely and permanently known. Imagine that we have a component whose job is
to surround in a red-filled rectangle some other objects. This component needs
to know what the dimensions of the contained objects are, in order to be able to
set its own dimensions. At drawing time, the contained objects must not have
been drawn already, because the red rectangle of the container would overwrite
them. Therefore, the whole pseudo-code would be:

Create objects o1, o2, ... ok;

Create container c(o1, o2, ..., ok);

Optional: modify info-s for o1, o2, ... ok;

Optional: modify info for c;

layout c, requiring layout of o1, o2, ... ok;

establish where to draw c;

32

draw red rectangle defined by c;

draw components o1, o2, ...ok within c

A natural conclusion is that an object must not be laid out more than once,
because otherwise inconsistent or superfluous equations would arise. To enforce
this, by contract, any object must keep record of whether its layout method has
already been invoked, and if the answer is affirmative, subsequent invocations
of the layout macro would do nothing. It is very important to mention that
after the layout macro is invoked over an object, modifying the info member
of that object has no subsequent effect, since the layout equations are declared
and interpreted only once.

12.1 Notes on the Implementation of Links

MetaUML considers edges in diagram graphs as links. A link is composed
of a path and the heads (possible none, one or two). For example, since an
association has no heads, it suffices to draw along the path with a solid pen;
however, an unidirectional aggregation has, in addition to a solid path, two
heads: one is an arrow and the other is a diamond.

The general algorithm for drawing a link is:

0. Reserve space for heads

1. Draw the path (except for the heads)

2. Draw head 1

3. Draw head 2

Each of the UML link types define how the drawing should be done, in each
of the cases (1, 2 and 3). Consider the link type of unidirectional composition.
Its “class” is declared as:

vardef CompositionUniInfo@# =

LinkInfo@#;

@#widthA = defaultRelationHeadWidth;

@#heightA = defaultRelationHeadHeight;

@#drawMethodA = "drawArrow";

@#widthB = defaultRelationHeadWidth;

@#heightB = defaultRelationHeadHeight;

@#drawMethodB = "drawDiamondBlack";

@#drawMethod = "drawLine";

enddef;

Using this definition, the actual description is created like this:

CompositionUniInfo.compositionUni;

33

AB the path specified by the user
|AA′| iLink.widthA

|BB′| iLink.widthB

A B
A1 B1

Figure 2: Details on how a link is drawn by MetaUML.

As shown previously, is is the macro link which performs the actual drawing,
using the link description information which is given as parameter (generally
called iLink). For example, we can use:

link(aggregationUni)((0,0)--(40,0));

Let us see now the inner workings of macro link. Its definition is:

vardef link(text iLink)(expr myPath)=

LinkStructure.ls(myPath,

iLink.widthA, iLink.widthB);

drawLinkStructure(ls)(iLink);

enddef;

First, space is reserved for heads, by “shortening” the given path myPath by
iLink.widthA at the beginning and by iLink.widthB at the end. After that,
the shortened path is drawn with the “method” given by iLink.drawMethod and
the heads with the “methods” iLink.drawMethodA and iLink.drawMethodB,
respectively (figure 2).

12.2 Object Definitions: Easier generic declare

In MetaPost, if somebody wants to define something resembling a class in an
object-oriented language, named, say, Person, he would do something like this:

vardef Person@#(expr _name, _age)=

% @# prefix can be seen as ‘this‘ pointer

string @#name;

numeric @#age;

@#name := _name;

@#age := _age;

enddef;

This allows for the creation of instances (or objects) of class Person by using
declarations like:

Person.personA;

Person.personB;

34

However, if one also wants to able able to create indexed arrays of persons,
such as Person.student0, Person.student1 etc., the definition of class Person
must read:

vardef Person@#(expr _name, _age)=

n := str @#;

generic_declare(string) _n.name;

generic_declare(numeric) _n.age;

@#name := _name;

@#age := _age;

enddef;

This construction is rather inelegant. MetaUML offers alternative macros
to achieve the same effect, uncluttering the code by removing the need for the
unaesthetic n and n.

vardef Person@#(expr _name, _age)=

attributes(@#);

var(string) name;

var(numeric) age;

@#name := _name;

@#age := _age;

enddef;

13 Customization in MetaUML: Examples

We have seen that in MetaUML the “how to draw” information is memorized
into the so-called “Info” structures. For example, the default way in which
a Picture object is to be drawn is recorded into an instance of PictureInfo,
named iPict. In this section we present a case study involving the customiza-
tion of Class objects. The customization of any other MetaUML objects works
similarly. Here we cannot possibly present all the customization options for all
kinds of MetaUML objects: this would take too long. Nevertheless, an inter-
ested reader can refer to the top of the appropriate MetaUML library file, where
Info structures are defined. For example, class diagram related definitions are
in metauml class.mp, activity diagram definitions are in metauml activity.mp

etc.

13.1 Global settings

Let us assume that we do not particularly like the default foreground color of
all classes, and wish to change it so something yellowish. In this scenario, one
would most likely want to change the appropriate field in iClass:

iClass.foreColor := (.9, .9, 0);

35

After this, we can obtain the following result:

Class.A("A")()();

Class.B("B")()();

Class.C("C")()();

B.w = A.e + (20,0);

C.n = .5[A.se, B.sw] + (0, -10);

drawObjects(A, B, C);

A B

C

13.2 Individual settings

To modify the settings of one particular Class objects, another strategy is more
appropriate. How about having class C stand out with a light blue foreground
color, a bigger font size for the class name and a blue border?

iPict.foreColor := (.9, .9, 0);

Class.A("A")()();

Class.B("B")()();

Class.C("C")()();

C.info.foreColor := (.9, .7, .7);

C.info.borderColor := green;

C.info.iName.iFont.scale := 2;

% positioning code ommited

drawObjects(A, B, C);

A B

C

As an aside, each Class object has an info member which is created as a
copy of iClass; the actual drawing is performed using this copied information.
Because of that, the info member can be safely modified after the object has
been created, obtaining the expected results and not influencing other objects.

Another thing worth mentioning is that the ClassInfo structure contains
the iName member, which is an instance of PictureInfo. In our example
we do not want to modify the spacings around the Picture object, but the
characteristics of the font its contents is typeset into. To do that, we mod-
ify the iName.iFont member, which by default is a copy of iFont (an in-
stance of FontInfo, defined in util picture.mp). If, for example, we want
to change the font the class name is rendered into, we would set the attribute
iName.iFont.name to a string representing a font name on our system (as used
with the MetaPost infont operator).

13.3 Predefined settings

This usage scenario is perhaps more interesting. Suppose that we have two types
of classes which we want to draw differently. Making the setting adjustments

36

for each individual class object would soon become a nuisance. MetaUML’s
solution consists in the ability of using predefined “how to draw” Info objects.
Let us create such objects:

ClassInfoCopy.iHome(iClass);

iHome.foreColor := (0, .9, .9);

ClassInfo.iRemote;

iRemote.foreColor := (.9, .9, 0);

iRemote.borderColor := green;

Object iHome is a copy of iClass (as it might have been set at the time of
the macro call). Object iRemote is created just as iClass is originally created.
We can now use these Info objects to easily set the “how to draw” information
for classes. The result is depicted below, please note the “E” prefix in EClass:

EClass.A(iHome)("UserHome")()();

EClass.B(iRemote)("UserRemote")()();

EClass.C(iHome)("CartHome")()();

EClass.D(iRemote)("CartRemote")()();

UserHome UserRemote

CartHome CartRemote

13.4 Extreme customization

When another font (or font size) is used, it may become necessary to change
the space between the baselines of attributes and methods. Figure below is the
result of the (unlikely) code:

Class.A("Foo")

("a: int", "b: int")

("foo()", "bar()", "gar()");

A.info.iName.iFont.name := metauml_defaultFontBold;

A.info.iName.iFont.scale := 1.2;

A.info.iAttributeStack.iPict.iFont.scale := 0.8;

A.info.iAttributeStack.top := 10;

A.info.iAttributeStack.spacing := 11;

A.info.iMethodStack.iPict.iFont.scale := 2;

A.info.iMethodStack.spacing := 17;

A.info.iMethodStack.bottom := 10;

drawObject(A);

Foo
~
~
~

~

~

a: int
b: int
foo()

bar()

gar()

37

Both iAttributeStack and iMethodStack are instances of PictureStackInfo,
which is used to control the display of PictureStack objects.

As font names, you can choose from the globally defined metauml defaultFont,
metauml defaultFontOblique, metauml defaultFontBold, metauml defaultFontBoldOblique,
or any other name of a font that is available on your system.

14 Alternatives to MetaUML

No software package is perfect, and for this MetaUML is a prime example. Here
is a list of packages that may also be used to create UML diagrams for LaTeX
work:

• uml.sty [6]

• pst-uml [7]

• umldoc [8]

• TiKZ-UML [9]

Do not ignore the possibility of creating your diagrams using a GUI program,
and then exporting them into a LaTex-friendly open format such as SVG [10].

38

15 Test Suite

15.1 Low-level

Test 1 —
nothing shown (intentionally)

Test 2 —
nothing shown (intentionally)

15.2 Fonts

Test 1 —
Font name: () pcrr

<<stereotype>> text with guillemets. ><>><<

<<a>>, <>, <<c>>

[g uard] text with square brackets []].

{c onstraint} text with curly brackets {}}.

Test 2 —
Font name: () tyxbtt

<<stereotype>> text with guillemets. ><»«

<<a>>, «b», «c»

[g uard] text with square brackets []].

{c onstraint} text with curly brackets {}}.

Test 3 —
assembleElementLocalMatrix(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

assembleElementLocalMatri(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

assembleElntLocalMatri(k: KeyType, mat: LocalMatrixType, a: AssembleAction)

15.3 Util library

15.3.1 Picture tests

Test 1 —

xxx yyy
foo, bar, baz

qux, norf

Custom iPicture

Test 2 —

39

foo
bar

foo
bar

root

toof

Test 3 —

a
foo
bar
baz
norf

foo1
bar1
baz2
norf2..

.f: int .goofy: int .goot

goof

Test 4 —
goof Aoorian fpp f: int aa()

foo Bar baz qux f: int aa()
Test 5 —
<<foo>>
Test 6 —

foo bar baz

x: int
an anounymous item

Test 7 —
a bar .-. baz qux norf

Test 8 —
a bar .-. baz qux norf

Test 9 —

a bar .-. baz qux norf

Test 10 —

a bar .-. baz qux norf

15.3.2 Picture tests - TeX rendering

Test 1 —

Hello, world x = 7

Hello, world!

This is cool: x = y.

But this is insane:

∑3

1
f(x)

x !

40

15.3.3 Group tests

Test 1 —
p0

p1

Test 2 —

Test picture in group

s s

15.3.4 PictureStack tests

Test 1 —

Test 2 —
foo
Test 3 —
foo

bar
Test 4 —

item A

item B long

C

item A

item B long

C

item A

item B long

C

Test 5 —
A.AB˙˙˙˙˙˙˙˙˙˙BC-----C

Test 6 —
go

further

and further

and further still

.

..

...

....
Test 7 —
a

b
c

d
e

41

15.3.5 Positioning tests

Test 1 —
a ...

XYZ

a ...
XYZ

Test 2 —
a ... XYZ

a ... XYZ

Test 3 —
a ... XYZ

a ... XYZ

Test 4 —
a
...

XYZ

a
...

XYZ

Test 5 —
a
...

XYZ

a
...

XYZ

Test 6 —
a

...

XYZ

a
...

XYZ

15.4 Class diagram

15.4.1 Class tests

Test 1 —

42

A

Test 2 —
B

+ a:int

Test 3 —

C
+
-
-
~
#

a-#~+:int
b-#~+:int
g-#~+:int
c-#~+:int
g-#~+:double

Test 4 —
D

+
-
-
~
#
+
-
-
~
#

a-#~+:int
b-#~+:int
g-#~+:int
c-#~+:int
g-#~+:double
a()-#~+:int
b()-#~+:int
g()-#~+:int
c()-#~+:int
g()-#~+:double

Test 5 —
ooo

home
interface

AAA

ooo
home

interface

AAA

Test 6 —
<<interface>>

<<home>>

User6

Test 7 —
User7

Test 8 —
Observer

+ update(src: Object)

Test 9 —

43

Observer
+ update(src: Object)

Test 10 —
Observer

+ update(src: Object)

Test 11 —
AbstractClass

~
+

[]{}
update(src: Object)

Test 12 —
AbstractClass

~
+

[]{}
update(src: Object)

Test 13 —

AClassWithNoCompartments

Test 14 —

AnotherClass

Test 15 —
<<interface>>
<<remote>>

AnotherClass

Test 16 —
Foo

a: int
b: int
c: int
d: int
x()
y()
z()
t()

15.4.2 Class feature types tests

Test 1 —

Test 2 —

44

Test 3 —

A
+
+
+
+
+

a:int+
b:int
f+():int
g+():int
h():int

Test 4 —
A

-
+
+

instanceCount:int
getInstanceCount():int
work()

Test 5 —

A B C

~ foo()

15.4.3 Class template tests

Test 1 —

Person
foo
bar

Test 2 —

Person
foo: int

Test 3 —

VeryVeryLongClassName
int foo

Shortie
~ abracadabra: long long int

T

Shortie
~ abracadabra: long long int

TrulyAmazingLongTypename

15.4.4 Qualified Association tests

Test 1 —

45

Person

accountNumber:int
foo: id

Test 2 —
Person

accountNumber:int
foo: id
foolang

15.5 Package diagram

15.5.1 Package tests

Test 1 —

This package contains them all

java.sun.com

One class package

A class

Multipackage

An instance

A state An activity

Test 2 —
Name on top

By default, the name
is in the middle

Contains class

A class
~
~

Attribute
Method

46

15.6 Component diagram

15.6.1 Component tests

Test 1 —

Component C

Component A Component B Class A Class B

15.7 Paths

Test 1 —

Bar

Foo
~
~

a: int
b: int

Test 2 —

A

Blue

Test 3 —

Omega

Alpha Beta

Gamma Delta

15.8 Behavioral diagrams

15.8.1 Activity tests

Test 1 —

Test 2 —

47

go to school
while singing

15.8.2 State Machine tests

Test 1 —

Test 2 —

The light is
visibly on

Another nice state

Test 3 —

OnEntry / doVeryHappy
OnExit / doSomewhatSad

Interesting state

Test 4 —

Composite state

A state Another state

Test 5 —

15.8.3 Usecase tests

Test 1 —

48

Test 2 —

foo Actor line one
and line two

Test 3 —

foo

Log in for an eagerly
awaiting user

which spans well into a very long 3rd line.

Line 1 goo bar
Line 2

Line 1 abcdefg hij
abcde

Line 3 abc def ghe jkl
Line 4 x

Test 4 —

User A2
line 2

line 3 long long long

Test 5 —

49

User A
Specifically configured
Test 6 —

User A
Globally configured
Test 7 —

A highly customizable

usecase. Foo bar!

Test 8 —

A highly customizable
usecase. Foo bar 2!

Test 9 —

A highly
 customizable usecase.

Another very
 customizable usecase.

15.9 Miscelaneous

15.9.1 Notes

Test 1 —

This is the first line
and this the second one.

Test 2 —

Please disregard this note.

Please take the other note
very seriously.

50

15.9.2 Objects (Class Instances)

Test 1 —
:Foo

int: val1
bool: val2

:Bar
very long text for testing purposes

s: Student
line1
line2
line3
line4
line5

Example
small

g: Yummy
{placed}
{color=red}

15.10 User requests

Test 1 —
<<interface>>

ElementLocalSystemAcceptor

+
+
+
+

startElementAssebly()
assembleElementLocalMatrix(k: KeyType, mat: LocalMatrixType, a: AssembleAction)
assembleElementLocalRHS(k: KeyType, rhs: LocalRHSType, a: AssembleAction)
endElementAssembly()

KeyType: typename
<<interface>>

FaceLocalSystemAcceptor

+
+
+
+

startFaceAssebly()
assembleFaceLocalMatrix(k1: KeyType, k2: KeyType, mat: LocalMatrixType, a: AssembleAction)
assembleFaceLocalRHS(k: KeyType, rhs: LocalRHSType, a: AssembleAction)
endFaceAssembly()

KeyType: typename
<<interface>>

SolutionProvider

+
+
+

startSortBack()
getLocalSolution(k: KeyType, sol: LocalSolutionType)
endSortBack()

KeyType: typename

LapackMatrixSorter
-
-
-
-
+

indMan: IndexManager
A: LaGenMatDouble&
x: LaVectorDouble&
b: LaVectorDouble&
startElementAssembly()

KeyType: typename
IndexManager: class

Test 2 —

Activity A
on line two

Activity B

guard

15.11 Skins

Test 1 —

HelloSkin
~
~

nice: int
done(): void

Test 1 —

51

HelloSkinGlobal
˜

˜

foo: int
bar(): void

52

16 References

[1] J. D. Hobby, METAPOST A User’s Manual, 2018. [Online]. Available:
http://www.tug.org/tutorials/mp/mpman.pdf.

[2] OMG R© Unified Modeling Language R© (OMG UML R©), 2017. [Online].
Available: https://www.omg.org/spec/UML/2.5.1/.

[3] D. E. Knuth, The TEXbook. Addison-Wesley Publishing Company, 1986.

[4] L. Lamport, LATEX a Document Preparation System. Addison-Wesley Pub-
lishing Company, 1994.

[5] D. Roegel, The METAOBJ tutorial and reference manual, 2002. [Online].
Available: http://texdoc.net/texmf-dist/doc/metapost/metaobj/
momanual.pdf.

[6] E. F. Gjelstad, Uml.sty, a package for writing UML diagrams in LATEX,
2010. [Online]. Available: http://mirror.hmc.edu/ctan/graphics/
pstricks/contrib/uml/uml.pdf.

[7] M. Diamantini, Interface utilisateur du package pst-uml, 2006. [Online].
Available: http://mirrors.nxthost.com/ctan/graphics/pstricks/
contrib/pst-uml/pst-uml-doc.pdf.

[8] D. Palmer, The umldoc UML Documentation Package, 1999. [Online].
Available: https://www.charvolant.org/elements/umldoc.pdf.

[9] N. Kielbasiewicz, The TikZ-UML package, 2016. [Online]. Available: http:
//perso.ensta-paristech.fr/~kielbasi/tikzuml/var/files/doc/

tikzumlmanual.pdf.

[10] J. B. C. Engelen, How to include an svg image in latex. [Online]. Available:
http://tug.ctan.org/info/svg-inkscape/InkscapePDFLaTeX.pdf.

53

http://www.tug.org/tutorials/mp/mpman.pdf
https://www.omg.org/spec/UML/2.5.1/
http://texdoc.net/texmf-dist/doc/metapost/metaobj/momanual.pdf
http://texdoc.net/texmf-dist/doc/metapost/metaobj/momanual.pdf
http://mirror.hmc.edu/ctan/graphics/pstricks/contrib/uml/uml.pdf
http://mirror.hmc.edu/ctan/graphics/pstricks/contrib/uml/uml.pdf
http://mirrors.nxthost.com/ctan/graphics/pstricks/contrib/pst-uml/pst-uml-doc.pdf
http://mirrors.nxthost.com/ctan/graphics/pstricks/contrib/pst-uml/pst-uml-doc.pdf
https://www.charvolant.org/elements/umldoc.pdf
http://perso.ensta-paristech.fr/~kielbasi/tikzuml/var/files/doc/tikzumlmanual.pdf
http://perso.ensta-paristech.fr/~kielbasi/tikzuml/var/files/doc/tikzumlmanual.pdf
http://perso.ensta-paristech.fr/~kielbasi/tikzuml/var/files/doc/tikzumlmanual.pdf
http://tug.ctan.org/info/svg-inkscape/InkscapePDFLaTeX.pdf

	Introduction
	Class Diagrams
	Stereotypes
	Interfaces and Abstract Classes
	Displaying Class Name Only
	Objects (or Class Instances)
	Parametrized Classes (Templates)
	Types of Links
	Associations
	Dependencies and Stereotypes

	Notes
	Attaching notes to diagram elements
	Using mathematical formulae

	Packages
	Types of Links

	Component Diagrams
	Types of Links

	Use Case Diagrams
	Use Cases
	Actors
	Types of Links

	Activity Diagrams
	Begin, End and Flow End
	Activity
	Fork and Join
	Branch
	Types of Links

	State Diagrams
	Composite States
	Internal Transitions
	Special States

	Drawing Paths
	Manhattan Paths
	Stair Step Paths
	Horizontal and Vertical Paths
	Direct Paths
	Paths between Objects
	Direct Paths between Centers

	Arranging Diagram Items
	The MetaUML Infrastructure
	Motivation
	The Picture Macro
	Fixed Sizes
	Content alignment

	Stacking Objects
	The Group Macro
	The PictureStack Macro

	Components Design
	Notes on the Implementation of Links
	Object Definitions: Easier generic_declare

	Customization in MetaUML: Examples
	Global settings
	Individual settings
	Predefined settings
	Extreme customization

	Alternatives to MetaUML
	Test Suite
	Low-level
	Fonts
	Util library
	Picture tests
	Picture tests - TeX rendering
	Group tests
	PictureStack tests
	Positioning tests

	Class diagram
	Class tests
	Class feature types tests
	Class template tests
	Qualified Association tests

	Package diagram
	Package tests

	Component diagram
	Component tests

	Paths
	Behavioral diagrams
	Activity tests
	State Machine tests
	Usecase tests

	Miscelaneous
	Notes
	Objects (Class Instances)

	User requests
	Skins

	References

