
Guide to pTEX for developers unfamiliar with Japanese

Japanese TEX Development Community‗

version p4.1.2, May 10, 2025

pTEX and its variants, upTEX, 𝜀-pTEX and 𝜀-upTEX, are all TEX engines with native Japanese
support. Its output is always a DVI file, which can be processed by several DVI drivers with
Japanese support including dvips and dvipdfmx. Formats based on LATEX is called pLATEX when
running on pTEX/𝜀-pTEX, and called upLATEX when running on upTEX/𝜀-upTEX.

Purpose of this document

This document is written for developers of TEX/LATEX, who aim to support pTEX/pLATEX and
its variants upTEX/upLATEX. Knowledge of the followings are assumed:

• Basic knowledge of Western TEX (Knuthian TEX, 𝜀-TEX and pdfTEX),

• ... and its programming conventions.

Any knowledge of Japanese (characters, encodings, typesetting conventions etc.) is not
assumed; some explanations are provided in this document when needed. We hope that
this document helps authors of packages or classes to proceed with supporting pTEX family
smoothly.

Note: This English guide (ptex-guide-en.pdf) is not meant to be a complete trans-
lation of Japanese manual (ptex-manual.pdf). For example, this document does not
cover issues regarding Japanese typesettings. If you are interested in typesetting
conventions of Japanese text, please also refer to japanese.pdf distributed with
babel-japanese.

This document is maintained at: https://github.com/texjporg/ptex-manual/

‗https://texjp.org, e-mail: issue(at)texjp.org

1

https://github.com/texjporg/ptex-manual/
https://texjp.org

Contents

I Brief introduction 4

1 pTEX and its variants 4

2 Eminent characteristics of pTEX family 4

3 Compatibility with Western TEX 5

4 LATEX on pTEX/upTEX — pLATEX/upLATEX 5

II Details 7

5 Output format — DVI 7
5.1 Extensions of DVI format in pTEX family . 8
5.2 DVI drivers with Japanese support . 9

5.2.1 Using dvipdfmx . 9
5.2.2 Using dvips . 9

6 Programming on pTEX family 9
6.1 Number of registers and marks . 9
6.2 Number of math families . 10
6.3 Additional primitives and keywords . 10

6.3.1 pTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX) 10
6.3.2 upTEX additions (available in upTEX, 𝜀-upTEX) 12
6.3.3 𝜀-pTEX additions (available in 𝜀-pTEX, 𝜀-upTEX) 13
6.3.4 𝜀-upTEX additions (available in 𝜀-upTEX) 14
6.3.5 Other cross-engine additions . 14

6.4 Omitted primitives and unsupported features 15
6.5 Behavior of Western TEX primitives . 15

6.5.1 Primitives with limitations in handling Japanese 15
6.5.2 Primitives capable of handling Japanese 16

6.6 Case study . 16
6.6.1 Detecting pTEX . 16
6.6.2 Detecting upTEX . 17
6.6.3 Defining large integer constants . 17
6.6.4 Creating a Japanese character token with a specified code 18

6.7 Difference from pdfTEX in DVI mode . 20

2

6.8 Recommendation for file encoding . 20
6.9 Input handling . 22
6.10 Japanese tokens . 22

7 Basic introduction to Japanese typesetting 22
7.1 Automatic insertion of glue and penalties . 22
7.2 Japanese fonts . 22

8 Other strange beasts 23
8.1 Internal Japanese encodings . 23

3

Part I

Brief introduction
1 pTEX and its variants

The figure below shows the relationship between engines.

TEX

??

��

𝜀-TEX

??

��

pdfTEX

pTEX

??

��

𝜀-pTEX

��

upTEX

??

𝜀-upTEX

pTEX is an old Japanese-specific extension of TEX82, which aims to support proper type-
setting of Japanese text but only supports a limited character set, JIS X 0208 (6879 characters).

upTEX is developed as an extension of pTEX to support full Unicode characters. It also
includes modifications and extensions to overcome the difficulties of pTEX in processing 8-bit
Latin characters due to conflicts with legacy multibyte Japanese encodings.

𝜀-pTEX and 𝜀-upTEX are 𝜀-TEX extensions of pTEX and upTEX respectively. In the current
release, some extensions derived from pdfTEX and Ω are also available.

2 Eminent characteristics of pTEX family

The most important characteristics of pTEX family can be summarized as follows:

• Japanese characters are interpreted and handled completely apart from Western char-
acters. If a pair of two or more 8-bit codes in the input matches the pattern of Japanese
character codes, it is regarded as one Japanese character and given a different \catcode‌
(\kcatcode‌) value.

• There are two text directions; horizontal (yoko-gumi;横組) and vertical (tate-gumi;縦組).
Two directions can be mixed even within a single document.

4

3 Compatibility with Western TEX

pTEX/upTEX are almost upward compatible with Knuthian TEX, however, they do not pass
the TRIP test. The most important difference lies in the handling of 8-bit code inputs; some
8-bit Latin characters may be subject to the encoding conversion. There is no difference in
handling 8-bit TFM font.

𝜀-pTEX/𝜀-upTEX are almost upward compatible with 𝜀-TEX, however, input handling is
similar to pTEX/upTEX. It does not pass the e-TRIP test. That said, please note that “raw 𝜀-TEX”
is unavailable anymore in TEX Live and derived distributions; they provide a command
‌etex‌ only as “DVI mode of pdfTEX.” You should note that 𝜀-pTEX/𝜀-upTEX are not upward
compatible with DVI mode of pdfTEX, which will be discussed later in Section 6.7.

There is no advantage to choose pTEX/upTEX over 𝜀-pTEX/𝜀-upTEX, so we focus mainly
on 𝜀-pTEX/𝜀-upTEX.

4 LATEX on pTEX/upTEX — pLATEX/upLATEX

Format based on LATEX is called pLATEX when running on pTEX, and called upLATEX when
running on upTEX. When building the format, ‌platex.ltx‌ (pLATEX) or ‌uplatex.ltx ‌ (upLATEX)
loads ‌latex.ltx‌ first and adds some additional commands related to the followings:

• Selection of Japanese fonts,

• Crop marks (called tombow;トンボ) for printings,

• Adjustment for mixing horizontal and vertical texts.

For authors, pLATEX/upLATEX are almost upward compatible with original LATEX, except for
the followings:

• Order of float objects; in pLATEX/upLATEX, ⟨bottom float⟩ is placed above ⟨footnote⟩. That is,
the complete order is ⟨top float⟩ → ⟨body text⟩ → ⟨bottom float⟩ → ⟨footnote⟩.

For developers, additional care may be needed, for changes in the kernel macros and/or the
engine difference (Japanese handling, absence of pdfTEX features, etc). In recent versions of
TEX Live and its derivatives, the default engines of pLATEX and upLATEX are as follows:

Date pLATEX upLATEX
TEX Live 2010 pTEX —
TEX Live 2011 𝜀-pTEX —
TEX Live 2012–2022, 2023 initial 𝜀-pTEX 𝜀-upTEX
Since 2023-06-01 𝜀-upTEX in legacy (see below) 𝜀-upTEX

5

The command ‌platex ‌ started 𝜀-pTEX (not pTEX) with preloaded format ‌platex.fmt ‌ in TEX
Live 2022. Since 2023-06-01, pLATEX has switched its engine from 𝜀-pTEX to 𝜀-upTEX in “legacy-
encoding-compatibility mode.” It means that additional primitives of (𝜀-)upTEX is available
also on pLATEX, but the internal code of Japanese characters is still non-Unicode to keep the
backward compatibility. Further information can be found in Section 6.6.2.

6

Part II

Details
5 Output format — DVI

The output of pTEX family is always a DVI file. This is in contrast to the mainstream of pdfTEX
in the Western TEX world.

In case you are not familiar with DVI output processing, first we give some general notice
on how to get a “correct” output using LATEX in DVI mode.

• The DVI format is, as its name suggests, inherently driver-independent. However, some
LATEX packages (graphicx, color, hyperref etc.) embed some \special‌ commands into the
DVI, which can be interpreted later by some specific DVI driver. Such a DVI is no longer
driver-independent, thus those are called driver-dependent packages.

• In almost all major TEX distributions (of course including TEX Live), the default DVI
driver is set to ‌dvips‌. When you choose to process the resulting DVI file with a driver
other than dvips (e.g. dvipdfmx) after running LATEX, you need to pass a proper driver
option (e.g. ‌[dvipdfmx] ‌) to all driver-dependent packages.

Now, let’s move on to the situation in Japan, which is slightly complicated due to historical
reasons but may also apply to other countries:

• There are two major conventions to pass a proper driver option to all driver-dependent
packages:

1. To give a driver option to each driver-dependent package:

\documentclass{article}
\usepackage[dvipdfmx]{graphicx}
\usepackage[dvipdfmx]{color}

2. To have a driver option as global:

\documentclass[dvipdfmx]{article}
\usepackage{graphicx}
\usepackage{color}

The former convention has been used for many years since 1990s when the number of
driver-dependent packages was limited. But in recent years (around 2010–), there are
much more driver-dependent packages available. Thus we (Japanese TEX experts) advise

7

a global driver option rather than individual package options for simplicity, but not yet
fully widespread.1

• Many people still see driver options as “optional”; they do without driver options unless
really needed. For example, the convention of having a global driver option does no
harm even when no driver-dependent package is used, but some users choose to omit a
driver option to avoid a warning2:

LaTeX Warning: Unused global option(s):
[dvipdfmx].

5.1 Extensions of DVI format in pTEX family

The DVI format output by pTEX family is fully compatible with Knuthian TEX, as long as the
following conditions are met:

• No Japanese characters are typeset.

• There is no portion of vertical text alignment.

However, some additional DVI commands, which are defined in the standard [1] but
never used in TEX82, can come out.

• ‌set2‌ (129): Used to typeset a Japanese character with 2-byte code (both pTEX and upTEX).

• ‌set3‌ (130): Used to typeset a Japanese character with 3-byte code (upTEX only).

When pTEX is going to typeset a Japanese character into DVI, it is encoded in JIS, which is
always a 2-byte code. For this purpose, ‌set2‌ or ‌put2‌ are used. When upTEX is going to output
a Japanese character into DVI, it is encoded in UTF-32. If the code is equal to or less than
‌U+FFFF ‌, the lower 16-bit is used with ‌set2‌ or ‌put2‌. If the code is equal to or greater than
‌U+10000 ‌, the lower 24-bit is used with ‌set3‌ or ‌put3‌.

In addition, pTEX/upTEX defines one additional DVI command.

• ‌dir ‌ (255): Used to change directions of text alignment.

The DVI format in the preamble is always set to 2, as with TEX82. On the other hand, the DVI
ID in the postamble can be special. Normally it is set to 2, as with TEX82; however, when ‌dir ‌
(255) appears at least once in a single pTEX/upTEX DVI, the ‌post_post ‌ table of postamble
contains ID = 3.

1The fact that there had been a mismatch in option names ([dvipdfm] vs. [dvipdfmx]) between packages may
also have been part of it; geometry did not understand [dvipdfmx] option until 2018!

2Since LATEX 2𝜀 2020-02-02, this warning is effectively gone. This is due to preloading of expl3 into the format,
and the driver-dependent code of expl3 interprets the global driver option.

8

5.2 DVI drivers with Japanese support

There are some DVI drivers with Japanese support. The most eminent drivers are dvips and
dvipdfmx. Nowadays most of casual Japanese users are using dvipdfmx as a DVI driver. On the
other hand, users of dvips are unignorable, especially those working in publishing industry.
In recent years, most of major driver-dependent packages support both two drivers.

5.2.1 Using dvipdfmx

A DVI file which is output by pTEX can be converted directly to a PDF file using dvipdfmx.
For Japanese fonts to be used in the output PDF, dvipdfmx refers to ‌kanjix.map‌ generated by
the command ‌updmap ‌. You can use the script ‌kanji-config-updmap‌ to change font settings;
please refer to its help message or documentation.

5.2.2 Using dvips

A DVI file which is output by pTEX can be converted to a PostScript file using dvips. For
Japanese fonts to be used in the output PostScript, dvips refers to psfonts.map generated by
the command updmap. You can use the script ‌kanji-config-updmap‌ to change font settings;
please refer to its help message or documentation.

The resulting PostScript file can then be converted to a PDF file using Ghostscript (ps2pdf)
or Adobe Distiller. When using Ghostscript, a proper setup of Japanese font must be done
before converting PostScript into PDF. An easy solution for the setup is to run a script
‌cjk-gs-integrate‌ developed by Japanese TEX Development Community.

6 Programming on pTEX family

We focus on programming aspects of pTEX and its variants.

6.1 Number of registers and marks

pTEX and upTEX have exactly the same number (= 256) of registers (count, dimen, skip,
muskip, box, and token) as Knuthian TEX. 𝜀-pTEX and 𝜀-upTEX in extended mode have more
registers; there are 65536, which is twice as many as 32768 of 𝜀-TEX. Similarly 𝜀-pTEX and
𝜀-upTEX have 65536 mark classes, which is twice as many as 32768 of 𝜀-TEX.

The following code presents an example of detecting the number of regsiters and mark
classes available:

\ifx\eTeXversion\undefined
% Knuthian TeX, pTeX, upTeX:
% 256 registers, 1 mark

9

\else
\ifx\omathchar\undefined
% e-TeX, pdfTeX (in extended mode):
% 32768 registers, 32768 mark classes

\else
% e-pTeX, e-upTeX (in extended mode):
% 65536 registers, 65536 mark classes

\fi
\fi

Here a primitive \omathchar‌, which is derived from Ω, is used as a marker of a change file
fam256.ch.3

6.2 Number of math families

In pTEX and upTEX, the number of math fonts is restricted to 16, each of which can contain 256
characters (same as Knuthian TEX). In 𝜀-pTEX and 𝜀-upTEX, a change file fam256.ch, which
is derived from Ω, extends the upper limit to 256. As a consequence, 𝜀-pTEX and 𝜀-upTEX
allows 256 math fonts, each of which can contain 256 characters.4

For pLATEX/upLATEX users to use more than 16 math fonts, it is necessary to use macros
which exploitΩ-derived primitives such as \omathchar‌. Recent (u)pLATEX (since 2016/11/29)
partially supports this, and the maximum number of math alphabets that can be defined
by ‌\DeclareMathAlphabet‌ is extended to 256 (‌\e@mathgroup@top‌) without needing any
extension package. However, symbol fonts are restricted to 16 as ‌\DeclareMathSymbol‌ etc
still use the standard \mathchar‌ etc. A simple solution to use more symbol fonts as well as
math alphabets is to load a package mathfam2565 though it’s still preliminary.

6.3 Additional primitives and keywords

Here we provide only complete lists of additional primitives of pTEX family in alphabetical
order. The features of each primitive can be found in Japanese edition.

6.3.1 pTEX additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX)

▶ \autospacing‌
▶ \autoxspacing‌

3There is another pTEX-derived engine named pTEX-ng (or Asiatic pTEX) https://github.com/clerkma/
ptex-ng; it is based on 𝜀-TEX and upTEX, but currently does not adopt fam256.ch so it has the same number of
registers and mark classes as 𝜀-TEX.

4Ω allows 256 math fonts, each of which can contain 65536 characters.
5https://www.ctan.org/pkg/mathfam256

10

https://github.com/clerkma/ptex-ng
https://github.com/clerkma/ptex-ng
https://www.ctan.org/pkg/mathfam256

▶ \disinhibitglue‌ — New primitive since p3.8.2 (TEX Live 2019)
▶ \dtou‌
▶ \euc‌
▶ \ifdbox ‌ — New primitive since p3.2 (TEX Live 2011)
▶ \ifddir ‌ — New primitive since p3.2 (TEX Live 2011)
▶ \ifjfont‌ — New primitive since p3.8.3 (TEX Live 2020)
▶ \ifmbox ‌ — New primitive since p3.7.1 (TEX Live 2017)
▶ \ifmdir ‌
▶ \iftbox ‌
▶ \iftdir ‌
▶ \iftfont‌ — New primitive since p3.8.3 (TEX Live 2020)
▶ \ifybox ‌
▶ \ifydir ‌
▶ \inhibitglue‌
▶ \inhibitxspcode‌
▶ \jcharwidowpenalty‌
▶ \jfam ‌
▶ \jfont‌
▶ \jis‌
▶ \kanjiskip ‌
▶ \kansuji‌
▶ \kansujichar‌
▶ \kcatcode‌
▶ \kuten‌
▶ \noautospacing ‌
▶ \noautoxspacing‌
▶ \postbreakpenalty‌
▶ \prebreakpenalty‌
▶ \ptexfontname‌ — New primitive since p4.1.0 (TEX Live 2023)
▶ \ptexlineendmode‌ — New primitive since p4.0.0 (TEX Live 2022)

11

▶ \ptexminorversion‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \ptexrevision‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \ptextracingfonts‌ — New primitive since p4.1.0 (TEX Live 2023)
▶ \ptexversion‌ — New primitive since p3.8.0 (TEX Live 2018)
▶ \scriptbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \scriptscriptbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \showmode‌
▶ \sjis‌
▶ \tate‌
▶ \tbaselineshift‌
▶ \textbaselineshiftfactor‌ — New primitive since p3.7 (TEX Live 2016)
▶ \tfont‌
▶ \tojis‌ — New primitive since p4.1.0 (TEX Live 2023)
▶ \toucs‌ — New primitive since p3.10.0 (TEX Live 2022)
▶ \ucs‌ — Imported from upTEX, since p3.10.0 (TEX Live 2022)6

▶ \xkanjiskip‌
▶ \xspcode‌
▶ \ybaselineshift‌
▶ \yoko‌
▶ H

▶ Q

▶ zh

▶ zw

6.3.2 upTEX additions (available in upTEX, 𝜀-upTEX)

▶ \disablecjktoken‌
▶ \enablecjktoken‌
▶ \forcecjktoken ‌

6The primitive \ucs ‌ was part of “upTEX additions” until TEX Live 2021.

12

▶ \kchar‌
▶ \kchardef ‌
▶ \uptexrevision ‌ — New primitive since u1.23 (TEX Live 2018)
▶ \uptexversion‌ — New primitive since u1.23 (TEX Live 2018)

6.3.3 𝜀-pTEX additions (available in 𝜀-pTEX, 𝜀-upTEX)

▶ \currentspacingmode‌ — New primitive since 191112 (TEX Live 2020)
▶ \currentxspacingmode‌ — New primitive since 191112 (TEX Live 2020)
▶ \epTeXinputencoding‌ — New primitive since 160201 (TEX Live 2016)
▶ \epTeXversion‌ — New primitive since 180121 (TEX Live 2018)
▶ \expanded‌ — New primitive since 180518 (TEX Live 2019)
▶ \hfi‌
▶ \ifincsname‌ — New primitive since 190709 (TEX Live 2020)
▶ \ifpdfprimitive‌ — New primitive since 150805 (TEX Live 2016)
▶ \lastnodechar‌ — New primitive since 141108 (TEX Live 2015)
▶ \lastnodefont‌ — New primitive since 220214 (TEX Live 2022)
▶ \lastnodesubtype‌ — New primitive since 180226 (TEX Live 2018)
▶ \odelcode‌
▶ \odelimiter‌
▶ \omathaccent‌
▶ \omathchar ‌
▶ \omathchardef ‌
▶ \omathcode ‌
▶ \oradical‌
▶ \pagefistretch ‌
▶ \pdfcreationdate‌ — New primitive since 130605 (TEX Live 2014)
▶ \pdfelapsedtime‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdffiledump‌ — New primitive since 140506 (TEX Live 2015)
▶ \pdffilemoddate‌ — New primitive since 130605 (TEX Live 2014)
▶ \pdffilesize‌ — New primitive since 130605 (TEX Live 2014)

13

▶ \pdflastxpos‌
▶ \pdflastypos‌
▶ \pdfmdfivesum ‌ — New primitive since 150702 (TEX Live 2016)
▶ \pdfnormaldeviate‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfpageheight ‌
▶ \pdfpagewidth‌
▶ \pdfprimitive‌ — New primitive since 150805 (TEX Live 2016)
▶ \pdfrandomseed ‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfresettimer ‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfsavepos‌
▶ \pdfsetrandomseed‌ — New primitive since 161114 (TEX Live 2017)
▶ \pdfshellescape‌ — New primitive since 141108 (TEX Live 2015)
▶ \pdfstrcmp ‌
▶ \pdfuniformdeviate‌ — New primitive since 161114 (TEX Live 2017)
▶ \readpapersizespecial‌ — New primitive since 180901 (TEX Live 2019)
▶ \suppresslongerror‌ — New primitive since 211207 (TEX Live 2022)
▶ \suppressmathparerror‌ — New primitive since 211207 (TEX Live 2022)
▶ \suppressoutererror‌ — New primitive since 211207 (TEX Live 2022)
▶ \Uchar‌ — New primitive since 191112 (TEX Live 2020)
▶ \Ucharcat‌ — New primitive since 191112 (TEX Live 2020)
▶ \vadjust‌ pre— New keyword since 210701 (TEX Live 2022)
▶ \vfi‌
▶ fi

6.3.4 𝜀-upTEX additions (available in 𝜀-upTEX)

▶ \currentcjktoken‌ — New primitive since 191112 (TEX Live 2020)

6.3.5 Other cross-engine additions

SyncTEX extension (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX):

▶ \synctex‌

14

TEX Live additions (available in pTEX, upTEX, 𝜀-pTEX, 𝜀-upTEX):

▶ \ignoreprimitiveerror‌ — New primitive since 250202 (TEX Live 2025)
▶ \partokencontext‌ — New primitive since TEX Live 2022
▶ \partokenname‌ — New primitive since TEX Live 2022
▶ \showstream ‌ — New primitive since TEX Live 2022
▶ \special‌ shipout— New keyword since 230214 (TEX Live 2023)
▶ \tracingstacklevels‌ — New primitive since TEX Live 2021

6.4 Omitted primitives and unsupported features

Compared to Knuthian TEX and 𝜀-TEX, some primitives and extensions are omitted due to
conflict with Japanese handling.

• The encTEX extension, including the primitives ‌\mubyte ‌ etc., is unavailable.

• The MLTEX extension, such as ‌\charsubdef‌, is not enabled by default. It becomes avail-
able with the command-line option ‌-mltex‌, but not well-tested.

6.5 Behavior of Western TEX primitives

Here we provide some notes on behavior of Knuthian TEX and 𝜀-TEX primitives when used
within pTEX family.

6.5.1 Primitives with limitations in handling Japanese

Each of the following primitives allows only character codes 0–255; other codes will give an
error “! Bad character code.”

‌\catcode‌, ‌\sfcode ‌, ‌\mathcode‌, ‌\delcode‌, ‌\lccode ‌, ‌\uccode‌.

Each of the following primivies has ‌\...char ‌ in its name, however, the effective values
are restricted to 0–255.

‌\endlinechar‌, ‌\newlinechar‌, ‌\escapechar‌, ‌\defaulthyphenchar‌, ‌\defaultskewchar‌.

15

6.5.2 Primitives capable of handling Japanese

The following primitives are extended to support Japanese characters:

▶ \char‌ ⟨character code⟩, \chardef ‌ ⟨control sequence⟩=⟨character code⟩
In addition to 0–255, internal codes of Japanese characters (see 8.1) are allowed. For

putting Japanese characters, a Japanese font (see 7.2) is chosen. Further information can
be found in 6.6.3.

▶ \font‌, \fontname‌, \fontdimen‌

▶ \accent ‌ ⟨character code⟩=⟨character⟩
▶ \if ‌ ⟨token1⟩ ⟨token2⟩, \ifcat‌ ⟨token1⟩ ⟨token2⟩

Japanese character token is also allowed. In that case,

• ‌\if‌ tests the internal character code of the Japanese character.
• ‌\ifcat‌ tests the ‌\kcatcode‌ of the Japanese character.

� TEXbook describes the behavior of ‌\if ‌ and ‌\ifcat‌ as follows;

If either token is a control sequence, TEX considers it to have character code 256
and category code 16, unless the current equivalent of that control sequence has
been ‌\let‌ equal to a non-active character token.

However, this includes a lie; in the real implementation of tex.web, a control sequence is
considered to have a category code 0.

6.6 Case study

Here we provide some code examples which may be useful for package developers.

6.6.1 Detecting pTEX

Since the primitive ‌\ptexversion‌ is rather new (added in 2018), the safer solution for detect-
ing pTEX is to test if a primitive ‌\kanjiskip‌ is defined.

\ifx\kanjiskip\undefined
\else
% pTeX / upTeX / e-pTeX / e-upTeX

\fi

16

6.6.2 Detecting upTEX

upTEX is almost upward compatible with pTEX, however, there are two major differences:

1. Improvements in the\kcatcode ‌ business, mainly for better handling of Latin-1 characters
and CJK tokens.

2. Unicode as the default internal Japanese encoding (see 8.1), for direct use of its huge
character set.

The first difference can be detected by checking if \...cjktoken‌ primitive is defined.

\ifx\enablecjktoken\undefined
\else
% upTeX/e-upTeX

\fi

This can be called “engine detection” of upTEX.
The second difference can be detected by checking if the character 0x2121 (fullwidth

space in JIS encoding) is stored as "3000 internally.

\ifx\kanjiskip\undefined
\else
\ifnum\jis"2121="3000
% upTeX/e-upTeX with internal Unicode

\else
% pTeX/e-pTeX
% or, upTeX/e-upTeX with internal EUC-JP or Shift-JIS

\fi
\fi

This can be called “encoding detection” of upTEX.
Please note that the format-build setting of ‌-kanji-internal=(sjis|euc) ‌ with upTEX

makes it effectively pTEX regarding the character set, which means that only JIS X 0208
character set is supported. This can be called “legacy-encoding-compatibility mode” of upTEX,
where the \kcatcode‌ difference remains but the internal encoding difference disappears.
This method is used in building ‌platex.fmt ‌ on 𝜀-upTEX, since 2023-06-01. Therefore, to
distinguish upLATEX from pLATEX, “engine detection” is not enough; you should use “encoding
detection.”

6.6.3 Defining large integer constants

According to [2] (Section 3.3),

17

A control sequence that has been defined with a \chardef ‌ command can also be
used as a ⟨number⟩. This fact is used in allocation commands such as ‌\newbox ‌.
Tokens defined with \mathchardef ‌ can also be used this way.

Here is the list of primitives which can be used for this purpose in pTEX family:

▶ \chardef ‌ ⟨control sequence⟩=⟨character code⟩
Defines a control sequence to be a synonym for \char‌ ⟨character code⟩.

▶ \kchardef ‌ ⟨control sequence⟩=⟨character code⟩ (for upTEX/𝜀-upTEX)
Defines a control sequence to be a synonym for \kchar‌ ⟨character code⟩.

▶ \mathchardef ‌ ⟨control sequence⟩=⟨15-bit number⟩
Defines a control sequence to be a synonym for \mathchar‌ ⟨15-bit number⟩.

▶ \omathchardef ‌ ⟨control sequence⟩=⟨27-bit number⟩ (for 𝜀-pTEX/𝜀-upTEX)
Defines a control sequence to be a synonym for \omathchar‌ ⟨27-bit number⟩.

The first two (\chardef ‌ and \kchardef ‌) are usable only when the integer being defined
is in the range of valid character codes, which is not necessarily continuous (see 8.1). The
most efficient and convenient way of defining integer constants is as follows:

• 0–255: \chardef ‌

• 256–32767: \mathchardef ‌

• 32768–134217727: \omathchardef ‌ (only for 𝜀-pTEX/𝜀-upTEX)

6.6.4 Creating a Japanese character token with a specified code

Short version:

• With 𝜀-pTEX 191112 or later (TEX Live 2020), you can use expandable primitives \Uchar‌
and \Ucharcat ‌.

• Otherwise, use the “\kansuji‌ trick”.

■ The “\kansuji‌ trick”
This is a modified version of the “\lowercase‌ trick” available in pTEX family.� Short note on the “\lowercase ‌ trick”: to create a character token with a specified code value

between 0–255 with Knuthian TEX, the “\lowercase ‌ trick” can be used; for example,

\begingroup
\lccode`\?=\mycount
\lowercase{\endgroup \def\X{?}}

18

defines ‌\X ‌ which expands to a character number ‌\mycount‌ while the \catcode‌ of ‌? ‌ (12) is
preserved. However, the trick cannot be applied to Japanese characters, since pTEX family does
not support \lccode ‌ outside 0–255.

\kansuji‌ is an expandable primitive like \number ‌ or \romannumeral‌, and it converts an
integer into its corresponding kanji notation called kansuji (漢数字). The important point here
is that the number-kanji mapping can be altered by \kansujichar‌.

Example 1: equivalent to ‌\def\X{あ} ‌ (JIS code 0x2422 is “あ”):

\begingroup
\kansujichar1=\jis"2422 \xdef\X{\kansuji1}

\endgroup

Example 2: equivalent to ‌\def\日本{Japan} ‌.
\begingroup
\kansujichar5=\jis"467C\relax
\kansujichar6=\jis"4B5C\relax
\expandafter\gdef\csname\kansuji56\endcsname{Japan}

\endgroup

Since \kansujichar ‌ accepts only Japanese character code, the “\kansuji‌ trick” and the
“\lowercase‌ trick” should be used complementarily.

■ \Uchar‌, \Ucharcat‌
The “\kansuji‌ trick” above includes an assignment of \kansujichar‌ which is unex-

pandable. 𝜀-pTEX 191112 or later (TEX Live 2020) provides expandable primitives \Uchar‌
and \Ucharcat‌, which are derived from X ETEX. Regardless of their names, and unlike X ETEX
or LuaTEX, these primitives do not necessarily take a Unicode value as an argument. These
primitives in 𝜀-pTEX and 𝜀-upTEX take a valid character code (see 8.1) based on the internal
Japanese encoding.

▶ \Uchar‌ ⟨character code⟩
Expands to a character token with specified slot ⟨character code⟩.
• When an 8-bit number (0–255) is given, it expands to a Latin character token with

category code 12, except for a space character (32) which has category code 10.
• When a Japanese character code greater than 255 is given, it expands to a Japanese

character token with its current category code; 16–18 for 𝜀-pTEX, 16–19 for 𝜀-upTEX.

▶ \Ucharcat‌ ⟨character code⟩ ⟨category code⟩
Expands to a character token with slot ⟨character code⟩ and ⟨category code⟩ specified.

• With 𝜀-pTEX:

19

– Only 8-bit number (0–255) are allowed for ⟨character code⟩; that is, only Latin
characters can be generated.

– The values allowed for ⟨category code⟩ are 1–4, 6–8, 10–13.
• With 𝜀-upTEX:

– When ⟨character code⟩ is between 0–127, only Latin characters can be generated.
Thus, the values allowed for ⟨category code⟩ are 1–4, 6–8, 10–13.

– When ⟨character code⟩ is between 128–255, both Latin and Japanese characters
can be generated depending on the specified ⟨category code⟩; 1–4, 6–8, 10–13:
Latin character, 16–19: Japanese character.

– When ⟨character code⟩ is greater than 255, only Japanese characters can be gen-
erated. Thus, the values allowed for ⟨category code⟩ are 16–19.

6.7 Difference from pdfTEX in DVI mode

As stated in Section 3, 𝜀-pTEX/𝜀-upTEX are not upward compatible with DVI mode of pdfTEX,
which is available as the ‌etex‌ command in TEX Live. Here we list some important differences:

First, some pdfTEX-specific primitives are absent. Examples:

• All primitives specific to PDF output: \pdfoutput ‌, \pdfinfo‌, \pdfobj ‌ etc.7

• All primitives related to micro-typography: \pdffontexpand‌, \pdfprotrudechars‌, etc.

• Some primitives related to handling of strings: \pdfescapestring‌, \pdfescapehex‌ etc.

6.8 Recommendation for file encoding

Due to historical reasons, multiple encodings are commonly used for Japanese text. Some-
times user documents and distribution files (classes, packages) may have different encodings.
Among those, the universal UTF-8 and three major legacy encodings (ISO-2022-JP, EUC-JP,
Shift-JIS) are accepted as input to pTEX family, depending on the configuration and runtime
options. To make this possible, pTEX family does code conversion in input and output.

The details are too complicated, so here we propose the optimum solution for Japanese
file encoding for package/class developers who aim to support pTEX family:

• If you want to distribute files on CTAN/TEX Live, please use UTF-8.

UTF-8 files are almost always safe enough for recent pTEX/upTEX (2018–), and the same
files will have no problem when read by Western TEX. To secure this “almost always” to
“always”, please add below at the beginning of your individual UTF-8 files:

7𝜀-pTEX/𝜀-upTEX has primitives \pdfpagewidth ‌ and \pdfpageheight‌; this is just because they were conve-
nient for implementing \pdfsavepos‌, and their behavior is somewhat different from that of pdfTEX. Also note
that 𝜀-pTEX/𝜀-upTEX does not have \pdfhorigin‌ and \pdfvorigin‌.

20

‌\ifx\epTeXinputencoding\undefined \else \epTeXinputencoding utf8 \fi ‌
it will help pTEX family to read forcibly in UTF-8, so it becomes always safe for 2016–.

• If you aim to support broader legacy environment of pTEX specifically, ...

Extra care is required for missing features and different configurations which can lead
to failure of reading UTF-8. There is no such thing as a perfect solution; instead, you
should choose between encoding in ISO-2022-JP or writing in ASCII characters.

– Encoding in ISO-2022-JP:
All historical versions of pTEX family can always read ISO-2022-JP properly because
it’s a 7-bit encoding safely distinguished from others. This is why many old pack-
ages/classes widely used in Japan are particularly encoded in ISO-2022-JP.
On the other hand, ISO-2022-JP is unsupported in Western TEX; also, CTAN/TEX
Live requires some special handling of uploaded files.

– Writing in ASCII characters:
Safe for Western TEX and CTAN/TEX Live, but often requires lots of TEXniques and
hard-to-read programmings (e.g. generating Japanese tokens as in Section 6.6.4, or
encoding into hex dump as in bxjalipsum.sty, ...)

... Annoying? Please forget that legacy environment ;-)

� For your information, here is the behavior of the common default configuration available in the
latest TEX Live distribution (since 2023).

• upTEX default: always properly reads UTF-8 and ISO-2022-JP.

• pTEX default: always properly reads ISO-2022-JP. It also properly reads UTF-8 almost al-
ways8, and successful results of “guess-input-enc” conversion of Shift-JIS and EUC-JP.

• When the command-line option ‌-kanji=(sjis|euc)‌ is specified: UTF-8 above is replaced
with the given encoding.� Note on older versions:

• The “guess-input-enc” conversion status above is relatively new:

– In TEX Live 2023, it is available for all platform of TEX Live. Default on for (𝜀-)pTEX, off
for (𝜀-)upTEX, but also controlled by runtime option -(no-)guess-input-enc.

– In TEX Live 2022 and older, it was limited for Windows only; also, default on for all of
(𝜀-)(u)pTEX. For Unix it was not implemented yet.

• In TEX Live 2017 and older, the default input encoding of (𝜀-)pTEX was Shift-JIS for Windows,
UTF-8 for Unix.

8The exception of “almost always” comes from a failure of guessing; at the expense of properly reading a
certain amount of Shift-JIS and EUC-JP, there are occasional misreading of UTF-8.

21

• The primitive \epTeXinputencoding ‌ was added to 𝜀-pTEX/𝜀-upTEX in TEX Live 2016. Older
versions does not have it.

• Very old distributions by ASCII Corporation (–2009) supported only legacy encodings;
UTF-8 was not allowed.

6.9 Input handling

For simplicity, first we introduce how upTEX handles the input when all files are UTF-8.

1. An input line is stored into the internal buffer. (No effective code conversion here for
upTEX9.)

2. The input processor reads the buffer. Here Japanese character tokens are distinguished
from ordinary 8-bit character tokens.

3. ... [TODO]

The situation is more complicated in pTEX. As described in Section 6.8, it accepts UTF-
8 input; however, pTEX uses a legacy encoding as the internal Japanese encoding (default:
Shift-JIS on Windows, and EUC-JP otherwise). This means that pTEX does code conversion
in input and output. ... [TODO]

6.10 Japanese tokens

7 Basic introduction to Japanese typesetting

This section does not aim to explain Japanese typesetting completely; here we provide a
minimum requirement for “getting away” with Japanese.

7.1 Automatic insertion of glue and penalties

Sometimes pTEX family automatically inserts glue and penalties between characters.

7.2 Japanese fonts

pTEX family can have 3 different “current” fonts at the same time; a Latin font, a Japanese font
for horizontal writing (yoko-gumi), and a Japanese font for vertical writing (tate-gumi). The
first one is the same as in the Knuthian TEX, which is defined in a standard TFM format. The

9To be precise, it passes through a code conversion; however, this is an identity conversion which has no effect
because upTEX defaults to internal Unicode.

22

latter two are specific to pTEX family, which are defined in a JFM (Japanese TEX font metric)
format.10

While typesetting, pTEX family automatically switches between these 3 fonts, depending
on the character code and the writing direction:

• For typesetting Latin characters, the current Latin font shown by ‌\the\font ‌ is selected.

• For typesetting Japanese characters, the current Japanese font suitable for the current
writing direction is selected. It is shown by ‌\the\jfont ‌ for horizontal writing and
‌\the\tfont‌ for vertical writing.

In Knuthian TEX, the primitive \nullfont‌ refers to an “empty font” in which all characters
are undefined. However in pTEX family, this is regarded as a Latin font and there is no
equivalent to “Japanese \nullfont ‌” by design. To elaborate, it is possible only when no
Japanese font is set globally, i.e. in iniTEX mode. Once a valid Japanese font is selected, there
is no way of selecting “Japanese \nullfont‌” to discard all characters.

Moreover, pTEX and friends assume that each Japanese font (except “Japanese \nullfont ‌”
in iniTEX mode) contains all valid Japanese character code. In other words, all Japanese fonts
share the same character set corresponding to the whole valid Japanese character code range.

8 Other strange beasts

8.1 Internal Japanese encodings

The ⟨character code⟩ is a union of the following two:

• Range of numbers between 0–255, and

• Numbers allowed for internal code of Japanese characters.

The former is the same as Knuthian TEX, but the latter is a problem.
In upTEX (default internal Unicode mode), the range is very simple:

𝑐 ≥ 0

However in pTEX, only limited encodings are available; Shift-JIS as ‌sjis‌ (default for TEX
Live Windows), or EUC-JP as ‌euc ‌ (otherwise). The range can be represented as follows:

𝑐 = 256𝑐1 + 𝑐2 (𝑐𝑖 ∈ 𝐶𝑖)

10A JFM is a modified version of the standard TFM. It can be created by (u)pPLtoTF, and decoded by (u)pTFtoPL.
Please also refer to the man pages of these programs (ppltotf.man1.pdf and ptftopl.man1.pdf).

23

where{
𝐶1 = 𝐶2 = {"a1, . . . , "fe} (euc),
𝐶1 = {"81, . . . , "9f} ∪ {"e0, . . . , "fc} , 𝐶2 = {"40, . . . , "7e} ∪ {"80, . . . , "fc} (sjis).

Therefore, the overall range of ⟨character code⟩ is not continuous. This is similar for “legacy-
encoding-compatibility mode” of upTEX.

To check whether an integer is a valid Japanese character code or not, you can use
\iffontchar‌ with 𝜀-pTEX 190709 or later (TEX Live 2020). Suppose a count register ‌\mycount‌
stores an integer, you can do it as follows:

\iffontchar\jfont\mycount
% \mycount is a valid Japanese character code

\fi

Here the primitive \jfont ‌ is used merely as a representative non-empty11 Japanese font
containing all valid Japanese character code (see 7.2).

Note that pTEX (not including upTEX with internal Unicode) does not support typesetting
characters outside JIS X 0208, which is a subset of accepted range of ⟨character code⟩ described
above. To check if an integer is in the range of JIS X 0208, you can use \toucs ‌ with pTEX p3.10.0
or later (TEX Live 2022):

\ifnum\toucs\mycount>0
% \mycount is in the range of JIS X 0208

\fi

The primitive \toucs‌ converts an integer value from an internal Japanese code to a Unicode.
This conversion is based on JIS-Unicode mapping table,12 and returns −1 if no mapping is
available for the input integer.

11This assumption is always safe after one of the standard pTEX formats (e.g. plain pTEX, pLATEX) is loaded.
12Defined in jisx0208.h of ptexenc library.

24

References

[1] TUG DVI Standards Working Group, The DVI Driver Standard, Level 0.
https://ctan.org/pkg/dvistd

[2] Victor Eĳkhout, TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.
https://www.eijkhout.net/texbytopic/texbytopic.html

25

https://ctan.org/pkg/dvistd
https://www.eijkhout.net/texbytopic/texbytopic.html

Index
Symbols

\accent . 16
\autospacing . 10
\autoxspacing 10
\char . 16
\chardef . 16, 18
\currentcjktoken 14
\currentspacingmode 13
\currentxspacingmode 13
\disablecjktoken 12
\disinhibitglue 11
\dtou . 11
\enablecjktoken 12
\epTeXinputencoding 13
\epTeXversion 13
\euc . 11
\expanded . 13
\font . 16
\fontdimen . 16
\fontname . 16
\forcecjktoken 12
\hfi . 13
\if . 16
\ifcat . 16
\ifdbox . 11
\ifddir . 11
\ifincsname . 13
\ifjfont . 11
\ifmbox . 11
\ifmdir . 11
\ifpdfprimitive 13
\iftbox . 11
\iftdir . 11
\iftfont . 11
\ifybox . 11
\ifydir . 11
\ignoreprimitiveerror 15

\inhibitglue . 11
\inhibitxspcode 11
\jcharwidowpenalty 11
\jfam . 11
\jfont . 11
\jis . 11
\kanjiskip . 11
\kansuji . 11
\kansujichar . 11
\kcatcode . 11
\kchar . 13
\kchardef 13, 18
\kuten . 11
\lastnodechar 13
\lastnodefont 13
\lastnodesubtype 13
\mathchardef . 18
\noautospacing 11
\noautoxspacing 11
\odelcode . 13
\odelimiter . 13
\omathaccent . 13
\omathchar . 13
\omathchardef 13, 18
\omathcode . 13
\oradical . 13
\pagefistretch 13
\partokencontext 15
\partokenname 15
\pdfcreationdate 13
\pdfelapsedtime 13
\pdffiledump . 13
\pdffilemoddate 13
\pdffilesize . 13
\pdflastxpos . 14
\pdflastypos . 14
\pdfmdfivesum 14

26

\pdfnormaldeviate 14
\pdfpageheight 14
\pdfpagewidth 14
\pdfprimitive 14
\pdfrandomseed 14
\pdfresettimer 14
\pdfsavepos . 14
\pdfsetrandomseed 14
\pdfshellescape 14
\pdfstrcmp . 14
\pdfuniformdeviate 14
\postbreakpenalty 11
\prebreakpenalty 11
\ptexfontname 11
\ptexlineendmode 11
\ptexminorversion 12
\ptexrevision 12
\ptextracingfonts 12
\ptexversion . 12
\readpapersizespecial 14
\scriptbaselineshiftfactor 12
\scriptscriptbaselineshiftfactor . . 12
\showmode . 12
\showstream . 15
\sjis . 12
\special . 15
\suppresslongerror 14
\suppressmathparerror 14
\suppressoutererror 14
\synctex . 14
\tate . 12
\tbaselineshift 12
\textbaselineshiftfactor 12
\tfont . 12
\tojis . 12
\toucs . 12
\tracingstacklevels 15
\Uchar . 14, 19
\Ucharcat 14, 19
\ucs . 12

\uptexrevision 13
\uptexversion 13
\vadjust . 14
\vfi . 14
\xkanjiskip . 12
\xspcode . 12
\ybaselineshift 12
\yoko . 12

F
fi . 14

H
H . 12

Q
Q . 12

Z
zh . 12
zw . 12

27

	I Brief introduction
	pTeX and its variants
	Eminent characteristics of pTeX family
	Compatibility with Western TeX
	LaTeX on pTeX/upTeX — pLaTeX/upLaTeX

	II Details
	Output format — DVI
	Extensions of DVI format in pTeX family
	DVI drivers with Japanese support
	Using dvipdfmx
	Using dvips

	Programming on pTeX family
	Number of registers and marks
	Number of math families
	Additional primitives and keywords
	pTeX additions (available in pTeX, upTeX, ε-pTeX, ε-upTeX)
	upTeX additions (available in upTeX, ε-upTeX)
	ε-pTeX additions (available in ε-pTeX, ε-upTeX)
	ε-upTeX additions (available in ε-upTeX)
	Other cross-engine additions

	Omitted primitives and unsupported features
	Behavior of Western TeX primitives
	Primitives with limitations in handling Japanese
	Primitives capable of handling Japanese

	Case study
	Detecting pTeX
	Detecting upTeX
	Defining large integer constants
	Creating a Japanese character token with a specified code

	Difference from pdfTeX in DVI mode
	Recommendation for file encoding
	Input handling
	Japanese tokens

	Basic introduction to Japanese typesetting
	Automatic insertion of glue and penalties
	Japanese fonts

	Other strange beasts
	Internal Japanese encodings

