
fontwrap

Michiel Kamermans
www.nihongoresources.com

June 7, 2008

1 What is fontwrap?
fontwrap is a PerlTEX package for automatically adding font tags in mul-
tilingual documents. More specifically, it adds font tags between unicode
block changes in documents that are encoded in UTF8 unicode (which is,
thankfully these days, preĴy much any new multilingual document).

The whole reason most of us use TEX or LATEX or the newer LATEX 2ε or
whichever flavour of TEX you like to use, is because it lets you write your
document with a minimal amount of placing control codes inside the ac-
tual text you're writing. Most of the time, your text will just be text, and
you'll be damned if you have to add all kinds of special codes because that
will make the source file less readable. However, when you're working in
a multilingual TEX document, you might find you're wrapping bits of "for-
eign" text in with macros that ensure the right font or other visual styling
makes its way to the final document. fontwrap was designed to remove
the need for that practice, so that your document stays readable.

If you look closely at the example paragraph in block 1, you will see that
all the different languages use a different font. The English font is Palatino
Linotype, the font for Japanese isUmeMincho, the font for Chinese is SimHei,
for Korean BatangChe, for Arabic Traditional Arabic, Cyrillic uses Dotum,

1

Even though I am writing this on an English operating system in an English text
editor, I can input quite a lot of different language. I can do this, because of the
power of unicode: English, 日本語, 中國話, 한글, 조선글, الْعَرَبيّة , Русский
язык, Εӥηνικά, Tiếng Việt, ภาษาไทย , עִבְרִית and a whole scala of other languages all
use different scripts, which all have their own place in the unicode 5.0 world.

block 1: A paragraph using many different unicode blocks

Greek uses Arno Pro, Thai uses Cordia New, and for Hebrew I used Times
New Roman. For those wondering, Vietnamese actually uses the Latin and
Latin Extended Additional blocks, so it uses the same Palatino Linotype font
as the English text.

In normal TEX , geĴing all the languages marked with the right fonts,
with all the commas and spaces using the same font as the English text,
require a mad amount of font markup, but with fontwrap this requires no
markup beyond the 'fontwrap' command: all I had to do to get the text to
use all these different fonts is tell fontwrap which fonts to use for which
blocks in my frontmaĴer, and wrap write the paragraph exactly as you see
it in this pdf file into my .tex — wrapping it in the \fontwrap{} macro then
takes care of all my fonty needs.

2 GeĴing fontwrap working for your document
The basic procedure for geĴing fontwrap to work in your document is re-
ally quite straightforward. First, we must make sure to actually use it:

\usepackage{autfont}

The rest of the code comes in the document body itself. Before we do
anything with fontwrap, it is usually a good idea to tell it which fonts to
use for which unicode blocks. There is one catch-all command to do this,
which sets the same font for every block, and several \set commands for
both single blocks, and informal multi-block groups. In this document, for
instance, I use this:

% set up fontwrap's default font.
\setfontwrapdefaultfont{Bitstream Cyberbit}

2

% set specific unicode groups
\setunicodegroupfont{Arabic}{Traditional Arabic}
\setunicodegroupfont{Latin}{Palatino Linotype}
\setunicodegroupfont{Japanese}{Ume Mincho}
\setunicodegroupfont{Chinese}{SimHei}
\setunicodegroupfont{Korean}{BatangChe}
\setunicodegroupfont{Cyrillic}{Dotum}
\setunicodegroupfont{Greek}{Arno Pro}

% thai and hebrew have no group, just a block
\setunicodeblockfont{Thai}{Cordia New}
\setunicodeblockfont{Hebrew}{Times New Roman}

Of course, you can set as few or as many as you like, or more impor-
tantly as is appropriate. If you're using a bilingual document, seĴing the
catch-all binding and an extra font for the "foreign" bits is all you have to
do. After having set up the font bindings in this way, all that's left is to
type in whichever mix of languages you please, and surround your text
with the \fontwrap macro:

\fontwrap{
the verbatim environment used to make this
block of text only supports Latin, but you
would be free to type whatever you like in
this macro.

}

The only downside to this is that I cannot show the actual text from
example paragraph 1, because the { verbatim} environment cannot handle
more than just Latin, and is one of the few blocks where fontwrap should
not be used - adding font tags inside a verbatim block means you're go-
ing to get the TEX commands in your final output, instead of having them
processed, because that's what verbatim does!

Moving on, \fontwrap does not look into other macros and environ-
ments by default. If you want it to process text in macros such as \emph

3

or \caption then you need to explicitly tell it that it is allowed to do this.
This command, and the equivalent command for environments, goes in
the preamble:

% allow processing of content for the following macros:
\setfontwrapallowedmacros{section,subsection,

subsubsection,paragraph,
subparagraph,emph, caption,
... }

% allow processing of content for the following environments:
\setfontwrapallowedenvironments{tabular, ... }

whenever \fontwrap is now used, it will process text in general docu-
ment structure macros, as well as the tabular environment, which is useful
if we use "foreign" text in any tables we're bound to end up using.

And with that the basic use is preĴy much covered.

3 Available commands
First off, \fontwrap of course:

\fontwrap{ ... }

and wrapped in the fontwrap verbatim environment in case whitespace
really, really maĴers:

\begin{fontwrapverbatim}
\fontwrap{ ... }

\end{fontwrapverbatim}

Secondly, the allowances:

\setfontwrapallowedmacros{comma delimited list}
\setfontwrapallowedenvironments{comma delimited list}

4

Thirdly, the font setup commands:

\setunicodegroupfont{block name}{font name}
\setunicodeblockfont{block name}{font name}

Arabic, Chinese, CJK (which combines all Chinese, Japanese and Ko-
rean blocks), Cyrillic, Diacritics, Greek (including some Coptic), Korean,
Japanese, Latin, Mathematics, Phonetics, Punctuation, Symbols, Yi and fi-
nally, Other, which is just a lump category for everything else, really…

block 2: All available informal group names

There are several informal groups available, which are listed in block
2. Also not unimportant to note: these are all case sensitive. The "other"
group is a bit of an eyesore, but for now it will have to do. Of course, Linear
B and Ethiopian form informal groups too, but I just don't use them, so they
will be given their own group when I'm done refining fontwrap, really.

In addition to these groups, there are also the individual blocks, in case
there is no group for what you want to set a font for, such as Hebrew, Thai,
or really exotic things like Cuneiform or Byzantine musical symbols! There
are a total of 158 blocks available for font binding, listed in block 3.

These, too, are case sensitive.

4 Running PerlTEX and possible errors
Running TEX files that use fontwrap means you have to use PerlTEX to get it
all to work. Luckily, PerlTEX is just a TEX wrapper, so you can tell it which
TEX engine to use and it will. Because fontwrap relies on the fontspec pack-
age, we have to use XeTEX:

perltex --latex=xelatex myfile.tex

This should run fine, but there are three problems you might run into.

5

AegeanNumbers, AlphabeticPresentationForms, AncientGreekMusical-
Notation, AncientGreekNumbers, Arabic, ArabicPresentationFormsA,
ArabicPresentationFormsB, ArabicSupplement, Armenian, Arrows,
Balinese, BasicLatin, Bengali, BlockElements, Bopomofo, BopomofoEx-
tended, BoxDrawing, BraillePaĴerns, Buginese, Buhid, ByzantineMu-
sicalSymbols, Cherokee, CJKCompatibility, CJKCompatibilityForms,
CJKCompatibilityIdeographs, CJKCompatibilityIdeographsSupplement,
CJKRadicalsSupplement, CJKStrokes, CJKSymbolsandPunctuation,
CJKUnifiedIdeographs, CJKUnifiedIdeographsExtensionA, CJKUni-
fiedIdeographsExtensionB, CombiningDiacriticalMarks, Combining-
DiacriticalMarksforSymbols, CombiningDiacriticalMarksSupplement,
CombiningHalfMarks, ControlPictures, Coptic, CountingRodNumer-
als, Cuneiform, CuneiformNumbersandPunctuation, CurrencySymbols,
CypriotSyllabary, Cyrillic, CyrillicExtendedA, CyrillicExtendedB, Cyrillic-
Supplement, Deseret, Devanagari, Dingbats, DominoTiles, EnclosedAl-
phanumerics, EnclosedCJKLeĴersandMonths, Ethiopic, EthiopicEx-
tended, EthiopicSupplement, GeneralPunctuation, GeometricShapes,
Georgian, GeorgianSupplement, Glagolitic, Gothic, GreekandCoptic,
GreekExtended, Gujarati, Gurmukhi, HalfwidthandFullwidthForms,
HangulCompatibilityJamo, HangulJamo, HangulSyllables, Hanunoo,
Hebrew, HighPrivateUseSurrogates, HighSurrogates, Hiragana, Ideo-
graphicDescriptionCharacters, IPAExtensions, Kanbun, KangxiRad-
icals, Kannada, Katakana, KatakanaPhoneticExtensions, Kharoshthi,
Khmer, KhmerSymbols, Lao, LatinExtendedAdditional, LatinExtendedA,
LatinExtendedB, LatinExtendedC, LatinExtendedD, LatinSupplement,
LeĴerlikeSymbols, Limbu, LinearBIdeograms, LinearBSyllabary, Low-
Surrogates, MahjongTiles, Malayalam, MathematicalAlphanumericSym-
bols, MathematicalOperators, MiscellaneousMathematicalSymbolsA,
MiscellaneousMathematicalSymbolsB, MiscellaneousSymbols, Miscella-
neousSymbolsandArrows, MiscellaneousTechnical, ModifierToneLeĴers,
Mongolian, MusicalSymbols, Myanmar, NewTaiLue, NKo, Number-
Forms, Ogham, OldItalic, OldPersian, OpticalCharacterRecognition,
Oriya, Osmanya, PhagsPa, Phoenician, PhoneticExtensions, PhoneticEx-
tensionsSupplement, PrivateUseArea, Runic, Shavian, Sinhala, SmallFor-
mVariants, SpacingModifierLeĴers, Specials, SuperscriptsandSubscripts,
SupplementalArrowsA, SupplementalArrowsB, SupplementalMathe-
maticalOperators, SupplementalPunctuation, SupplementaryPrivateUse-
AreaA, SupplementaryPrivateUseAreaB, SylotiNagri, Syriac, Tagalog,
Tagbanwa, Tags, TaiLe, TaiXuanJingSymbols, Tamil, Telugu, Thaana, Thai,
Tibetan, Tifinagh, Ugaritic, UnifiedCanadianAboriginalSyllabics, Varia-
tionSelectors, VariationSelectorsSupplement, VerticalForms, YiRadicals,
YiSyllables, and finally YijingHexagramSymbols.

block 3: All 158 blocks available in unicode 5.0

6

No unicode mapping available You get this error when TEX uses a font
that cannot represent the unicode glyphs you have wriĴen. For instance,
using something other than Latin text in a verbatim block will cause this
error. It's not fatal in any way, it just means that you will see empty blocks
in your final document.

Free towrongpool PerlTEX uses Perl (fairly obviously) but it does so sort of
multithreaded. It also uses the Perl "safe" module, and that's where things
go funky. The combination of multithread perl and "safe" can lead to perl
trying to free the memory it used, but failing at this because it tries to do
so in entirely the wrong thread. This is completely inconsequential, other
than that it can lead to memory leaks. Now, I made sure to unset all the
perl variables I use once fontwrap is done, so you shouldn't run into any
problems (unless maybe you were counting the bytes by hand) .

Overfull/underfull hbox The boon of TEX, this means that a particular
sentence is made up of leĴers and spaces in such a way that TEX cannot
really get the glue stretched properly for it to look nice in your final doc-
ument. You're going to have to go in, and fix the problem yourself by
rephrasing the sentence... either that or leave it in and turn off whatever
visual notification for problematic hboxes you use during draft generation.

5 The end…
And… I think that's it. I can't think of anything more to tell you with re-
spects to using fontwrap. If you have any questions you can always check
out the .sty file, or contact me through the contact page on my website,
hĴp://www.nihongoresources.com.

Enjoy!

- Mike Kamermans

7

