The Italian support for babel

Claudio Beccari — email: claudio.beccari at gmail.com

v.1.5.01 — 2024/10/10

Contents 2.2 Support for etymological
hyphenation 8
1 The Italian language 1 2.2.1 Some history . .. 8
2.2.2 The current solu-
tion 9
2 The commented code 4 2.3 Facilities required by the
2.1 Traditionally labelled ISO 80000 regulations . . 11
enumerate environment . 6 2.4 Intelligent comma 12

1 The Italian language

Important notice: This language description file relies on functionalities pro-
vided by a modern TeX system distribution with pdfLaTeX working in extended
mode (eTeX commands available); it should perform correctly also with XeLaTeX
and LualLaTeX; tests have been made also with the latter programs, but it was
really tested in depth with babel and pdfLaTeX.

The file italian.dtx' defines all the required and some optional language-
specific macros for the Italian language.
The features of this language definition file are the following:

1. The Italian hyphenation is invoked, provided that the Italian hyphenation
pattern files were loaded when the specific format file was built. This is nor-
mally done with the initial installation of TEXLive, but other distributions
may not do so.

2. The language dependent infix words to be inserted by such commands as
\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

3. Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been
set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically
the \clubpenalty, and the \widowpenalty are set to rather high values
and \finalhyphendemerits is set to such a high value that hyphenation is
strongly discouraged between the last two lines of a paragraph.

IThe file described in this section has version number v.1.5.01 and was last revised on
2024/10/10. The original author is Maurizio Codogno. It was initially revised by Johannes
Braams and then completely rewritten by Claudio Beccari

inserts a compound word mark where hyphenation is legal;

it allows etymological hyphenation which is recommended

for technical terms, chemical names and the like; it does

not work if the next character is represented with a control

sequence or is an accented character.

"| the same as the above without the limitation on characters
represented with control sequences or accented ones.

"' inserts open quotes “

"< inserts open guillemets without trailing space.

"> inserts closed guillemets without leading space.

"/ allows hyphenation of both words connected with slash.

"— allows hyphenation of both words connected with a short

dash (trattino copulativo, in Italian)

Table 1: shorthands for the Italian language. These shorthands are available
only if command \setactivedoublequote is given after loading babel and before
\begin{document}.

4. Some language specific shorthands have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point at any word boundary
that the user chooses, provided it is not followed by an accented letter (very
unlikely in Italian, where compulsory accents fall only on the last and ending
vowel of a word, but it may take place with compound words that include
foreign roots), and "| when the desired break point falls before an accented
letter. As you can read in table 1, these shorthands are available only if they
get activated with \setactivedoublequote after loading babel but before
the \begin{docuemnt} statement. This is done in order to preserve the user
from package conflicts: if s/he wants to use these facilities s/he must remem-
ber that conflicts may arise unless active characters are deactivated; this can
be done with the babel command \shorthadsoff{"} (and reactivated with
\shorthandson{"}) when its wise to do so; conflicts have been reported
with package xypic and with TikZ, but the latter has its own library to
deactivate all active characters, not just the double quotes, the only Italian
language possibly activated character.

5. Some Italian compound words have a connecting short dash (a hyphen sign)
between them without any space between the component words and the
short dash; in this situation standard ETEX allows a line break only just
after the short dash; this may lead to paragraphs with protruding lines or
with ugly looking wide inter word spaces. If a break point is desired in
the second word, one may use a " sign just after the short dash; but if
a line break is required in the first word, then the "- shorthand comes in
handy; pay attention though, that if you use an en-dash or an em-dash (both
should not be used in Italian as compound words connectors, but...) then
the "- shorthand might impeach the —- or --- ligatures, thus producing an
unacceptable appearance.

6. The shorthand "" introduces the raised (English) opening double quotes; this
shorthand proves its usefulness when one reminds that the Italian keyboard
misses the back tick key, and the back tick on a Windows based platform

may be obtained only by pressing the Alt key while keying the numerical
code 0096 in the numeric keypad; very, very annoying!

7. The shorthands "< and "> insert the guillemets sometimes used also in Italian
typography; with the T1 font encoding the ligatures << and >> should insert
such signs directly, but not all the virtual fonts that claim to follow the
T1 font encoding actually contain the guillemets; with the OT1 encoding
the guillemets are not available and must be faked in some way. By using
the "< and "> shorthands (even with the T'1 encoding) the necessary tests
are performed and in case the guillemets are faked by means of the special
LaTeX math symbols. At the same time if OpenType fonts are being used
with XeLaTeX or LuaLaTeX, there are no problems with guillemets.

Remember, though, that at least since 2022 the default input encoding is
Unicode; therefore any platform has means to insert non T! encoded charac-
ters, and the necessary glyphs are taken from suitable other font encodings,
for example the Text Companion fonts with encoding TS1, without the need
to load the corresponding packages; on a Mac platform, for example, users
can input guillemets by striking option+\ and option+| respectively for «
and ». Notice that this specific file is typeset with pdflatex and the pre-
vious guillemets have been entered directly in the source file by means of «
and » while using the Latin Modern fonts.

8. Three specific commands \unit, \ped, and \ap are introduced so as to
enable the correct composition of technical mathematics according to the
ISO 80000 recommendations.

The definition of \unit takes place only at “begin document” so that it
is possible to verify if some other similar functionalities have already been
defined by other packages, such as units.sty or siunitx.sty. Command
\unit does not conflict with package SIunitx and it may be redefined by
means of its internals. Nevertheless command \unit is deactivated by de-
fault; users can activate it by entering the command \setISOcompliance
after loading the babel package and before the \begin{document} state-
ment. The above checks will enter into action even if this ISO compliance
is set, in order to avoid conflicts with the above named packages. The \ap
and \ped commands remain available because up to now no specific conflicts
have been reported.

9. Since in all languages different from English the decimal separator according
to the ISO regulations must be a comma?; since no language description file
nor the babel package itself provides for this functionality, a not so simple
intelligent comma definition is provided such that at least in mathematics it
behaves correctly. There are other packages that provide a similar function-
ality, for example icomma, ncccomma and decimalcomma; icomma, apparently
is not in conflict with dcolumn, but requires a space after the comma all the
times it plays the role of a punctuation mark; ncccomma and decimal comma
check if the next token is a digit, but they repeat up to ten tests every time
they meet a comma, irrespective from what it is followed by. I believe that

2Actually the Bureau International des Pois et Mésures allows also the point as a decimal
mark without mentioning any language, but recommends to follow the national typographical
traditions.

my solution is better than that provided by those packages; but I assume
that if users load one of those packages, they prefer to use their functional-
ities; in case one of those packages is loaded, this module excludes its own
intelligent comma functionality.

By default this functionality is turned off, therefore users should turn it on by
means of the \IntelligentComma command; they can turn it off by means
of \NoIntelligentComma. Please, read subsection 2.4 to see the various
situations where a mathematical comma may be used and how to overcome
the few cases when the macros of this file don’t behave as expected. The
section describes also some limitations when some conflicting packages are
being loaded. Apparently there are conflicts with package unicode-math
because active characters are defined with different codes. Therefore this
functionality is not available when typesetting with XeLaTeX or Lual.aTeX
unless decimalcomma is used, because it is conformant with unicode-math
settings.

10. Sometimes it is necessary to quote English texts; if such texts contain
some math, the \IntelligentComma must be deactivated; an english
environment (not available in babel but available in polyglossia, al-
though without the functionalities connected with English math typeset-
ting) is defined so that, besides locally setting the English language, issues a
\NoIntelligentComma command; nevertheless users are still responsible to
use the decimal point while typesetting English math.

11. In Italian legal documents it is common to tag list-items with the old fash-
ioned 21-letter Italian alphabet, that differs from the Latin one by the
omission of the letters ‘j’, ‘k’, ‘w’,'x’, and ‘y’. This applies for both up-
per and lower case tags. This feature is obtained by using the commands
\XXIletters and \XXVIletters that allow to switch back and forth between

21- and 26-letter tagging.

For this language a few shorthands have been defined, table 1, some of which
are introduced to overcome certain limitations of the Italian keyboard; in sec-
tion 2.4 there are other comments and hints in order to overcome some other
keyboard limitations.

Acknowlegements

It is my pleasure to acknowledge the contributions of Giovanni Dore, Davide Liessi,
Grazia Messineo, Giuseppe Toscano, who spotted some bugs or conflicts with other
packages, mainly amsmath and icomma, and with digits hidden inside macros or
control sequences representing implicit characters. Testing by real users with their
feedback is essential with open software such as the uncountable contributions to
the TEX system. Thank you very much.

2 The commented code

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

1 \LdfInit{italian}{captionsitalian}y

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@italian to see whether we have to do something
here.

2 \ifx\l@italian\@undefined
3 \@nopatterns{Italian}y
4 \adddialect\1@italianO\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

\captionsitalian The \captionsitalian macro defines all strings used in the various standard
document classes provided with ITEX.

5 \addto\captionsitalian{’

6 \def\prefacename{Prefazionely,

7 \def\refname{Riferimenti bibliograficilj,
8 \def\abstractname{Sommariol}}

9 \def\bibname{Bibliografial’

10 \def\chaptername{Capitolol}

11 \def\appendixname{Appendice}%

12 \def\contentsname{Indicel},

13 \def\listfigurename{Elenco delle figurel},
14 \def\listtablename{Elenco delle tabellel}%
15 \def\indexname{Indice analiticol},

16 \def\figurename{Figural

17 \def\tablename{Tabellal}

18 \def\partname{Partel},

19 \def\enclname{Allegatil}

20 \def\ccname{e~p.~c.}

21 \def\headtoname{Per}/,

22 \def\pagename{Pag.}/

23 \def\seename{vedil/,

24 \def\alsoname{vedi anchely,

25 \def\proofname{Dimostrazionel},

26 \def\glossaryname{Glossario}}

27 Yh

\dateitalian The \dateitalian macro redefines the command \today to produce Italian
dates. Normally in Italian day numbers a set as cardinal numbers; some peo-
ple prefer to use the ordinal number for day 1, and use the cardinal number
with the superscript masculine ‘o’ By default this functionality is turned off but
the user can select it with command \OrdinalDayNumberOn and deselect it with
\OrdinalDayNumberOff. The national official regulations require the cardinal
numbers only with fully numerical dates; they allow, without prescribing, roman
numbers and ordinal numbers only when the month name is spelled out in letters.

28 \newif\ifOrdinalDayNumber \OrdinalDayNumberfalse
29 \def\OrdinalDayNumberOn{\OrdinalDayNumbertrue}
30 \def\OrdinalDayNumberOff{\OrdinalDayNumberfalse}
31 \def\dateitalian{}

32 \def\today{\ifnum\number\day=\@ne

33 \ifOrdinalDayNumberi\ap{o}\elsel\fi
34 \else
35 \number\day

\italianhyphenmins

\extrasitalian
\noextrasitalian

36 \fi~\ifcase\month\or

37 gennaio\or febbraio\or marzo\or aprile\or maggio\or
38 giugno\or luglio\or agostolor settembre\or ottobre\or
39 novembre\or dicembre\filspace \number\year}l}/,

The Italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

40 \providehyphenmins{\CurrentOption}{\tw@\tw@}

Lower the chance that clubs or widows occur.

41 \addto\extrasitalian{’

42 \babel@savevariable\clubpenalty

43 \babel@savevariable\widowpenalty

44 \babel@savevariable\@clubpenalty

45 \clubpenalty3000\widowpenalty3000\@clubpenalty\clubpenalty}y,

Never ever break a word between the last two lines of a paragraph in Italian
texts.
46 \addto\extrasitalian{’

47 \babel@savevariable\finalhyphendemerits
48 \finalhyphendemerits50000000}7

In order to enable the hyphenation of words such as “nell’altezza” we give
the ’ a non-zero lower case code. When we do that, TEX finds the following
hyphenation points nel-1’al-tez-za instead of none. If this italian.1ldf is
used with babel when typesetting with xelatex or lualatex the apostrophe must
receive a unicode code point. Therefore we use a special test that was suggested
by Hironobu Yamashita® if this babel language option is used while using either
pdflatex or a Unicode aware typesetting engine.

49
50 \addto\extrasitalian{’
51 \lccode\string‘’=‘’ \ifcsname Umathcode\endcsname

52 \lccode\string"2019=\string"2019\fi}

53 \addto\noextrasitalian{,

54 \1lccode\string‘’=0 \ifcsname Umathcode\endcsname

55 \lccode\string"2019=0\fi}

56

Notice, though, that if you use babel when typesetting with lualatex or xelatex
using the fontspec usual commands and options may not lead to their proper
font alternative variants being used. Apparently the \babelfont command is
more performant in transmitting the proper information to fontspec. Of course
\babelfont must be used after the babel package has been invoked; while
there appears to be no loading precedence requirements when fontspec and
polyglossia are used.

2.1 Traditionally labelled enumerate environment

In some traditional texts, especially of legal nature, enumerations labelled with
lower or upper case letters use the reduced Latin alphabet that omits the so called
“non Italian letters”: j, k, w, x, and y.

3Thanks to Hironobu Yamashita <h.y.acetaminophen@gmail.com>

\XXIletters At the same time it is considered useful to have the possibility of switching back
\XXVIletters and forth from the 21-letter tagging and the 26-letter one. This requires a counter
that keeps the switching status (0 for 21 letters and 1 for 26 letters) and commands
\XXIletters and \XXVIletters to set the switch. Default is 26 letter tagging.
57 \newcount\it@lettering \it@lettering=\@ne
58 \newcommand*\XXIletters{\it@lettering=\zQ}
59 \newcommand*\XXVIletters{\it@lettering=\@ne}
60 \let\bbl@alph\@alph \let\bbl@Alph\@Alph
61 \addto\extrasitalian{\babel@savevariable\it@lettering
62 \let\@alph\it@alph \let\@Alph\it@Alph}
63 \addto\noextrasitalian{\let\@alph\bbl@alph\let\@Alph\bblGAlph}

To make this feasible it’s necessary to redefine the way the ITEX \@alph and
\@Alph work. Let’s make the alternate definitions:

64 \def\it@alph#1{Y

65 \ifcase\it@lettering

66 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor

67 1\or m\or n\or o\or p\or g\or r\or s\or t\or u\or v\or

68 z\else\@ctrerr\fi

69 \or

70 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor
71 j\or k\or 1\or m\or n\or o\or p\or g\or r\or s\or t\or u\lor
72 v\or w\or x\or y\or z\else\@ctrerr\fi

73 \£i}

74 \def\it@Alph#1{Y%

75 \ifcase\it@lettering

76 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or
77 L\or M\or N\or 0\or P\or Q\or R\or S\or T\or Ulor V\or

78 Z\else\@ctrerr\fi

79 \or

80 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or
81 J\or K\or L\or M\or N\or 0\or P\or Q\or R\or S\or T\or Ulor
82 V\or W\or X\or Y\or Z\else\@ctrerr\fi

83 \fil}/

In order to have a complete description, the situation is as such:

1. If you want to always use the 21-letter item tagging, simply use the
\XXIletters declaration just after \begin{document} and this setting re-
mains global (provided, of course, that the declaration is defined, i.e. that
the Italian language is the default one); in this way the setting is global while
you use the Italian language.

2. The XXVIletter command, issued outside any environment sets the 26-letter
item tagging in a global way; this setting is the default one.

3. If you specify \XXIletters just before entering an environment that uses
alphabetic tagging, this environment will be tagged with the 21-letter alpha-
bet, but this is a local setting, because the letter tagging takes place only
from the second level of enumeration.

4. The declarations \XXIletters and \XXVIletters let you switch back and
forth between the two kinds of tagging, but this kind of tagging, the 21-
letter one, is meaningful only in Italian and when you change language,
letter tagging reverts to the 26-letter one.

2.2 Support for etymological hyphenation

In Italian etymological hyphenation is desirable with technical terms, chemical
names, and the like.

2.2.1 Some history

In his article on Italian hyphenation [1] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shorthand " |, that was extensively
used in German and in many other languages, in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write in languages that use many special national characters; by
so doing they avoid the use of the \accent primitive which would be required with
the standard OT1 encoded cm fonts; with such OT1 encoded fonts the primitive
command \accent is such that hyphenation becomes almost impossible, in any
case strongly impeached.

In practice the OT1 encoded fonts are sufficient for modern English only; me-
dieval and renaissance English used accents. In modern English accents are not
used anymore, but it is frequent to use foreign names and, in reference lists, for-
eign authors‘s names and document titles written in foreign languages, so that
accents are necessary also with modern English. Therefore OT1 encoded fonts
should never be used in this XXI century. At he same time, as already remarked,
the Unicode encoding is become the standard one for all TEX input files, that
accented characters are not a problem any more.

The T1 encoded fonts contain a special character, named “compound word
mark”, that occupies slot 23 (or ’27 or "17) in the font scheme and may be
input with the sequence ~~W. Up to now, apparently, this special character has
never been used in a practical way for typesetting languages rich of compound
words; moreover it has never been inserted in the hyphenation pattern files of
any language. Beccari modified his pattern file ithyph.tex v4.8b for Italian
S0 as to contain five new patterns that involve "W, and he tried to give the
babel active character " a new shorthand definition, so as to allow the insertion
of the “compound word mark” in the proper place within any word where two
semantic fragments join up. With such facility for marking the compound word
boundaries, etymological hyphenation becomes possible even if the patterns know
nothing about etymology (but the user hopefully does!).

\it@cwm

\it@cwm

2.2.2 The current solution

Even this solution proved to be inconvenient on certain *NIX platforms, so Beccari
resorted to another approach that uses the babel active character " and relies on
the category code of the character that follows ".

Instead of a boolean switch we use a private counter so as to check at
\begin{document} if this facility has to be activated. The default value is zero;
anything different from zero means that the facility has to be activated; this is done
with command \setactivedoublequote to be issued before \begin{document}

84 \newcount\it@doublequoteactive \it@doublequoteactive=\z@

85 \def\setactivedoublequote{\it@doublequoteactive=\@ne}

86 {\catcode‘"=12 \global\let\it@doublequote"}

87 {\catcode‘"=13 \global\let\it@@dqgactive"}

88 \AtBeginDocument{%

89 \unless\ifnum\it@doublequoteactive=\z@

90 \initiate@active@char{"}/

91 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}/

The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.

92 \declare@shorthand{italian}{"}{%

93 \ifmmode

94 \def\it@next{’’}¥%

95 \else

96 \def\it@next{\futurelet\it@temp\it@cwm}’
97 \fi

98 \it@next

929 }%

100 \fi

The following statement must be conditionally executed after the above modifica-
tion of the \extraasitalian list; in facts at the “begin document” execution the
main language has already been set without the above modifications; therefore
nothing takes place unless the Italian main language is selected again with the
explicit command \selectlanguage without this trick the active double quotes
would remain inactive; of course \languagename contains the string italian if
this language was the main one; by testing this string, the suitable command may
be issued again with the new settings and the double quotes become really active.
Thanks to Davide Liessi for reporting this bug.

101 \ifdefstring{\languagename}{italian}{\selectlanguage{italian}}{\relax}
102 }%

The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made’ equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm
and if it is found to be a letter token (cathode=11), then it introduces a compound
word separator control sequence \it@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable zero space; otherwise the token is not
a letter; therefore it is tested against |1o: if so a compound word separator is

inserted and the | token is removed; otherwise two other tests are performed to
see if guillemets have to be inserted, and in case a suitable intelligent guillemet
macro is introduced that gobbles unwanted leading or trailing spaces; otherwise
a test is made to see if the next char is a slash character, and in case a special
discretionary break is inserted such as to maintain the slash while allowing the
hyphenation of both words before and after the slash; otherwise another test is
performed to see if another double quote sign follows: in this case a double open
quote mark is inserted; otherwise another test is made to see if a connecting dash
char follows, and in this case the dash char is substituted with a discretionary
break that allows hyphenation of both words before and after that dash char;
otherwise nothing is done.

The double quote shorthand for inserting a double open quote sign is useful for
people who are inputting Italian text by means of an Italian keyboard which unfor-
tunately misses the grave or backtick key. The shorthand "" becomes equivalent
to " for inserting raised open high double quotes.

103 \def\it@@cwm{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}y

104 \def\it@@slash{\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}/
105 \def\it@0trattino{\bbl@allowhyphens\discretionary{-}{}{-}\bbleallowhyphens}
106 \def\it@@ocap#1{\it@ocap}\def\it@0ccap#1{\it@ccap}’

107 \DeclareRobustCommand*{\it@cwm}{\let\it@@next\it@doublequote

108 \ifcat\noexpand\it@temp al

109 \def\it@@next{\it@@cwm}Y,

110 \else

111 \if\noexpand\it@temp \stringl¥

112 \def\it@@next{\it@@cwm\Q@gobble}},

113 \else

114 \if\noexpand\it@temp \string<y,

115 \def\it@@next{\it@Qocapl}’%

116 \else

117 \if\noexpand\it@temp \string>’

118 \def\it@@next{\it@0@ccapl}’%

119 \else

120 \if\noexpand\it@temp\string/%

121 \def\it@@next{\it@@slash\@gobblel}y,
122 \else

123 \ifcat\noexpand\it@temp\noexpand\it@@dqactive
124 \def\it@@next{"\@gobblel}

125 \else

126 \if\noexpand\it@temp\string-J

127 \def\it@@Cnext{\it@Qtrattino\@gobble}’
128 \fi

129 \fi

130 \fi

131 \fi

132 \fi

133 \fi

134 \fi

135 \it@@next1}%

By this definition of ", if one types macro"istruzione the possible break
points become ma-cro-istru-zio-ne, while without the " mark they would be ma-
croi-stru-zio-ne, according to the phonetic rules such that the macro prefix is not
taken as a unit.

10

A chemical name such as des"clor"fenir"amina"cloridrato is breakable as
des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-. ..

In other language description files a shorthand is defined so as to allow a
break point without actually inserting any hyphen sign; examples are given such
as entrada/salida; actually if one wants to allow a breakpoint after the slash, it
is much clearer to type \slash instead of / and IATEX does everything by itself;
here the shorthand "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shorthand works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \ ‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start with
an explicitly accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case
the special shorthand "| may be used that performs exactly as " normally does,
except that the | sign is removed from the token input list: kilo" |\"orsted gets
hyphenated as ki-lo-6r-sted; but also kilo" |érsted gets hyphenated correctly
as ki-lo-6r-sted. The "| macro is necessary because, even with a suitable
option specified to the inputenc package, the letter ‘6’ does not have category
code 11, as the ASCII letters do, because of the LICR (LaTeX Internal Character
Representation), i.e. the set of intermediate macros that have to be expanded in
order to fetch the proper glyph in the output font. Users should realise that with
pdfLaTeX all accented letters are LICR macros, not plain characters as they are
in xelatex and lualatex.

2.3 Facilities required by the ISO 80000 regulations

The ISO 80000* regulations require that units of measure are typeset in upright
font in both math and text, and that in text mode they are separated from the
numerical value of the measure with an unbreakable (thin) space. The com-
mand \unit that was defined for achieving this goal happened to conflict with
the homonymous command defined by the units.sty package; we therefore need
to test if that package has already been loaded so as to avoid conflicts; we as-
sume that if users load that package, they want to use that package facilities and
command syntax.

Actually there are around several packages that help to typeset units of
measure in the proper way; besides units.sty there are also SIunits and
siunitx.sty; the latter nowadays offers the best performances in this domain.

Therefore we keep controlling the possibility that units.sty has been loaded

4When this file was initially written, only the ISO 3/XI regulations existed and it were possible
to consult them. In 2009 the new regulations ISO 80000 were published; they were divided in
several “parts” to be sold individually; they were translated in other languages, and in Europe
and Italy they had prefixes such as EN or UNI; in general the title numerical part remained the
same. They are extremely expensive for a private retired citizen, who therefore has access to
only a small part of such regulations. Admittedly they are not so different from the previous
edition, but there are several new regulated items, that were not present in the previous edition.
An important change is their title: the previous edition was Mathematical symbols and units for
physics and technology while now it is Mathematical symbols and units for natural sciences and
technology.

11

\unit

\ap

\ped
\setISOcompliance

just for backwards compatibility, but we must do the same with SIunits and
siunitx.sty. In order to avoid the necessity o loading packages in a certain
order, we delay the test until \begin{document}.

The same ISO regulations require also that superscripts and subscripts (apices
and pedices) are typeset in upright font, not in math italics, when they represent
“adjectives” or appositions to mathematical or physical symbols that do not rep-
resent countable or measurable entities: for example, Vi .x or Vins for a maximum
voltage or a root mean square voltage, compared to V; or Vp as the i-th voltage
in a set, or a voltage that depends on the thermodynamic temperature T'. See [2]
for a complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical symbola,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1* or the old fashioned obsolete abbreviation F! for Fratelli
in company names (compare with “Bros.” for Brothers in American English); text
subscripts are mostly used in logos.

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped
as robust ones. This facility is deactivated by default according to the contents
of an internal counter and the setting of the activation command by the user;
commands for apices and pedices remain available in any case.

136 \newcount\it@ISOcompliance \it@ISOcompliance=\z@

137 \def\setISOcompliance{\it@ISOcompliance=\@ne}

138 \AtBeginDocument{},

139 \unless\ifnum\it@ISOcompliance=\z@,

140 \def\activate@it@unit{\DeclareRobustCommand*{\bbl@it@unit} [1]{%
141 \textormath{\, \textup{##1}}{\, \mathrm{##1}}}}

142 \@ifpackageloaded{units}{}{\@ifpackageloaded{siunitx}{}{%

143 \@ifpackageloaded{SIunits}{}{%

144 \activate@it@unit\addto\extrasitalian{’

145 \babel@save\unit\let\unit\bbl@itQunitl}y

146 }}}Yh

147 \ifcsstring{bbl@main@language}{italian}{\selectlanguage{italian}}{}%
148 \fi}

149 \DeclareRobustCommand*{\bbl@it@apl}[1]{%

150 \textormath{#1}{ " {\mathrm{#1}}}}/%

151 \DeclareRobustCommand*{\bbl@it@ped} [1]{%

152 \textormath{$_{\mbox{\fontsize\sf@size\z@

153 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros
already have a different meaning before entering in Italian mode typesetting, we
first save their meanings so as to restore them on exit.

154 \addto\extrasitalian{,

155 \babel@save\ap\let\ap\bbl@it@ap

156 \babel@save\ped\let\ped\bbl@it@ped

157 }h

2.4 Intelligent comma

We need to perform some tests that require some smart control-sequence handling;
therefore we call the etoolbox package that allows us more testing functionality.

12

\IntelligentComma
\NoIntellgentComma

There are no problems with this package that can be invoked also by other ones
before or after babel is called; the \RequirePackage mechanism is sufficiently
smart to avoid reloading the same package more than once. But we have to delay
this call, because italian.1df is being read while processing the options passed
to babel, and while options are being scanned and processed it is forbidden to
load packages; we delay it at the end of processing the babel package itself.

158 \AtEndOfPackage{\RequirePackage{etoolbox}}

This feature is optional, in the sense that it is necessary to issue a specific
command to activate it; actually this functionality is activated or, respec-
tively, deactivated with the self explanatory commands \IntelligentComma and
\NoIntelligentComma. They operate by setting or resetting the comma sign as
an active character in mathematics. We defer the definition of the commands that
turn on and off the intelligent comma feature at the end of the preamble, so as to
avoid possible conflicts with other packages. It has already been pointed out that
this procedure for setting up the active comma to behave intelligently in math
mode, conflicts with the dcolumn package; therefore we assume these commands
are defined when the final user typesets a document, but they will be possibly
defined only at the end of the preamble when it will be known if the dcolumn
package has been loaded. We do the same action if packages icomma. ncccomma
or decimalcomma have been loaded, since it is assumed that the user wants to use
their functionality, not the functionality defined in this file.

We need a command to set the comma as an active character only in math
mode; the special \mathcode that classifies an active character in math is the
hexadecimal value "8000. By default we set the punctuation comma, but we let
\IntelligentComma and \NoIntelligentComma to \relax so that their use is
neutralised when one of the named packages is loaded. In this way all known con-
flicts are avoided; should users find out other conflicts, they are kindly requested
to notify the maintainer.

159 \AtEndOfPackage{%

160 %

161 \AtEndPreamble{%

162 \newcommand*\IntelligentComma{\mathcode‘\,=\string"8000}7%
163 \newcommand*\NoIntelligentComma{\mathcode‘\,=\string"613B}}
164 \@ifpackageloaded{icommal}{’,

165 \let\IntelligentComma\relax

166 \let\NoIntelligentComma\relax}{/

167 \@ifpackageloaded{ncccomma}{%

168 \let\IntelligentComma\relax

169 \let\NoIntelligentComma\relax}{/

170 \@ifpackageloaded{dcolumn}{%

171 \let\IntelligentComma\relax

172 \let\NoIntelligentComma\relax}{/
173 \ProvideDocumentEnvironment{english}{1}7
174 {\begin{otherlanguage}{english}/,
175 \NoIntelligentCommal}’

176 {\end{otherlanguage}1}’

177 33}

178 }}

These commands are defined only in the babel support for the Italian language
(this file).

13

\virgola We need two kinds of commas, one that is a decimal separator/mark, and a second
\virgoladecimale one that is a punctuation mark.

179 \DeclareMathSymbol{\virgoladecimale}{\mathord}{letters}{"3B}
180 \DeclareMathSymbol{\virgola}{\mathpunct}{letters}{"3B}

Math comma activation may be done only after the preamble has been com-
pleted, that is after the \begin{document} statement has been completely exe-
cuted. Now we must give a definition to the active comma.

181 {\catcode ‘,\active \protected\gdef,’
182 {\futurelet\tempB\it@tempcomma}}

In facts the above macro lets a temporary control sequence \tempB be an alias
of the token that immediately follows \?7; \tempB then behaves as an implicit
character if that token is a single token, even a space (category code 10) or a
closed brace category code 3, or an alias of a generic control sequence otherwise.

It is important to remark that \? must be a command that does not require
arguments; this makes it robust when it is followed by other tokens that may play
special réles within the arguments of other macros or environments. Matter of
fact the first version 1.3 of this file did accept an argument; and the result was
that the active comma would “gobble” the & in vertical math alignments and very
nasty errors took place, especially within the amsmath defined ones. This macro
\? without arguments does not do any harm to the AMS environments and a
part of the actual intelligent comma work is going to be executed by other macros
that accept an argument in a safe way. Since the intelligent comma is going to
be used only in math mode, it must be intelligent enough to avoid problems with
commands used in math mode; in particular with commands that operate on
digits, such as \bar and \overline

At this point the situation may become complicated: the comma character
in the input file may be followed by a real digit, by an analphabetic character of
category 12 (other character), by an implicit digit, by a macro defined to be a digit,
by a macro that is not defined to be a digit, by a special character (for example
a closed brace, an alignment command, and so on); therefore it is necessary to
distinguish all these situations; remember that an implicit digit cannot be used as
a real digit, and a macro gets expanded when used within any \if clause, except
\ifx, or if it is prefixed with \noexpand. The tests that are going to be made
hereafter are therefore of different kinds, according to this scheme:

o we test if the next character is a space (category code 10) and chose at once
the punctuation comma;

o we test the next character is a closed brace (category code 3) and chose
immediately the decimal comma, assuming we are in a situation such as
$2{,}6198, just for backwards compatibility; such wrapping of the decimal
comma was common when no intelligent comma macros or packages were
available;

e we have to check if the next token is bar or \overline (or a \periodo,
a new command added by this language description file); we assume that
these commands are used to mark the digits of the periodic component of
the fractional part of a rational number. May be this assumption is not
always correct, but it should be the most common situation when one of
these commands is immediately preceded by a comma.

14

« the \tempB category is tested against an asterisk to see if it is of category 12;
this is true if the token is a real digit, or an implicit digit, or an analphabetic
character;

— an implicit digit might be represented by a control sequence; so we
check this feature;

— if that \tempB is a macro, we have to test its nature of a digit by testing
if it represents one of the ten digits; of course we strongly discourage
to let some control sequences be an alias of one or more digits;

— in all other cases, as it has category code 12, it is an analphabetic
character.

o otherwise the \tempB is a special character or a command,;

e a test is made to see if it is a macro; in this case we check if has been defined
to be a digit (discouraged, as remarked above);

« if it is not a macro, it must be some other kind of token for example another
special character.

Notice that if the token is a macro, we do not test if it is defined to be a
single digit or a string made up of several digits and/or other charters. If the
macro represents one digit the test is correct, otherwise unexpected results may
take place. For this reason it is always better to prefix any macro with a space,
whatever its definition might be; if the macro represents a parameter defined to
have a numeric value in the range 0-9, then it may represent the fractional part of
a (single digit) decimal value, and it is correct to avoid prefixing it with a space;
but the users are warned not to make use of numeric strings in the definition of
parameters, unless they know exactly what they are doing.

Users, if the intelligent comma is active, may use a balanced brace comma
group {,} but we discourage it for new documents; in any case such a group
works fine if the intelligent comma is not active, for example because a stretch of
text in a different language (except English) is being typeset.

So first we test if the comma must act intelligently; we have to perform delicate
tests; as a last resource this task is demanded to another macro with arguments:
\@math@@comma. In order to make the various tests robust we have to resort to the
usual trick of the auxiliary macros \@firstoftwo and \@secondoftwo and various
\expandafter commands so as to be sure that each \if clause is correctly exited
without leaving any trace behind. Similarly the \ifcsequal compares two control
sequence names and compares the equality of their meanings, just as as \ifx does,
but they are robust in the sense that they don’t leave any trace after execution:
the third argument code is executed if the test is true, and the fourth one if it is
false.

Notice that the tests with macros \periodo, \bar, and \overline are used to
verify if the fractional part after the comma sets a line over its periodic component;
users are suggested to use the \periodo macro that is capable of expanding its
argument even if it is a macro (that contains digits); for example the division by 7
yields periods that contains the periodic sequence 142857, starting with any digit
of this sequence: 1/7 = 0,142857, 2/7 = 0,285714, 3/7 = 0,428571,.... Users
might define six macros with mnemonic names (for example, \oneoverseven,
\twooverseven,...) that contain the six digits in the proper order, and use such

15

macros instead of the digit string, saving themselves possible typos; everybody
knows that typos are not allowed in math. In any case these macros should be
used as arguments of periodo, otherwise the decimal mark test fails: i.e., don’t
enter $1/7=0,\oneoverseven$ but $1/7=0, \periodo{\oneoverseven}$

The \ifdigit macros that is defined hereafter is a test made by using a I TEX
kernel internal procedure that compares its only argument with one of the ten
digits at a time; if the argument is a digit choses the decimal comma, otherwise
the punctuation one; the test is similar but not identical to the one performed by
the ncccomma package; on the opposite the test against a space is performed with
a test similar but not identical to the one done by the icomma package; all other
tests are specific to this package.
183
184 \DeclareRobustCommand*\periodo [1]{\overline{#1}}
185
186 \newcommand\ifdigit [1]{\def\tempC{\virgolal}y,
187 \@tfor\@Cifra:=0123456789\do{%
188 \if\@Cifra #1\relax\def\tempC{\virgoladecimalel}y,
189 \@break@tfor\fi}\tempC}
190
191 \DeclareRobustCommand*\it@tempcomma{’
192 \ifx\tempB\@sptoken

193 \expandafter\@firstoftwo

194 \else

195 \expandafter\@secondoftwo

196 \fi

197 {\virgolal’

198 {%

199 \ifcat\noexpand\tempB\noexpand\egroup

200 \expandafter\@firstoftwo

201 \else

202 \expandafter\@secondoftwo

203 \fi

204 {\virgoladecimale}},

205 {k

206 \ifcsequal{tempB}{periodo}{\virgoladecimale}
207 v

208 \ifcsequal{tempB}{bar}{\virgoladecimale}’
209 Tk

210 \ifcsequal{tempB}{overline}{\virgoladecimalel}y,
211 v

212 \ifcat\noexpand\tempB*/,

213 \expandafter\@firstoftwo

214 \else

215 \expandafter\@secondoftwo

216 \fi

217 {/% \tempB is of category 12; test if it is a digit
218 \ifdigit{\tempB}/

219 Yh

220 {/, test if tempB is a macro

221 \ifcat\noexpand\tempB\noexpand\relax
222 \expandafter\@firstoftwo

223 \else

224 \expandafter\@secondoftwo

16

225 \fi

226 {\virgolal}), \tempB actually is a macro
227 {\@Gmath@@comma}’ \tempB is an alias
228 Yh

229 Yh

230 Yh

231 %

232 Yh

233}

234 }

235

In particular this macro starts testing if it is an alias for a space token (category
10); then tests if it is an alias of \periodo, or \bar or \overline and if it is, the
decimal mark should be a decimal comma (see below); otherwise other tests are
carried on. This macro then tests if the argument has category code 12, i.e. “other
character”, not a letter, nor other special signs, as, for example, & In case the
category code is not 12, the comma must act as a punctuation mark; but if its
category cose is 12, it might be a digit, or another character of category code 12,
for example an asterisk; so we have to test its digit nature; the simplest way that
we found to test if a token is a digit, is to test if its char code lays within the range
delimited by the char codes of ‘0’ (zero) and ‘9.

The typesetting engines give the back tick, ¢, the property that when a number
is required, it yields the char code if the following token is an explicit character
or a macro argument number; this is why we can’t use the temporary implicit
token we just tested, but we must examine the first non blank token that fol-
lows the \@math@@comma macro. Only if the token is a digit, we use the decimal
comma, otherwise the punctuation mark. This is therefore the definition of the
\@math@@comma macro which is not that simple, although the testing macros have
clear meanings:

236 \DeclareRobustCommand*\@math@Qcomma[1]{} argument IS of category 12
237 \ifcsundef{\expandafter\@gobble\string #11}/
238 {) test if it is a digit

239 \ifnumless{‘#1}{‘0}{\virgolal}’

240 {\ifnumgreater{‘#1}{‘9}{\virgolal}y

241 {\virgoladecimale}}%

242 Yh

243 {J) it’s an implicit character of category 12
244 \let\@tempVirgola\virgola

245 \@tfor\@tempCifra:=0123456789\do{%

246 \expandafter\if\@tempCifra#1\let\@tempVirgola
247 \virgoladecimale

248 \@break@tfor\fi}\@tempVirgola

249 }#1}%

The service macros \ifcsundef, \ifnumless, and \ifnumgreater are provided
by the etoolbox package, that shall be input at most at the end of the babel
package processing; therefore we must delay the code at “end preamble” time,
since only at that time it will be known if the main language is Italian, or another
one.

This intelligent comma definition is pretty intelligent, but it requires some
kind of information from the context; this context does not give enough bits of
information to this ‘intelligence’ in just one case: when the comma plays the

17

role of a serial separator in expressions such as i = 1,2,3,...,00, entered as
$i=1,.2,,3,\dots,\infty$. Only in this case the comma must be followed by
an explicit space; should this space be absent the macro takes the following non
blank token as a digit, and since actually it is a digit, it would use the decimal
comma, which is wrong. The control sequences \dots and \infty are tested to
see if they are undefined, and since they are defined and do not represent digits,
the macro inserts a punctuation mark, instead of a decimal mark.

Notice that this macro may appear to be inconsistent with the contents of
a language description file. We don’t agree: matter of facts even math is part
of typesetting a text in a certain language. Does this set of macros influence
other language description files? May be, but I think that the clever use of macros
\IntelligentComma and \NoIntellingentComma may solve any interference; they
allow to use the proper mark even if the Italian language is not the main language,
the important point is to turn the switch on and/or off. By default it is off, so there
should not be any interference even with legacy documents typeset in Italian. This
is why above we defined the environment english that sets \NeIntelligentComma
at the beginning of its argument, so as to be sure that where the decimal point is
the decimal mark, no active commas are are in force.

Notice that there are other packages that contain facilities for using the decimal
comma as the correct decimal mark; for example STunitx defines a command \num
that not only correctly spaces the decimal separator, but also can change the input
glyph with another one, so that it is possible to copy numbers from texts in English
(with the decimal point) and paste them into the argument of the \num macro in an
Italian document where the decimal point is changed automatically into a decimal
comma. Of course SIunitx does much more than that; if it’s being loaded, then
the default \NoIntelligentComma declaration disables the functionality defined
in this language description file and the users can do what they desire with the
many functionalities of that package.

Apparently a conflict with the active comma arises with the D column defined
by the dcolomn package. Disabling the “Italian” active comma allows the D
column operate correctly. Thanks to Giuseppe Toscano for telling me about this
conflict.

Obsolete arrangements

In the following sections we describe some features that nowadays should be con-
sidered totally obsolete. We speak about OT1 encoded fonts (who uses them
today?); about the limitations of the Italian keyboard, that with modern operat-
ing systems may be overridden easily; with French double quotes, that are being
used also in Italian, although without any space separating them from their con-
tents (as it happen in French typography); and so on. Consider that this language
description file initial versions are more than 30 years old, and in this long stretch
of time many legacy documents were created; the following sections describe what
had to be done years ago and the information may be useful to upgrade those
documents

Accents

Most of the other language description files introduce a number of shorthands for
inserting accents and other language specific diacritical marks in a more comfort-

18

able way compared to the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that to our best knowledge no convenient shorthands have been developed; the
reason lies in the fact that the Italian keyboard lacks the grave accent (also known
as “backtick”), which is compulsory on all accented vowels, but, on the opposite,
it contains the keys with all the accented lowercase vowels a, ¢, é, 1, 0, 11, bot no
uppercase accented vowels are directly available from the keyboard; the keyboard
lacks also the tie ~ (tilde) key, while the curly braces require pressing three keys
simultaneously. On the opposite the Italian keyboard has a key for the ‘¢’ letter
that is not used in Italian.

The best solution Italians have found so far is to use a smart editor that accepts
shorthand definitions such that: for example, by striking " (one gets directly {
on the screen and the same sign is saved into the .tex file. The same smart
editor should be capable of translating the accented characters into the standard
TEX sequences when writing a file to disk (for the sake of file portability), and to
transform the standard TEX sequences into the corresponding signs when loading
a .tex file from disk to working memory. Some such smart editors do exist and
can be downloaded from the CTAN archives.

For what concerns the missing back tick key, which is used also for inputting
the open quotes, it must be noticed that the shorthand "" described above com-
pletely solves the problem for double raised open quotes; besides this, a single
open raised quote may be input with the little known ETEX kernel command \1q;
according to the traditions of particular publishing houses, since there are no com-
pulsory regulations on the matter, the guillemets may be used; in this case the
T1 font encoding solves the problem by means of its built in ligatures << and >>;
such ligatures are also available when using OpenType fonts with XeLaTeX and
LualLaTeX, provided they are loaded with the option Ligatures = TeX. But...

Caporali or French double quotes

Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because users
prefer employing the old deprecated OT1 encoding, or because they selected a
font set that does not completely comply with the T1 font encoding; some virtual
fonts, for example, are supposed to implement the double Cork font encoding but
actually they miss some glyphs; one such virtual font set was given by the ae
virtual fonts, because they were supposed to implement such double font encoding
by using virtual fonts that mapped the OT1 encoded CM fonts to a T1 font scheme;
Such fonts are not distributed any more with any TEX system installation, there-
fore if some vintage source file uses them the correction is to replace them by the
Latin Modern ones, that are vector fonts and cannot be used with the plain latex
engine.

The type 1 PostScript version of the CM fonts do exist, therefore one believes
to be able of using them with pdfLaTeX; but since the CM fonts do not contain the
guillemets, neither the AE ones do. Since guillemets (in Italian caporali) do not
exist in any OT1 encoded cm Latin font, their glyphs must be substituted with
something else that fakes them. Again the best solution is to correct the preamble
of such vintage source files by replacing the call to those old not available fonts
with the vector Latin Modern fonts.

In the previous versions of this language description file the absent guillemets

19

were faked with other fonts, by taking example from the solution the French had
found for their language description file; they would get suitable guillemets from
the Cyrillic fonts; this solution was good in most cases, except when the “slides
fonts” were used, because there is no Cyryllic slides font around.

This might seem a negligible “feature” because the modern classes or exten-
sion modules to produce slides mostly avoid the “old” fonts for slides created by
Leslie Lamport when he made available the macro package LaTeX to the TeX
community.

Since the renewed slide fonts were created by extending the Leslie Lamport’s
one to the T1 encoding, the Text Companion fonts, and the most frequent “reg-
ular” and AMS math fonts with the same graphic style and excellent legibility
(LXfonts), we thought that this feature is not so negligible. It’s true that nowa-
days nobody should use the old OT1 encoding when typesetting in any language,
English included, because independently from the document main language, it is
very frequent to quote text in other languages, or to type foreign proper names
of persons or places; nevertheless having in mind a minimum of backwards com-
patibility and hoping that the deliberate use of OT1 encoding (still necessary to
typeset mathematics) is being abandoned, we decided to simplify the previous
handling of guillemets.

Therefore here we will test at “begin document” only if the OT1 encoding is
the default one, while if the T1 encoding is the default one, that the font collection
AE is not being used; should it be the case, we will substitute the guillemets with
the LaTeX special symbols reduced to script size, and we will not try to fake
the guillemets with better solutions; evidently if OpenType fonts are being used,
nothing is done; so the tests that follow concern only typesetting old documents
or the lack of a wiser choice of fonts and their encodings; an info message is issued
and output to the .log file.

\LtxSymbCaporali First the macro \LtxSymbCaporali is defined so as to assign a default definition
\it@ocap of the faked guillemets: each one of these macro sets actually redefines the control
\it@ccap sequences \it@ocap and \it@ccap that are the ones effectively activated by the

shorthands "< and ">.

By default the caporali glyphs are taken from T1-encoded fonts; at the end of
the preamble some tests are performed to control if the default fonts contain such
glyphs, and in case a different font is chosen.

250 \def\LtxSymbCaporali{/
251 \DeclareRobustCommand*{\it@ocap}{\mbox{%

252 \fontencoding{U}\fontfamily{lasy}\selectfont (\kern-0.20em(}%
253 \ignorespaces}¥%

254 \DeclareRobustCommand*{\it@ccap}{\@killglue

255 \mbox{\fontencoding{U}\fontfamily{lasy}\selectfont)?,

256 \kern-0.20em) }}%

257

258 %

259 \def\T@unoCaporali{’ default setting

260 \DeclareRobustCommand*{\it@ocap}{<<\ignorespaces}/
261 \DeclareRobustCommand*{\it@ccap}{\@killglue >>1}}},
262 \T@unoCaporali

Such macros make available the internal commands \it@ocap and \it@ccap; they
become available when users specify in their preambles either the \LtxSymbCaporali

20

or in a personal . sty file the \T@unoCaporali command. The former gets the real
glyphs from the lasy font and deletes any space after the open guillemets and be-
fore the closed ones, as it si necessary in Italian typography; the latter one uses
the special ligature of two pairs of angle brackets while deleting any space as the
former commands do. Both sets of commands are deprecated, unless vintage files
have to be recompiled. Nowadays (2024) with the default UTF-8 encoding and
T1 encoded fonts, glyphs « and » may be directly entered.

Nevertheless a macro for choosing where to get glyphs for real guillemets is
offered; the syntax is the following:

\CaporaliFrom{{encoding)} {family)}% {{open guill. slot)}{{close guill. slot)}

where (encoding) and (family) identify the font family name of that particular
encoding from which to get the missing guillemets; (open guill. slot) and {close
guill. slot) are the (preferably) decimal slot addresses of the opening and closing
guillemets the user wants to use. For example if the T1l-encoded Latin Modern
fonts are desired, the specific command should be

\CaporaliFrom{T1}{1mr}{19}{20%}
or
\CaporaliFrom{LGR}{Artemisia}{123}{125}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly, for example, with pdflatex.

263 \def \CaporaliFrom#1#2#3#4{%

264 \DeclareFontEncoding{#1}{}{}/

265 %

266 \DeclareTextCommand{\it@ocap}{T1}{%

267 {\fontencoding{#1}\fontfamily{#21}

268 \selectfont\char#3\ignorespaces}}y,

269 %

270 \DeclareTextCommand{\it@ccap}{T1}{\@kilglue

271 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}1}}
272 }

Notice that the above macro is strictly tied to the T1 encoding; it won’t do any-
thing if the default encoding is not the T1 one. Therefore if the AE font collection
is being used it would be a good idea to issue the commands shown above as an
example in order to get the proper guillemets®.

Then we set a boolean variable and test the default family; if such family has
a name that starts with the letters “ae” then we have no built in guillemets; of
course if the AE font family is chosen after the babel package is loaded, the test
does not perform as required.
273 \def\getQae#1#2#3!{\def\bblOae{#1#2}}%
274 \def\Q@ifT@one@noCap{\expandafter\get@ae\f@family!%
275 \def\bbl@temp{ae}\ifx\bbl@ae\bblOtemp\expandafter\@firstoftwo\else
276 \expandafter\@secondoftwo\fi}},

5 Actually the AE fonts should not be used at all; the same results, are obtained by using the
Latin Modern ones, that are not virtual fonts and contain the whole T1 font scheme. Nevertheless
the faked glyphs are not so bad, so the solution we restored from old versions of the language
description file is acceptable

21

Now we can set some real settings; first we start by testing the encoding; if the
encoding is OT1 we set the faked caporali with LaTeX symbols and issue a warning;
then if the font family is the AE one we set again the faked caporali and issue
another warning®; otherwise we set the commands valid for the T1 encoding.

277 \AtBeginDocument{\normalfont\def\bbl@temp{0T11}/,
278 \ifx\cf@encoding\bbl@temp

279 \LtxSymbCaporali

280 \GenericWarning{italian.ldf\space}{%

281 File italian.ldf warning: \MessageBreak\space\space\space
282 With OT1 encoding guillemets are poorly faked\MessageBreak
283 \space\space\space

284 Use T1 encoding\MessageBreak\space\space\space

285 or specify a font with command 7%

286 \string\CaporaliFrom\MessageBreak\space\space\space

287 See the documentation concerning the babel-italian

288 typesetting\MessageBreak\space\spacel,

289 \else

290 \ifx\cf@encoding\bbl@t@one

291 \@ifTQ@one@noCap{’

292 \LtxSymbCaporali

293 \GenericWarning{italian.1ldf\space}{%

294 File italian.ldf warning: \MessageBreak\space\space
295 \space

296 The AE font collection does not contain the guillemets
297 \MessageBreak\space\space\space

298 Use the Latin Modern font collection instead

299 \MessageBreak\space}

300 Y

301 {\T@unoCaporali}\fi

302 \fi

303 }

Finishing commands

The \1df@finish macro takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

304 \1df@finish{italian}}

References

[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,
TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO 31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

[3] Beccari C., “Regole e consigli per comporre la matematica della fisica e delle
scienze sperimentali secondo le norme ISO”, (2023); PDF document in Italian

6Notice that it is impossible to check if the slots 19 and 20 of the AE fonts are defined by
means of the eTeX macro \iffontchar, because they are actually defined as black squares!

22

to be downloaded from the Documentation section of the Italian TUG site
www.guitex.org.

23

www.guitex.org

	Contents
	1 The Italian language
	2 The commented code
	2.1 Traditionally labelled enumerate environment
	2.2 Support for etymological hyphenation
	2.2.1 Some history
	2.2.2 The current solution

	2.3 Facilities required by the ISO 80000 regulations
	2.4 Intelligent comma

	References

