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1 Introduction
The Tilings package is a TikZ library for drawing tiles and tilings, such as Penrose
tilings (indeed, it was originally called the Penrose package). It currently sup-
ports natively the various Penrose tile sets – kite/dart, rhombus, and pentagon –
and the aperiodical polykites, but has provision for defining new tiles. There are
two main methods for their placement: one that automatically generates a tiling,
and one that allows for “by hand” placement. Furthermore, the tiles themselves
can be deformed and will still (hopefully!) fit together in the correct fashion.

2 Initialisation
This is actually several libraries. There is a core library called tilings which
defines the main functionality for working with tiles and tilings but which doesn’t
define any tiles itself. For that, there are currently two sublibraries:

• tilings.penrose for Penrose tiles,
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• tilings.polykite for the aperiodical polykite tiles.

The sublibraries automatically load the core library.
So to use this package, load the tikz package and load one of the tilings

libraries as a TikZ library. Specifically, your preamble should contain:

\usepackage{tikz}

and at least one of the following lines:

\usetikzlibrary{tilings}
\usetikzlibrary{tilings.penrose}
\usetikzlibrary{tilings.polykite}

The original version of this package concerned itself only with Penrose tiles
so was named penrose. Since then it has been extended and is more general
and so has been renamed tilings. Some commands have been renamed, but
there is a wrapper library which aims to provide backwards compatibility with
the original naming scheme. This is now the penrose TikZ library, meaning that
old documents that use the penrose TikZ library should still work (please report
any that don’t on the issue tracker). New documents shouldn’t be written using
it.

3 Defining the Tiles
This package includes the capability to define new tiles. The command to do this
is:

\DefineTile{<name>}{<sides>}{<vertices>}

For example,

\DefineTile {square}{a A a A}
{

{0,0}
{1,0}
{1,1}
{0,1}

}

The <sides> is a list of letters representing sides for matching rules and posi-
tioning. The first letter in the list corresponds to the edge between the first two
vertices, through to the last side which corresponds to the edge between the last
and first vertices.

Each letter used matches against its opposite case (so it is possible to create
a side that matches against itself by using a symbol that TEX regards as having
the same upper as lower case; not all symbols work, I’ve used numbers and !
successfully). These are also used in path replacing, both a letter and its opposite
case are replaced by the corresponding path (but in opposite directions) when the
tile is “baked”.

The vertices can be written in cartesian form: {<x>,<y>}, or in polar:
{<angle>:<length>} (with the angle in degrees). The vertex can be preceded
by upto two + signs which have the same interpretation as in TikZ: the vertex
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description is taken relative to the previously saved point with a single + addition-
ally not updating the last saved point. The initial saved point is the origin, so the
following defines a hexagonal tile.

\DefineTile {hexagon}{a A a A a A}
{

+{0:1}
+{60:1}
+{120:1}
+{180:1}
+{240:1}
+{300:1}

}

The numbers are passed to the fp module of LATEX3 so can involve complicated
expressions. Note that the trigonometric functions for angles in degrees are cosd,
sind, and tand.

The tile must be baked via the command \BakeTile before it can be used.

\DefineTile {square}{a A a A}
{

{0,0}
{1,0}
{1,1}
{0,1}

}

\begin{tikzpicture}
\path[save tiling path=a] (0,0) to[out=45,in=135] (1,0);
\BakeTile{square}
\pic[square,name=A,fill=green];
\pic[square,align with=A along a1 using 2,name=B,fill=red];
\pic[square,align with=A along A1 using 2,fill=red];
\pic[square,align with=A along A2 using 1,fill=red];
\pic[square,align with=B along a1 using 2,fill=green];
\pic[square,align with=B along a2 using 1,fill=green];
\end{tikzpicture}

3.1 Predefined Tiles: Penrose
The sublibrary tilings.penrose defines a slew of tiles based on Penrose tilings.

• kite
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• dart

• thin rhombus

• thick rhombus

• pentagon 2, 3, and 5 The number signifies how many pentagons
it goes next to.

• pentagram

• boat

• diamond

• golden triangle

• reverse golden triangle

• golden gnomon

• reverse golden gnomon

The main tiles can have arcs drawn on them to illustrate the matching rules.
The triangles and gnomon are not true Penrose tiles but rather can be used to
build tilings so they do not have the arcs. The two types of each triangle and
gnomon are actually different in that they have different matching rules. This is
best illustrated by deforming the paths (see Section 5).

The edge labelling is as follows. For the pentagon 5, for example, the edges
are all the same and the numbers are used to distinguish between them.

a

A

c

C

a

A

c

C
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3.2 Predefined Tiles: Polykite
The sublibrary tilings.polykite defines a slew of tiles based on the aperiodical
polykite tilings as described in An Aperiodic Monotile and A Chiral Aperiodic
Monotile. It also defines a wrapper around the \DefineTile command for creating
one of the family of polykite tiles described in that article:

\DefinePolykiteTile{<name>}{<a>}{<b>}
\DefinePolykiteTile*{<name>}{<a>}{<b>}
\DefinePolykiteTile{aperiodical hat}{sqrt(3)/2}{1/2}

The polykite tiles have two types of edge corresponding to the two lengths.
The starred option swaps the labels on these edges so that, for example, the hat
and turtle tiles can be used in the same diagram. Predefined polykite tiles are the
aperiodical hat, aperiodical turtle, spectral hat, and spectral turtle.
The aperiodical versions can be swapped in for each other as they have the same
edge labelling but the spectral versions have the opposite. (In actual fact, the
aperiodical and spectral hats are the same.)

The equilateral polykite tile also exists as a spectre with alternating edge
matching, as in the second paper A Chiral Aperiodic Monotile.

• Aperiodical Hat
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• Aperiodical Turtle

• Spectral Hat

• Spectral Turtle

• Spectre

• Meta Cluster H

• Meta Cluster F

• Meta Cluster T

• Meta Cluster P

• Super Cluster H

• Super Cluster F
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• Super Cluster T

• Super Cluster P

• Subcluster H

• Subcluster F

• Subcluster T

• Subcluster P

The edges of the meta and super cluster tiles are actually multi-edges for the
matching rules.

The subcluster tiles are a bit different to the others. The H and T tiles are
actually equilateral triangles but they have edge deformations applied by default
so that they have the appearance of the aperiodical hat tile. The P and F tiles
have no area (so are not clipped by default) which means that the edge labels
aren’t fully clear as to which side they are on. They match the diagrams given in
the paper, with the L sides being the sides labelled 11 and 12.
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4 Using the Tiles
4.1 Positioning
The main way to use the tiles is via the pic syntax that was introduced in TikZ3.0.
These are mini-drawings that are node-like in style, but a little more geared to-
wards repeatable drawings than boxes containing text.

There are two ways in TikZ to specify the pic type: either as the “contents”
of the pic or as the argument to the pic type key. Each of the tiles comes
with a shorthand key which specifies the pic type and also invokes the keys
every tile pic and every <tile type> pic. That is, the key dart calls the
every tile pic and every dart pic keys and specifies the pic type as dart.

The tiles can be placed using standard TikZ methods. One important thing to
note is that by default, pics are like nodes in that they only respond to ambient
translations, and not to rotations and scaling. To make them notice this, use the
key transform shape or specify the transformation to the pic directly. If the
shortcut keys are used to specify the tiles, this can be put in the every tile pic
style.

TikZ pics can be named, using the name=<name> key or using the (name)
syntax (see the TikZ documentation for more details). When a tile has been
named then it can be used for positioning other tiles. Each edge is assigned a
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label and a new tile can be aligned with an old one along a matching edge (a
matches with A and so on).

To align a tile with an existing one, use the following key:

align with=<tile> along <edge>

where <tile> is the name given to an existing tile, and <edge> is the label on
the existing tile. If the tile being placed has edges that are identical (for example,
pentagon 5), this syntax extends to

align with=<tile> along <edge> using <number>

to specify which of the edges on the new tile to use.
Lastly, it is possible to reflect a tile either in use or in definition in which case

the edges might be backwards so the key can be modified with the word back as
in:

align with=<tile> back along <edge>

and similarly with using ....
A similar key can be used to place the tile so that an edge starts and ends at

specified coordinates:

align between=<coordinate> and <coordinate> using <edge>

Here, the edge has to be specified in full since the start and end coordinates don’t
contain the information about which edge should stretch between them. To obtain
the equivalent of back along then simply swap the coordinates.

\begin{tikzpicture}
\pic[kite,name=tile];
\pic[dart,align with=tile along c];
\pic[pentagon 5,name=ptile,at={(3,0)}];
\pic[pentagon 3,align with=ptile along a1];
\end{tikzpicture}

With judicious use of loops, quite complicated pictures can be rendered us-
ing simple code. (Note that the transform shape is not needed to apply the
transformations needed to place a tile using this syntax.)
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\begin{tikzpicture}[
every rhombus/.style={

draw=black,
ultra thick,

},
every thin rhombus/.style={

every rhombus/.try,
fill=thinRhombus,

},
every thick rhombus/.style={

every rhombus/.try,
fill=thickRhombus,

},
every circle arc/.style={

draw=circleArc
},
every long arc/.style={

draw=longArc
}

]
\pic[rotate=18,thick rhombus,name=a0];
\foreach[evaluate=\k as \kmo using int(\k-1)] \k in {1,...,4}
{

\pic[thick rhombus,name=a\k,align with={a\kmo} along A];
}
\foreach \k in {0,...,4}
{

\pic[thin rhombus,name=b\k,align with={a\k} along B];
\pic[thick rhombus,name=c\k,align with={b\k} along A];
\pic[thick rhombus,name=d\k,align with={b\k} along a];
\pic[thick rhombus,name=e\k,align with={c\k} along A];
\foreach \l/\a in {{0/b},{1/B}}

\pic[thin rhombus,name=f\k\l,align with={e\k} along \a];
}
\pic[thin rhombus,name=g0,align with={f10} along a];
\pic[thin rhombus,name=g1,align with={f21} along A];
\foreach \l/\a in {{0/a},{1/A}}

\pic[thick rhombus,name=h\l,align with={g\l} along \a];
\pic[thick rhombus,name=i,align with=g0 along B];
\foreach \l/\a in {{0/a},{1/A}}

\pic[thick rhombus,name=j\l,align with=i along \a];
\end{tikzpicture}
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4.2 Styling
The tiles can be styled, either directly or using various keys. When a tile is placed
then there are various actions that happen with associated keys. The actions and
keys are:

1. A scope is started and the following keys are tried.

(a) every tile scope

(b) every <name> scope where name is the tile name (not the pic name)
(c) this tile scope

2. The tile path is used with the intention of it being a clipping path. The keys
for this action are:

(a) every tile clip by default this is set to clip

(b) every <name> clip

(c) this tile clip

3. A set of keys are used to allow arbitrary code to be executed before the tile
path is rendered. These are:

(a) every tile before path

(b) every <name> before path

(c) this tile before path

4. The tile path is rendered. The keys for this action are:

(a) every tile

(b) every <name>
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(c) this tile

(d) pic actions

5. A set of keys are used to allow arbitrary code to be executed after the tile
path is rendered. These are:

(a) every tile after path

(b) every <name> after path

(c) this tile after path

The pic actions are any actions given directly to the tile, as in \pic[draw,thin rhombus];.
The kite, dart, and rhombus tiles also have arcs drawn on them which are inserted
via the every <name> after path keys, and these are themselves styled ussing
every circle arc and every long arc. The names come from the way the arcs
look on the rhombus shapes.

One other point is important to note about the tiles. They are actually clipped
against themselves. This ensures that the tiles do not overstep their bounds and
so when placed alongside each other then they do not go over each other. In
practical terms, this means that if drawn then the line width is half that which
might be expected (but when placed next to another tile, the two halves combine
to the expected width).

4.3 Placing Tiles Automatically
There is a way to specify certain tilings using Lindenmayer systems. In brief, this
takes a seed pattern and successively applies substitution rules which are meant
to simulate replacing a tile by smaller versions of it (and others from the same
set). This is implemented for the Penrose tiles and the various clusters related to
the aperiodical polykite tile.

The Penrose rules are positional in that when replacing a Penrose tile by smaller
versions of it the new tiles can be placed solely based on information about the
position and orientation of the original tile. This is true also for the super cluster
tiles of the aperiodical polykite, but not for the meta cluster or subclusters.

The meta and subclusters work on a different system. The structure that is
built up is that of a tree with a root tile. That root tile is positioned, and then
the other tiles are placed next to previously placed tiles. This is a slower process
and can mean that the overall shape is different to what might be expected, but
from the user’s perspective it is the same.

The user command is one of:
\TilingDecomposition{<type>}{<level>}{<seed>}
\pic{decomposition={<type>}{<level>}{<seed>}};

where <type> is one of:

• kite for the kite and dart tiling,

• rhombus for the rhombus tiling,

• pentagon for the pentagon tiling.

• ktriangle for the triangular decomposition used to form the kite and dart
tiling but with the individual triangles
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• rtriangle for the triangular decomposition used to form the rhombus tiling
but with the individual triangles.

• supercluster for the super cluster substitution system that works on a
positional basis.

• cluster for the cluster substitution system that uses the neighbour infor-
mation. The choice of super, meta, or subcluster is determined by the value
of the key cluster type.

The <seed> is a “word” that will be used to initiate the Lindenmayer system.
The key letters in the alphabet for the kite/darts and rhombuses are T, t, G, and
g. These actually correspond to the two triangles and two gnomons. For the
pentagons, the key letters are P, Q, R, G, B, D. These correspond to the three
pentagons, the pentagram, the boat, and the diamond. For the clusters, the key
letters are H, T, P, and F. Other permitted letters are [, ], s, f, +, *, -, _, >.
These refer to various transformations (for details, see the implementation).

The <level> controls how far to take the iteration. The code is not particularly
optimised for speed, and once <level> gets to about 5 or 6 then we are at the
“make a cup of tea while compiling” stage, depending on the processor.

\begin{tikzpicture}[
every tile/.style={draw},
tiling step=2cm,

]
\TilingDecomposition{kite}{0}{T}
\end{tikzpicture}

The two types of substitution rules – positional and neighbourly – are rendered
slightly differently. The positional tiles are drawn directly but the neighbour ones
are drawn via the \pic mechanism. This is to exploit the existing code for aligning
against existing tiles. This means that the \pic styling options are available for
the latter type of decomposition but not for the former. For the former, only the
following keys are used:

every tile
every <tile type>

There are, however, some additional styles which allow styling the tiles by their
number: a count is kept of the number of tiles and each tile knows its own number.
Specifically, two keys are tried:

1. tile <number>, and

2. tile={<number>}{<total>}
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A word of warning is in order on the second of these. The <total> is not guar-
anteed to be correct. It is done by a quick count at the start of the process and
counts those letters which might result in a rendered tile. Not every letter in the
resulting word actually does. Nevertheless, this can be used to style a tile based
on what proportion of tiles have been rendered.

Lastly, tiling step is used to control the size of the resulting picture.

\begin{tikzpicture}[
every tile/.style={draw},
tiling step=4cm,
tile/.code 2 args={

\pgfmathsetmacro\tint{100*#1/#2}
\pgfkeysalso{fill=black!\tint}

}
]
\TilingDecomposition{rhombus}{3}{T}
\end{tikzpicture}

Here’s the super, meta, and subcluster combinatorial decompositions. These
decompositions also define a style first tile which is applied to the initial tile
(that isn’t placed next to an existing tile).

\begin{tikzpicture}[
every tile/.style={draw},
first tile/.style={

transform shape
},

]

\TilingDecomposition[scale=.25,cluster type=super
cluster]{cluster}{1}{H}

\TilingDecomposition[xshift=3cm,scale=.5,cluster type=meta
cluster]{cluster}{1}{H}

\TilingDecomposition[xshift=5cm,cluster
type=subcluster]{cluster}{1}{H}

\end{tikzpicture}

Here is a subcluster decomposition showing just the F0 and P0 tiles.
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\begin{tikzpicture}[
every tile/.style={},
every tile pic/.style={},
every subcluster F/.style={draw=magenta, ultra thin},
every subcluster P/.style={draw=magenta, ultra thin},

]
\pic[

first tile/.style={transform shape},
cluster type=subcluster,
scale=3

] {decomposition={cluster}{3}{H}};
\end{tikzpicture}

5 Deforming Paths
This package provides the ability to deform the edges of the tiles. The tiles are
built from labelled paths together with their reverses. By changing these paths,
one can get a wide variety of different tiles with the same fundamental matching
rules. Indeed, by using asymmetric paths, the matching rules can be enforced
without the need for additional decoration.

Internally, the tiling library uses the spath3 package for storing and manip-
ulating the paths.

To create a new edge path, use the key save tiling path=<edge> where
<edge> is a symbol used in the edge description of a tile. There are no constraints
on the size of the path as all paths are scaled and transformed to fit the tiles.
Once the edge paths have been specified, they are welded together into the tiles
using the following command:

\BakeTile{<name>}

Here, <name> is one of the names of the tiles. This has global effect, as does the
definition of the edge paths. Paths, both sides and tiles, can be cloned via:

\tikzset{clone tiling side path={target}{source}}
\tikzset{clone tile path={target}{source}}

and restored with the same command (but names switched).

15



\begin{tikzpicture}
\pic[draw,dart,name=dart];
\pic[draw,kite,align with=dart along c];
\pic[draw,kite,align with=dart along C];
\tikzset{clone tile path={original kite}{kite}}
\tikzset{clone tile path={original dart}{dart}}
\path[save tiling path=a] (0,0) to[out=-30,in=100] (1,0);
\path[save tiling path=c] (0,0) to[out=-40,in=140] (1,0);
\BakeTile{kite}
\BakeTile{dart}
\pic[xshift=2cm,draw,dart,name=dart];
\pic[draw,kite,align with=dart along c];
\pic[draw,kite,align with=dart along C];
\tikzset{clone tile path={kite}{original kite}}
\tikzset{clone tile path={dart}{original dart}}
\pic[xshift=4cm,draw,dart,name=dart];
\pic[draw,kite,align with=dart along c];
\pic[draw,kite,align with=dart along C];
\end{tikzpicture}

With deformed tiles there is no guarantee that the inner arcs on the Penrose
tiles will match up perfectly.

Note that the subcluster tiles from the polykite subpackage are actually already
deformed tiles.
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\begin{tikzpicture}[
every subcluster F/.style={draw, ultra thick},
every subcluster P/.style={draw, thick},
every subcluster H/.style={draw, fill, fill opacity=.5}

]
\pic[subcluster F, name=F1, this tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along 12 using 1, name=F2, this

tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along 11 using 2, name=F3, this

tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along F,name=F1-2];
\pic[subcluster F, align with=F1 along f,name=F1-3];
\pic[subcluster F, align with=F2 along F,name=F2-2];
\pic[subcluster F, align with=F2 along f,name=F2-3];
\pic[subcluster F, align with=F3 along F,name=F3-2];
\pic[subcluster F, align with=F3 along f,name=F3-3];
\pic[subcluster H, align with=F1 along b using 2, fill=red];
\pic[subcluster H, align with=F2 along b using 2, fill=green];
\pic[subcluster H, align with=F3 along b using 2, fill=blue];
\pic[subcluster H, align with=F1-2 along b using 1, fill=yellow];
\pic[subcluster H, align with=F2-2 along b using 1, fill=cyan];
\pic[subcluster H, align with=F3-2 along b using 1, fill=magenta];
\end{tikzpicture}
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\begin{tikzpicture}[
every tile pic/.style={},

% every subcluster F/.style={draw, ultra thick},
% every subcluster P/.style={draw, thick},

every subcluster H/.style={draw, fill, fill opacity=.5}
]
\path[save tiling path=a] (0,0) -- (1,0);
\path[save tiling path=b] (0,0) -- (1,0);
\path[save tiling path=f] (0,0) -- (1,0);
\BakeTile{subcluster H}
\BakeTile{subcluster T}
\BakeTile{subcluster P}
\BakeTile{subcluster F}

\pic[subcluster F, name=F1, this tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along 12 using 1, name=F2, this

tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along 11 using 2, name=F3, this

tile/.style={line width=1mm}];
\pic[subcluster F, align with=F1 along F,name=F1-2];
\pic[subcluster F, align with=F1 along f,name=F1-3];
\pic[subcluster F, align with=F2 along F,name=F2-2];
\pic[subcluster F, align with=F2 along f,name=F2-3];
\pic[subcluster F, align with=F3 along F,name=F3-2];
\pic[subcluster F, align with=F3 along f,name=F3-3];
\pic[subcluster H, align with=F1 along b using 2, fill=red];
\pic[subcluster H, align with=F2 along b using 2, fill=green];
\pic[subcluster H, align with=F3 along b using 2, fill=blue];
\pic[subcluster H, align with=F1-2 along b using 1, fill=yellow];
\pic[subcluster H, align with=F2-2 along b using 1, fill=cyan];
\pic[subcluster H, align with=F3-2 along b using 1, fill=magenta];
\end{tikzpicture}

The spectre tile, from A Chiral Aperiodic Monotile, is a natural for deformation
as that can be used to force aperiodicity.
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\begin{tikzpicture}[
every spectre/.style={

draw,
thick,

},
every tile pic/.style={scale=.5,rotate=105},

]
\pic[spectre];
\path[save tiling path=a] (0,0) to[out=30,in=150] (1,0);
\BakeTile{spectre}
\pic[spectre,at={(3,0)}];
\path[save tiling path=a] (0,0) to[out=30,in=210] (1,0);
\BakeTile{spectre}
\pic[spectre,at={(6,0)}];
\path[save tiling path=a] (0,0) .. controls +(30:1) and +(210:.75)

.. (1,0);
\BakeTile{spectre}
\pic[spectre,at={(9,0)}];
\end{tikzpicture}

6 More Examples
Let’s set some aesthetically pleasing shapes. Note that I’m using the TikZ
external library in creating this document so to deform the paths in the examples
I need to add the deformation code to every picture (otherwise the externalisation
skips it). I’ve saved it into a key deform tiles to avoid overwhelming the exam-
ple code. In a document without externalisation then adding the following code
will achieve the same effect.

\begin{tikzpicture}
\path[save tiling path=a] (0,0) to[out=-30,in=100] (1,0);
\path[save tiling path=b] (0,0) to[out=0,in=140] (1,0);
\path[save tiling path=c] (0,0) to[out=-40,in=140] (1,0);
\BakeTile{thin rhombus}
\BakeTile{thick rhombus}
\BakeTile{golden triangle}
\BakeTile{reverse golden triangle}
\BakeTile{golden gnomon}
\BakeTile{reverse golden gnomon}
\BakeTile{kite}
\BakeTile{dart}
\end{tikzpicture}

Styling the first tile. Note that as the pattern is formed by repeating two
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different initial seeds 5 times, there are 10 “first tiles” in each overall pattern.

\begin{tikzpicture}[
deform tiles/.try,
every tile/.style={draw},
tile 1/.style={fill=yellow},

]
\foreach \tp/\pos in

{rhombus/0cm,rtriangle/2.5cm,kite/5cm,ktriangle/7.5cm}
{
\begin{scope}[xshift=\pos]
\foreach[evaluate=\k as \mk using {\k+Mod(\k,2)},evaluate=\k as

\ax using {Mod(\k,2) == 0 ? "T" : "t"}] \k in {0,...,9} {
\begin{scope}[rotate=\mk*36]
\TilingDecomposition{\tp}{1}{\ax}
\end{scope}

}
\end{scope}
}
\end{tikzpicture}

A more detailed decomposition, with more and more tinting applied to each
tile. Roughly half of the counted tiles are rendered, and the ordering in which they
are rendered is not at first an obvious one (though it is in general from “outside
in”).

Note that the key tint fill colour is not a TikZ native. It is defined as:

\makeatletter
\tikzset{

tint fill colour/.code={%
\edef\@temp{%

\def\noexpand\tikz@fillcolor{\tikz@fillcolor!#1}%
\noexpand\tikz@addoption{%

\noexpand\pgfsetfillcolor{\tikz@fillcolor!#1}%
}%

}%
\@temp

}
}
\makeatother
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\begin{tikzpicture}[
deform tiles/.try,
every tile/.style={draw},
every kite/.style={fill=reverseGoldenTriangle},
every dart/.style={fill=goldenTriangle},
tile/.code 2 args={

\pgfmathsetmacro\tint{100*(1 - 1.5*#1/#2))}
\pgfkeysalso{tint fill colour=\tint}

}
]
\foreach[evaluate=\k as \mk using {\k+Mod(\k,2)},evaluate=\k as

\ax using {Mod(\k,2) == 0 ? "T" : "t"}] \k in {0,...,9} {
\begin{scope}[rotate=\mk*36]
\TilingDecomposition[tiling step=5cm]{kite}{4}{\ax}
\end{scope}

}
\end{tikzpicture}

An example with “manual placement”.
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\begin{tikzpicture}[
deform tiles/.try,
every tile/.style={

draw=black,
ultra thick,

},
every kite/.style={

fill=kite,
},
every dart/.style={

fill=dart,
},
every circle arc/.style={

draw=circleArc
},
every long arc/.style={

draw=longArc
}

]
\pic[dart,name=a0];
\foreach[evaluate=\k as \kmo using int(\k-1)] \k in {1,...,4} {

\pic[dart,name=a\k,align with={a\kmo} along a];
}
\foreach \k in {0,...,4} {

\foreach \l/\e/\ee in {0/c/a,1/C/A} {
\pic[kite,name=b\l\k,align with={a\k} along \e];
\pic[dart,name=c\l\k,align with={b\l\k} along \ee];
\pic[kite,name=d\l\k,align with={c\l\k} along \e];

}
\pic[kite,name=e\k,align with={c0\k} along C];
\pic[dart,name=f\k,align with={c0\k} along a];
\foreach \e in {c,C} {

\pic[kite,name=g\k,align with={f\k} along \e];
}

}
\end{tikzpicture}
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The decomposition rules for the Lindenmayer system can be illustrated by
drawing each tile together with the result of one decomposition superimposed on
top.

\foreach \ax in {T,t,G,g} {

\begin{tikzpicture}[
deform tiles/.try,

]
\foreach \tp/\pos in

{rhombus/0cm,rtriangle/2cm,kite/4cm,ktriangle/6cm}
{
\begin{scope}[xshift=\pos]

\TilingDecomposition[every path/.style={draw=red,ultra
thick}]{\tp}{0}{\ax}

\TilingDecomposition[every path/.style={fill=gray!50,fill
opacity=.5,draw=black}]{\tp}{1}{\ax}

\end{scope}
}
\end{tikzpicture}

}
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The tiles can make interesting forms by themselves.
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\begin{tikzpicture}[
deform tiles/.try,
scale=2,
every tile pic/.style={

transform shape,
},
every golden triangle/.style={

draw=black,
ultra thick,
fill=goldenTriangle,

},
every reverse golden triangle/.style={

draw=black,
ultra thick,
fill=reverseGoldenTriangle,

},
every golden gnomon/.style={

draw=black,
ultra thick,
fill=goldenGnomon,

},
every reverse golden gnomon/.style={

draw=black,
ultra thick,
fill=reverseGoldenGnomon,

},
]
\pic[golden triangle,name=a];
\pic[reverse golden triangle,align with=a along a];
\pic[reverse golden triangle,align with=a along b];
\pic[reverse golden triangle,align with=a along c];
\begin{scope}[xshift=2cm]
\pic[reverse golden triangle,name=a];
\pic[golden triangle,align with=a along A];
\pic[golden triangle,align with=a along B];
\pic[golden triangle,align with=a along C];
\end{scope}
\begin{scope}[yshift=-3cm]
\pic[golden gnomon,name=a];
\pic[reverse golden gnomon,align with=a along C];
\pic[reverse golden gnomon,align with=a along b];
\pic[reverse golden gnomon,align with=a along A];
\begin{scope}[xshift=2cm]
\pic[reverse golden gnomon,name=a];
\pic[golden gnomon,align with=a along c];
\pic[golden gnomon,align with=a along B];
\pic[golden gnomon,align with=a along a];
\end{scope}
\end{scope}
\end{tikzpicture}
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\begin{tikzpicture}[
deform tiles/.try,
every rhombus/.style={

draw=black,
ultra thick,

},
every thin rhombus/.style={

every rhombus/.try,
fill=thinRhombus,

},
every thick rhombus/.style={

every rhombus/.try,
fill=thickRhombus,

},
every circle arc/.style={

draw=circleArc
},
every long arc/.style={

draw=longArc
}

]
\pic[rotate=18,thick rhombus,name=a0];
\foreach[evaluate=\k as \kmo using int(\k-1)] \k in {1,...,4}
{

\pic[thick rhombus,name=a\k,align with={a\kmo} along A];
}
\foreach \k in {0,...,4}
{

\pic[thin rhombus,name=b\k,align with={a\k} along B];
\pic[thick rhombus,name=c\k,align with={b\k} along A];
\pic[thick rhombus,name=d\k,align with={b\k} along a];
\pic[thick rhombus,name=e\k,align with={c\k} along A];
\foreach \l/\a in {{0/b},{1/B}}

\pic[thin rhombus,name=f\k\l,align with={e\k} along \a];
}
\pic[thin rhombus,name=g0,align with={f10} along a];
\pic[thin rhombus,name=g1,align with={f21} along A];
\foreach \l/\a in {{0/a},{1/A}}

\pic[thick rhombus,name=h\l,align with={g\l} along \a];
\pic[thick rhombus,name=i,align with=g0 along B];
\foreach \l/\a in {{0/a},{1/A}}

\pic[thick rhombus,name=j\l,align with=i along \a];
\end{tikzpicture}
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Lastly, here’s an example that generates full page patterns.

\foreach \tp/\lvl in {rhombus/5,rhombus/6,kite/5,kite/6}
{
\tikzset{external/export next=false}
\begin{tikzpicture}[

every tile/.style={draw},
remember picture,
overlay,
scale=20

]
\coordinate (a) at (current page.center);
\begin{scope}[shift={(a)}]
\foreach[evaluate=\k as \mk using {\k+Mod(\k,2)},evaluate=\k as

\ax using {Mod(\k,2) == 0 ? "T" : "t"}] \k in {0,...,9} {
\begin{scope}[rotate=\mk*36]
\TilingDecomposition{\tp}{\lvl}{\ax}
\end{scope}

}
\end{scope}
\end{tikzpicture}
\newpage
}
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