
Web2c
for version 7.3.2.2
September 2000

K. Berry (kb@mail.tug.org)
O. Weber (infovore@xs4all.nl)

mailto:kb@mail.tug.org
mailto:infovore@xs4all.nl

Copyright c
 1996, 97 K. Berry & O. Weber.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modi�ed versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

This manual corresponds to version 7.3.2.2 of Web2c, released in September 2000.
Web2c is the name of a TEX implementation, originally for Unix, but now also running

under DOS, Amiga, and other operating systems. By TEX implementation, we mean all
of the standard programs developed by the Stanford TEX project directed by Donald E.
Knuth: Metafont, DVItype, GFtoDVI, BibTEX, Tangle, etc., as well as TEX itself. Other
programs are also included: DVIcopy, written by Peter Breitenlohner, MetaPost and its
utilities (derived from Metafont), by John Hobby, etc.

General strategy: Web2c works, as its name implies, by translating the WEB source in
which TEX is written into C source code. Its output is not self-contained, however; it makes
extensive use of many macros and functions in a library (the `web2c/lib' directory in the
sources). Therefore, it will not work without change on an arbitrary WEB program.

Availability: All of Web2c is freely available|\free" both in the sense of no cost (free
ice cream) and of having the source code to modify and/or redistribute (free speech). (See
section \unixtex.ftp" in Kpathsea, for the practical details of how to obtain Web2c.) Dif-
ferent parts of the Web2c distribution have di�erent licensing terms, however, re
ecting
the di�erent circumstances of their creation; consult each source �le for exact details. The
main practical implication for redistributors of Web2c is that the executables are covered
by the GNU Public License, and therefore anyone who gets a binary distribution must also
get the sources, as explained by the terms of the GPL (see section \Copying" in Kpathsea).
The GPL covers the Web2c executables, including tex, because the Free Software Founda-
tion sponsored the initial development of the Kpathsea library that Web2c uses. The basic
source �les from Stanford, however, have their own copyright terms or are in the public
domain, and are not covered by the GPL.

History: Tomas Rokicki originated the TEX-to-C system in 1987, working from the
�rst change �les for TEX under Unix, which were done primarily by Howard Trickey and
Pavel Curtis. Tim Morgan then took over development and maintenance for a number of
years; the name changed to Web-to-C somewhere in there. In 1990, Karl Berry became the
maintainer. He made many changes to the original sources, and started using the shorter
name Web2c. In 1997, Olaf Weber took over. Dozens of other people have contributed;
their names are listed in the `ChangeLog' �les.

Other acknowledgements: The University of Massachusetts at Boston (particularly Rick
Martin and Bob Morris) has provided computers and ftp access to me for many years.
Richard Stallman at the Free Software Foundation employed me while I wrote the original
path searching library (for the GNU font utilities). (rms also gave us Emacs, GDB, and
GCC, without which I cannot imagine developing Web2c.) And, of course, TEX would not
exist in the �rst place without Donald E. Knuth.

Further reading: See Appendix B [References], page 54.

Chapter 2: Installation 2

2 Installation

(A copy of this chapter is in the distribution �le `web2c/INSTALL'.)
Installing Web2c is mostly the same as installing any other Kpathsea-using program.

Therefore, for the basic steps involved, see section \Installation" in Kpathsea. (A copy is
in the �le `kpathsea/INSTALL'.)

One peculiarity to Web2c is that the source distribution comes in two �les: `web.tar.gz'
and `web2c.tar.gz'. You must retrieve and unpack them both. (We have two because the
former archive contains the very large and seldom-changing original WEB source �les.) See
section \unixtex.ftp" in Kpathsea.

Another peculiarity is the MetaPost program. Although it has been installed previously
as mp, as of Web2c 7.0 the installed name is now mpost, to avoid con
ict with the mp program
that does prettyprinting. This approach was recommended by the MetaPost author, John
Hobby. If you as the TEX administrator wish to make it available under its shorter name
as well, you will have to set up a link or some such yourself. And of course individual users
can do the same.

For solutions to common installation problems and information on how to report a bug,
see the �le `kpathsea/BUGS' (see section \Bugs" in Kpathsea). See also the Web2c home
page, http://www.tug.org/web2c.

Points worth repeating:
� Before starting the standard compilation and installation you must install the basic

fonts, macros, and other library �les. See section \Installation" in Kpathsea.
� If you do not wish to use the standard �le locations, see section \Changing search

paths" in Kpathsea.
� Some Web2c features are enabled or disabled at configure time, as described in the

�rst section below.

2.1 configure options
This section gives pointers to descriptions of the `--with' and `--enable' configure

arguments that Web2c accepts. Some are speci�c to Web2c, others are generic to all
Kpathsea-using programs.

For a list of all the options configure accepts, run `configure --help'. The generic
options are listed �rst, and the package-speci�c options come last.

For a description of the generic options (which mainly allow you to specify installa-
tion directories) and basic configure usage, see section \Running configure scripts" in
Autoconf , a copy is in the �le `kpathsea/CONFIGURE'.
`--disable-dump-share'

Do not make fmt/base/mem �les sharable across di�erent endian architectures.
See Section 3.5.2.3 [Hardware and memory dumps], page 11.

Chapter 2: Installation 3

`--without-maketexmf-default'
`--without-maketexpk-default'
`--without-maketextfm-default'
`--with-maketextex-default'

Enable or disable the dynamic generation programs. See section \mktex con-
�guration" in Kpathsea. The defaults are the inverse of the options, i.e., every-
thing is enabled except mktextex.

`--enable-auto-core'
Dump `core' if the input �le is `HackyInputFileNameForCoreDump.tex'. See
Section 3.5.1.1 [Preloaded executables], page 10.

`--enable-shared'
Build Kpathsea as a shared library. See section \Shared library" in Kpathsea.

`--with-editor=cmd'
Change the default editor invoked by the `e' interactive command. See Sec-
tion 3.5.3 [Editor invocation], page 12.

`--with-epsfwin'
`--with-hp2627win'
`--with-mftalkwin'
`--with-nextwin'
`--with-regiswin'
`--with-suntoolswin'
`--with-tektronixwin'
`--with-unitermwin'
`--with-x'
`--with-x-toolkit=KIT'
`--with-x11win'
`--with-x11'

De�ne Metafont graphics support; by default, no graphics support is enabled.
See Section 5.5 [Online Metafont graphics], page 25.

`--x-includes=dir'
`--x-libraries=dir'

De�ne the locations of the X11 include �les and libraries; by default, configure
does its best to guess). See section \Optional Features" in Autoconf . A copy
is in `kpathsea/CONFIGURE'.

2.2 Compile-time options
In addition to the configure options listed in the previous section, there are a few things

that can be a�ected at compile-time with C de�nitions, rather than with configure. Using
any of these is unusual.

To specify extra compiler
ags (`-Dname' in this case), the simplest thing to do is:
make XCFLAGS="ccoptions"

You can also set the CFLAGS environment variable before running configure. See section
\con�gure environment" in Kpathsea.

Chapter 2: Installation 4

Anyway, here are the possibilities:
`-DFIXPT'
`-DNO_MF_ASM'

Use the original WEB �xed-point routines for Metafont and MetaPost arith-
metic calculations regarding fractions. By default, assembly-language routines
are used on x86 hardware with GNU C (unless `NO_MF_ASM' is de�ned), and

oating-point routines are used otherwise.

`-DIPC_DEBUG'
Report on various interprocess communication activities. See Section 4.6 [IPC
and TEX], page 21.

2.3 Additional targets
Web2c has several Make targets besides the standard ones. You can invoke these either

in the top level directory of the source distribution (the one containing `kpathsea/' and
`web2c/'), or in the `web2c/' directory.
`c-sources'

Make only the C �les, translated from the Web sources, presumably because
you want to take them to a non-Unix machine.

`formats'
`install-formats'

Make or install all the memory dumps (see Section 3.5.2 [Memory dumps],
page 10). By default, the standard plain formats plus `latex.fmt' are made.
You can add other formats by rede�ning the fmts, bases, and mems variables.
See the top of `web2c/Makefile' for the possibilities.

`fmts'
`install-fmts'

Make or install the TEX `.fmt' �les. See Section 4.2 [initex invocation], page 16.
`bases'
`install-bases'

Make or install the Metafont `.base' �les. See Section 5.2 [inimf invocation],
page 23.

`mems'
`install-mems'

Make or install the MetaPost `.mem' �les. See Section 6.2 [inimpost invocation],
page 31.

`triptrap'
`trip'
`trap'
`mptrap' To run the torture tests for TEX, Metafont, and MetaPost (respectively). See

the next section.

Chapter 2: Installation 5

2.4 Trip, trap, and mptrap: Torture tests
To validate your TEX, Metafont, and MetaPost executables, run `make triptrap'. This

runs the trip, trap, and mptrap \torture tests". See the �les `triptrap/tripman.tex',
`triptrap/trapman.tex', and `triptrap/mptrap.readme' for detailed information and
background on the tests.

The di�erences between your executables' behavior and the standard values will show
up on your terminal. The usual di�erences (these are all acceptable) are:
� string usage and table sizes;
� glue set ratios;
� `down4', `right4', and `y4' commands in DVItype output;
� dates and times.

Any other di�erences are trouble. The most common culprit in the past has been compiler
bugs, especially when optimizing. See section \TEX or Metafont failing" in Kpathsea.

The �les `trip.diffs', `mftrap.diffs', and `mptrap.diffs' in the `triptrap' directory
show the standard di�s against the original output. If you di� your di�s against these �les,
you should come up clean. For example

make trip >&mytrip.diffs
diff triptrap/trip.diffs mytrip.diffs

To run the tests separately, use the targets trip, trap, and mptrap.
To run simple tests for all the programs as well as the torture tests, run `make check'.

You can compare the output to the distributed �le `tests/check.log' if you like.

2.5 Runtime options
Besides the con�gure- and compile-time options described in the previous sections, you

can control a number of parameters (in particular, array sizes) in the `texmf.cnf' runtime
�le read by Kpathsea (see section \Con�g �les" in Kpathsea).

Rather than exhaustively listing them here, please see the last section of the distributed
`kpathsea/texmf.cnf'. Some of the more interesting values:
`main_memory'

Total words of memory available, for TEX, Metafont, and MetaPost. Must
remake the format �le after changing.

`extra_mem_bot'
Extra space for \large" TEX data structures: boxes, glue, breakpoints, et al. If
you use PiCTEX, you may well want to set this.

`font_mem_size'
Words of font info available for TEX; this is approximately the total size of all
TFM �les read.

`hash_extra'
Additional space for the hash table of control sequence names. Approximately
10,000 control sequences can be stored in the main hash table; if you have a

Chapter 2: Installation 6

large book with numerous cross-references, this might not be enough, and thus
you will want to set hash_extra.

Of course, ideally all arrays would be dynamically expanded as necessary, so the only
limiting factor would be the amount of swap space available. Unfortunately, implementing
this is extremely di�cult, as the �xed size of arrays is assumed in many places throughout
the source code. These runtime limits are a practical compromise between the compile-time
limits in previous versions, and truly dynamic arrays. (On the other hand, the Web2c
BibTEX implementation does do dynamic reallocation of some arrays.)

Chapter 3: Commonalities 7

3 Commonalities

Many aspects of the TEX system are the same among more than one program, so we
describe all those pieces together, here.

3.1 Option conventions
To provide a clean and consistent behavior, we chose to have all these programs use the

GNU function getopt_long_only to parse command lines.
As a result, you can:
� give the options in any order, interspersed as you wish with non-option arguments;
� use `-' or `--' to start an option name;
� use any unambiguous abbreviation for an option name;
� separate option names and values with either `=' or one or more spaces;
� use �lenames that would otherwise look like options by putting them after an option

`--'.
By convention, non-option arguments, if speci�ed, generally de�ne the name of an input

�le, as documented for each program.
If a particular option with a value is given more than once, it is the last value that

counts.
For example, the following command line speci�es the options `foo', `bar', and `verbose';

gives the value `baz' to the `abc' option, and the value `xyz' to the `quux' option; and
speci�es the �lename `-myfile-'.

-foo --bar -verb -abc=baz -quux karl --quux xyz -- -myfile-

3.2 Common options
All of these programs accept the standard GNU `--help' and `--version' options, and

several programs accept `--verbose'. Rather than writing identical descriptions in every
node, they are described here.
`--help' Print a usage message listing basic usage and all available options to standard

output, then exit successfully.
`--verbose'

Print progress reports to standard output.
`--version'

Print the version number to standard output, then exit successfully.
TEX, Metafont, and MetaPost have additional options in common:

`-kpathsea-debug=number'
Set path searching debugging
ags according to the bits of number (see sec-
tion \Debugging" in Kpathsea). You can also specify this in KPATHSEA_DEBUG
environment variable (for all Web2c programs). (The command line value over-
rides.) The most useful value is `-1', to get all available output.

Chapter 3: Commonalities 8

`-ini' Enable the \initial" form of the program (see Section 3.5.1 [Initial and virgin],
page 9). This is implicitly set if the program name is initex resp. inimf resp.
inimpost.

`-interaction=string '
Set the interaction mode from the command line. The string must be one of
`batchmode', `nonstopmode', `scrollmode', or `errorstopmode'.

`-fmt=dumpname'
`-base=dumpname'
`-mem=dumpname'

Use dumpname instead of the program name or a `%&' line to determine the
name of the memory dump �le read (`fmt' for TEX, `base' for Metafont, `mem' for
MetaPost). See Section 3.5.2 [Memory dumps], page 10. Also sets the program
name to dumpname if no `-progname' option was given. When creating a dump,
this option will also set the name of the dump �le.

`-progname=string '
Set program (and memory dump) name to string. This may a�ect the search
paths and other values used (see section \Con�g �les" in Kpathsea). Using
this option is equivalent to making a link named string to the binary and
then invoking the binary under that name. See Section 3.5.2 [Memory dumps],
page 10.

`-translate-file=tcx�le'
Use tcx�le to de�ne which characters are printable and translations between
the internal and external character sets. Moreover, tcx�le can be explicitly
declared in the �rst line of the main input �le `%& -translate-file=tcx�le'.
This is the recommended method for portability reasons. See Section 4.5.2
[TCX �les], page 19.

`-c-style-errors'
Change the way error messages are printed. The alternate style looks like error
messages from C/C++ compilers and is easier to parse for some editors that
drive TEX compilers.

`-oem' This option is speci�c to win32. When used, TEX engines will use the OEM
code page rather than the ANSI one to display their messages.

3.3 Path searching
All of the Web2c programs, including TEX, which do path searching use the Kpathsea

routines to do so. The precise names of the environment and con�guration �le variables
which get searched for particular �le formatted are therefore documented in the Kpathsea
manual (see section \Supported �le formats" in Kpathsea). Reading `texmf.cnf' (see sec-
tion \Con�g �les" in Kpathsea), invoking mktex... scripts (see section \mktex scripts" in
Kpathsea), and so on are all handled by Kpathsea.

The programs which read fonts make use of another Kpathsea feature: `texfonts.map',
which allows arbitrary aliases for the actual names of font �les; for example, `Times-Roman'
for `ptmr8r.tfm'. The distributed (and installed by default) `texfonts.map' includes aliases
for many widely available PostScript fonts by their PostScript names.

Chapter 3: Commonalities 9

3.4 Output �le location
All the programs generally follow the usual convention for output �les. Namely, they

are placed in the directory current when the program is run, regardless of any input �le
location; or, in a few cases, output is to standard output.

For example, if you run `tex /tmp/foo', for example, the output will be in `./foo.dvi'
and `./foo.log', not `/tmp/foo.dvi' and `/tmp/foo.log'.

However, if the current directory is not writable, the main programs (TEX, Metafont,
MetaPost, and BibTEX) make an exception: if the environment variable or con�g �le value
TEXMFOUTPUT is set (it is not by default), output �les are written to the directory speci�ed.
This is useful when you are in some read-only distribution directory, perhaps on a CD-ROM,
and want to TEX some documentation, for example.

3.5 Three programs: Metafont, MetaPost, and TEX
TEX, Metafont, and MetaPost have a number of features in common. Besides the ones

here, the common command-line options are described in the previous section. The con�g-
uration �le options that let you control some array sizes and other features are described
in Section 2.5 [Runtime options], page 5.

3.5.1 Initial and virgin

The TEX, Metafont, and MetaPost programs each have two main variants, called initial
and virgin. As of Web2c 7, one executable su�ces for both variants.

The initial form is enabled if:
1. the `-ini' option was speci�ed; or
2. the program name is `initex' resp. `inimf' resp. `inimpost'; or
3. the �rst line of the main input �le is `%&ini';
otherwise, the virgin form is used.

The virgin form is the one generally invoked for production use. The �rst thing it does is
read a memory dump (see Section 3.5.2.2 [Determining the memory dump to use], page 11),
and then proceeds on with the main job.

The initial form is generally used only to create memory dumps (see the next section).
It starts up more slowly than the virgin form, because it must do lengthy initializations
that are encapsulated in the memory dump �le.

In the past, there was a third form, preloaded executables. This is no longer recom-
mended or widely used; but see the section below if you're interested anyway. In this case,
the memory dump �le was read in to the virgin form, a core dump of the running exe-
cutable was done, and the undump program run to create a new binary. Nowadays, reading
memory dumps is fast enough that this is generally no longer worth the cost in disk space
and unshared executables.

Chapter 3: Commonalities 10

3.5.1.1 Preloaded executables

Specifying `--enable-auto-core' to configure tells TEX, Metafont, and MetaPost to
suicide with a SIGQUIT on an input �lename of `HackyInputFileNameForCoreDump.tex'
(all three programs use the `.tex' su�x). This produces a memory dump of the running
executable in a �le `core'. (This is unrelated to the standard memory dump feature in
these programs; see Section 3.5.2 [Memory dumps], page 10).

You don't actually need to do this to produce a core dump. Just typing your quit char-
acter (usually hCTRL-\i) when the program is waiting for input (at `**') will have the same
result. But a few sites want to reliably generate a core dump without human intervention;
that's what --enable-auto-core is for.

With the program undump, you can use `core' to reconstitute a preloaded executable,
which does not need to read a `.fmt' �le to get started. Although preloaded executables
save startup time, they have a big disadvantage: neither the disk space to store them nor
their code segments (at runtime) can be shared. Therefore, if both tex and latex are
running, twice as much memory will be consumed, to the general detriment of performance.

The undump program is not part of the Web2c distribution, but you can get it from the
CTAN archives as `CTAN:/support/undump', and it is included in several TEX distributions
(see section \unixtex.ftp" in Kpathsea).
3.5.2 Memory dumps

In typical use, TEX, Metafont, and MetaPost require a large number of macros to be
prede�ned; therefore, they support memory dump �les, which can be read much more
e�ciently than ordinary source code.
3.5.2.1 Creating memory dumps

The programs all create memory dumps in slightly idiosyncratic (thought substantially
similar) way, so we describe the details in separate sections (references below). The basic
idea is to run the initial version of the program (see Section 3.5.1 [Initial and virgin], page 9),
read the source �le to de�ne the macros, and then execute the \dump primitive.

Also, each program uses a di�erent �lename extension for its memory dumps, since
although they are completely analogous they are not interchangeable (TEX cannot read a
Metafont memory dump, for example).

Here is a list of �lename extensions with references to examples of creating memory
dumps:
TEX (`.fmt') See Section 4.2 [initex invocation], page 16.
Metafont (`.base') See Section 5.2 [inimf invocation], page 23.
MetaPost (`.mem') See Section 6.2 [inimpost invocation], page 31.

When making memory dumps, the programs read environment variables and con�gura-
tion �les for path searching and other values as usual. If you are making a new installation
and have environment variables pointing to an old one, for example, you will probably run
into di�culties.

Chapter 3: Commonalities 11

3.5.2.2 Determining the memory dump to use

The virgin form (see Section 3.5.1 [Initial and virgin], page 9) of each program always
reads a memory dump before processing normal source input. All three programs determine
the memory dump to use in the same way:
1. If the �rst non-option command-line argument begins with `&', the program uses the

remainder of that argument as the memory dump name. For example, running `tex
\&super' reads `super.fmt'. (The backslash protects the `&' against interpretation by
the shell.)

2. If the `-fmt' resp. `-base' resp. `-mem' option is speci�ed, its value is used.
3. If the `-progname' option is speci�ed, its value is used.
4. If the �rst line of the main input �le (which must be speci�ed on the command line,

not in response to `**') is %&dump, and dump is an existing memory dump of the
appropriate type, dump is used.
The �rst line of the main input �le can also specify which character translation �le is
to be used: %&-translate-file=tcx�le (see Section 4.5.2 [TCX �les], page 19).
These two roles can be combined: %&dump -translate-file=tcx�le. If this is done,
the name of the dump must be given �rst.

5. Otherwise, the program uses the program invocation name, most commonly `tex' resp.
`mf' resp. `mpost'. For example, if `latex' is a link to `tex', and the user runs `latex
foo', `latex.fmt' will be used.

3.5.2.3 Hardware and memory dumps

By default, memory dump �les are generally sharable between architectures of di�erent
types; speci�cally, on machines of di�erent endianness (see section \Byte order" in GNU
C Library). (This is a feature of the Web2c implementation, and is not true of all TEXimplementations.) If you specify `--disable-dump-share' to configure, however, memory
dumps will be endian-dependent.

The reason to do this is speed. To achieve endian-independence, the reading of memory
dumps on LittleEndian architectures, such as PC's and DEC architectures, is somewhat
slowed (all the multibyte values have to be swapped). Usually, this is not noticeable, and
the advantage of being able to share memory dumps across all platforms at a site far
outweighs the speed loss. But if you're installing Web2c for use on LittleEndian machines
only, perhaps on a PC being used only by you, you may wish to get maximum speed.

TEXnically, even without `--disable-dump-share', sharing of `.fmt' �les cannot be
guaranteed to work. Floating-point values are always written in native format, and hence
will generally not be readable across platforms. Fortunately, TEX uses
oating point only
to represent glue ratios, and all common formats (plain, LaTEX, AMSTEX, . . .) do not do
any glue setting at `.fmt'-creation time. Metafont and MetaPost do not use
oating point
in any dumped value at all.

Incidentally, di�erent memory dump �les will never compare equal byte-for-byte, because
the program always dumps the current date and time. So don't be alarmed by just a few
bytes di�erence.

Chapter 3: Commonalities 12

If you don't know what endianness your machine is, and you're curious, here is a little C
program to tell you. (The configure script contains a similar program.) This is from the
book C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele Jr. (see Appendix B
[References], page 54).

main ()
{
/* Are we little or big endian? From Harbison&Steele. */
union
{
long l;
char c[sizeof (long)];

} u;
u.l = 1;
if (u.c[0] == 1)
printf ("LittleEndian\n");

else if (u.c[sizeof (long) - 1] == 1)
printf ("BigEndian\n");

else
printf ("unknownEndian");

exit (u.c[sizeof (long) - 1] == 1);
}

3.5.3 Editor invocation

TEX, Metafont, and MetaPost all (by default) stop and ask for user intervention at an
error. If the user responds with e or E, the program invokes an editor.

Specifying `--with-editor=cmd' to configure sets the default editor command string
to cmd. The environment variables/con�guration values TEXEDIT, MFEDIT, and MPEDIT
(respectively) override this. If `--with-editor' is not speci�ed, the default is vi +%d %s.

In this string, `%d' is replaced by the line number of the error, and `%s' is replaced by
the name of the current input �le.

3.5.4 \input �lenames

TEX, Metafont, and MetaPost source programs can all read other source �les with the
\input (TEX) and input (MF and MP) primitives:

\input name % in TeX
The �le name can always be terminated with whitespace; for Metafont and MetaPost,

the statement terminator `;' also works. (LaTEX and other macro packages provide other
interfaces to \input that allow di�erent notation; here we are concerned only with the
primitive operation.) This means that \input �lenames cannot directly contain whitespace,
even though Unix has no trouble. Sorry.

On the other hand, various C library routines and Unix itself use the null byte (character
code zero, ASCII NUL) to terminate strings. So �lenames in Web2c cannot contain nulls,
even though TEX itself does not treat NUL specially.

Chapter 3: Commonalities 13

Furthermore, some older Unix variants do not allow eight-bit characters (codes 128{255)
in �lenames.

For maximal portability of your document across systems, use only the characters `a'{
`z', `0'{`9', and `.', and restrict your �lenames to at most eight characters (not including
the extension), and at most a three-character extension. Do not use anything but sim-
ple �lenames, since directory separators vary among systems; instead, add the necessary
directories to the appropriate search path.

Finally, the present Web2c implementation does `~' and `$' expansion on name, unlike
Knuth's original implementation and older versions of Web2c. Thus:

\input ~jsmith/$foo.bar
will dereference the environment variable or Kpathsea con�g �le value `foo' and read

that �le extended with `.bar' in user `jsmith''s home directory. (You can also use braces,
as in `${foo}bar' if you want to follow the variable name with a letter, numeral, or `_'.)

(So you could de�ne an environment variable value including whitespace and get the
program to read such a �lename that way, if you need to.)

In all the common TEX formats (plain TEX, LaTEX, AMSTEX), the characters `~' and `~'have special category codes, so to actually use these in a document you have to change their
catcodes or use \string. (The result is unportable anyway, see the suggestions above.) The
place where they are most likely to be useful is when typing interactively.

Chapter 4: TEX: Typesetting 14

4 TEX: Typesetting

TEX is a typesetting system: it was especially designed to handle complex mathematics,
as well as most ordinary text typesetting.

TEX is a batch language, like C or Pascal, and not an interactive \word processor":
you compile a TEX input �le into a corresponding device-independent (DVI) �le (and then
translate the DVI �le to the commands for a particular output device). This approach has
both considerable disadvantages and considerable advantages. For a complete description
of the TEX language, see The TEXbook (see Appendix B [References], page 54). Many other
books on TEX, introductory and otherwise, are available.

4.1 tex invocation
TEX (usually invoked as tex) formats the given text and commands, and outputs a cor-

responding device-independent representation of the typeset document. This section merely
describes the options available in the Web2c implementation. For a complete description of
the TEX typesetting language, see The TEXbook (see Appendix B [References], page 54).

TEX, Metafont, and MetaPost process the command line (described here) and determine
their memory dump (fmt) �le in the same way (see Section 3.5.2 [Memory dumps], page 10).
Synopses:

tex [option]... [texname[.tex]] [tex-commands]
tex [option]... \�rst-line
tex [option]... &fmt args

TEX searches the usual places for the main input �le texname (see section \Supported �le
formats" in Kpathsea), extending texname with `.tex' if necessary. To see all the relevant
paths, set the environment variable KPATHSEA_DEBUG to `-1' before running the program.

After texname is read, TEX processes any remaining tex-commands on the command
line as regular TEX input. Also, if the �rst non-option argument begins with a TEX escape
character (usually \), TEX processes all non-option command-line arguments as a line of
regular TEX input.

If no arguments or options are speci�ed, TEX prompts for an input �le name with `**'.
TEX writes the main DVI output to the �le `basetexname.dvi', where basetexname is

the basename of texname, or `texput' if no input �le was speci�ed. A DVI �le is a device-
independent binary representation of your TEX document. The idea is that after running
TEX, you translate the DVI �le using a separate program to the commands for a particular
output device, such as a PostScript printer (see section \Introduction" in Dvips) or an X
Window System display (see xdvi(1)).

TEX also reads TFM �les for any fonts you load in your document with the \font prim-
itive. By default, it runs an external program named `mktextfm' to create any nonexistent
TFM �les. You can disable this at con�gure-time or runtime (see section \mktex con�gu-
ration" in Kpathsea). This is enabled mostly for the sake of the EC fonts, which can be
generated at any size.

TEX can write output �les, via the \openout primitive; this opens a security hole vulner-
able to Trojan horse attack: an unwitting user could run a TEX program that overwrites,
say, `~/.rhosts'. (MetaPost has a write primitive with similar implications). To alleviate

Chapter 4: TEX: Typesetting 15

this, there is a con�guration variable openout_any, which selects one of three levels of secu-
rity. When it is set to `a' (for \any"), no restrictions are imposed. When it is set to `r' (for
\restricted"), �lenames beginning with `.' are disallowed (except `.tex' because LaTEXneeds it). When it is set to `p' (for \paranoid") additional restrictions are imposed: an
absolute �lename must refer to a �le in (a subdirectory) of TEXMFOUTPUT, and any attempt
to go up a directory level is forbidden (that is, paths may not contain a `..' component).
The paranoid setting is the default. (For backwards compatibility, `y' and `1' are synonyms
of `a', while `n' and `0' are synonyms for `r'.)

In any case, all \openout �lenames are recorded in the log �le, except those opened on
the �rst line of input, which is processed when the log �le has not yet been opened. (If you
as a TEX administrator wish to implement more stringent rules on \openout, modifying
the function openoutnameok in `web2c/lib/texmfmp.c' is intended to su�ce.)

The program accepts the following options, as well as the standard `-help' and
`-version' (see Section 3.2 [Common options], page 7):
`-kpathsea-debug=number'
`-ini'
`-fmt=fmtname'
`-progname=string '
`-translate-file=tcx�le'

These options are common to TEX, Metafont, and MetaPost. See Section 3.2
[Common options], page 7.

`-ipc'
`-ipc-start'

With either option, TEX writes its DVI output to a socket as well as to the
usual `.dvi' �le. With `-ipc-start', TEX also opens a server program at the
other end to read the output. See Section 4.6 [IPC and TEX], page 21.
These options are available only if the `--enable-ipc' option was speci�ed to
configure during installation of Web2c.

`-mktex=�letype'
`-no-mktex=�letype'

Turn on or o� the `mktex' script associated with �letype. The only values that
make sense for �letype are `tex' and `tfm',

`-mltex' If INITEX (see Section 3.5.1 [Initial and virgin], page 9), enable MLTEX exten-
sions such as \charsubdef. Implicitly set if the program name is mltex. See
Section 4.5.1 [MLTEX], page 18.

`-output-comment=string '
Use string as the DVI �le comment. Ordinarily, this comment records the date
and time of the TEX run, but if you are doing regression testing, you may not
want the DVI �le to have this spurious di�erence. This is also taken from the
environment variable and con�g �le value `output_comment'.

`-shell-escape'
Enable the `\write18{shell-command}' feature. This is also enabled if the
environment variable or con�g �le value `shell_escape' is set to `t'. (For

Chapter 4: TEX: Typesetting 16

backwards compatibility, `y' and `1' are accepted as synonyms of `t'). It is dis-
abled by default to avoid security problems. When enabled, the shell-command
string (which �rst undergoes the usual TEX expansions, just as in `\special') is
passed to the command shell (via the C library function `system'). The output
of shell-command is not diverted anywhere, so it will not appear in the log �le.
The system call either happens at `\output' time or right away, according to
the absence or presence of the `\immediate' pre�x, as usual for \write. (If you
as a TEX administrator wish to implement more stringent rules on what can be
executed, you will need to modify `tex.ch'.)

`-src-specials'
`-src-specials=string '

This option requires TEX to output speci�c source information using `\special'
commands in the DVI �le. These `\special' track the current �le name and
line number.
Using the �rst form of this option, the `\special' are inserted automatically.
In the second form of the option, string is a comma separated list of the following
values: `cr', `display', `hbox', `math', `par', `parend', `vbox'. You can use this
list to specify where you want TEX to output such commands. By example,
`-src-specials=cr,math' will output source information every line and every
math formula.
These commands can be used with the appropriate DVI viewer and text editor
to switch from the current position in the editor to the same position in the
viewer and back from the viewer to the editor.

4.2 initex invocation
initex is the \initial" form of TEX, which does lengthy initializations avoided by the

\virgin" (vir) form, so as to be capable of dumping `.fmt' �les (see Section 3.5.2 [Memory
dumps], page 10). For a detailed comparison of virgin and initial forms, see Section 3.5.1
[Initial and virgin], page 9.

For a list of options and other information, see Section 4.1 [tex invocation], page 14.
Unlike Metafont and MetaPost, many format �les are commonly used with TEX. Thestandard one implementing the features described in the TEXbook is `plain.fmt', also

known as `tex.fmt' (again, see Section 3.5.2 [Memory dumps], page 10). It is created by
default during installation, but you can also do so by hand if necessary (e.g., if an update
to `plain.tex' is issued):

initex '\input plain \dump'
(The quotes prevent interpretation of the backslashes from the shell.) Then install the
resulting `plain.fmt' in `$(fmtdir)' (`/usr/local/share/texmf/web2c' by default), and
link `tex.fmt' to it.

The necessary invocation for generating a format �le di�ers for each format, so instruc-
tions that come with the format should explain. The top-level `web2c' Make�le has targets
for making most common formats: plain latex amstex texinfo eplain. See Section 4.4
[Formats], page 17, for more details on TEX formats.

Chapter 4: TEX: Typesetting 17

4.3 virtex invocation
virtex is the \virgin" form of TEX, which avoids the lengthy initializations done by the

\initial" (ini) form, and is thus what is generally used for production work. For a detailed
comparison of virgin and initial forms, see Section 3.5.1 [Initial and virgin], page 9.

For a list of options and other information, see Section 4.1 [tex invocation], page 14.

4.4 Formats
TEX formats are large collections of macros, possibly dumped into a `.fmt' �le (see

Section 3.5.2 [Memory dumps], page 10) by initex (see Section 4.2 [initex invocation],
page 16). A number of formats are in reasonably widespread use, and the Web2c Make�le
has targets to make the versions current at the time of release. You can change which
formats are automatically built by setting the fmts Make variable; by default, only the
`plain' and `latex' formats are made.

You can get the latest versions of most of these formats from the CTAN archives in
subdirectories of `CTAN:/macros' (for CTAN info, see section \unixtex.ftp" in Kpathsea).
The archive ftp://ftp.tug.org/tex/lib.tar.gz (also available from CTAN) contains
most of these formats (although perhaps not the absolute latest version), among other
things.
latex The most widely used format. The current release is named `LaTEX 2e'; new

versions are released approximately every six months, with patches issued as
needed. The old release was called `LaTEX 2.09', and is no longer maintained
or supported. LaTEX attempts to provide generic markup instructions, such as
\emphasize", instead of speci�c typesetting instructions, such as \use the 10 pt
Computer Modern italic font".

amstex The o�cial typesetting system of the American Mathematical Society, used
to produce nearly all of its publications, e.g., Mathematical Reviews. Like
LaTEX, it encourages generic markup commands. The AMS also provides a
LaTEX package for authors who prefer LaTEX (see the `amslatex' item below).

texinfo The documentation system developed and maintained by the Free Software
Foundation for their software manuals. It can be automatically converted into
plain text, a machine-readable on-line format called `info', HTML, etc.

eplain The \expanded plain" format provides various common features (e.g., sym-
bolic cross-referencing, tables of contents, indexing, citations using BibTEX),for those authors who prefer to handle their own high-level formatting.

lamstex Augments AMSTEX with LaTEX-like features.
amslatex An LaTEX package (see `latex' item above), that augments LaTEX with

AMSTEX-like features.
slitex An obsolete LaTEX 2.09 format for making slides. It is replaced by the `slides'

document class.

Chapter 4: TEX: Typesetting 18

4.5 Languages and hyphenation
TEX supports most natural languages. See also Section 4.7 [TEX extensions], page 21.

4.5.1 MLTEX: Multi-lingual TEX

Multi-lingual TEX (mltex) is an extension of TEX originally written by Michael Ferguson
and now updated and maintained by Bernd Raichle. It allows the use of non-existing glyphs
in a font by declaring glyph substitutions. These are restricted to substitutions of an
accented character glyph, which need not be de�ned in the current font, by its appropriate
\accent construction using a base and accent character glyph, which do have to exist in the
current font. This substitution is automatically done behind the scenes, if necessary, and
thus MLTEX additionally supports hyphenation of words containing an accented character
glyph for fonts missing this glyph (e.g., Computer Modern). Standard TEX suppresses
hyphenation in this case.

MLTEX works at `.fmt'-creation time: the basic idea is to specify the `-mltex' option
to TEX when you \dump a format. Then, when you subsequently invoke TEX and read that
.fmt �le, the MLTEX features described below will be enabled.

Generally, you use special macro �les to create an MLTEX .fmt �le. See:
CTAN:/systems/generic/mltex
ftp://ftp.univ-rennes1.fr/pub/GUTenberg/french/

The sections below describe the two new primitives that MLTEX de�nes. Aside from
these, MLTEX is completely compatible with standard TEX.
4.5.1.1 \charsubdef: Character substitutions

The most important primitive MLTEX adds is \charsubdef, used in a way reminiscent
of \chardef:

\charsubdef composite [=] accent base

Each of composite, accent, and base are font glyph numbers, expressed in the usual TEXsyntax: `\e symbolically, '145 for octal, "65 for hex, 101 for decimal.
MLTEX's \charsubdef declares how to construct an accented character glyph (not nec-

essarily existing in the current font) using two character glyphs (that do exist). Thus it
de�nes whether a character glyph code, either typed as a single character or using the \char
primitive, will be mapped to a font glyph or to an \accent glyph construction.

For example, if you assume glyph code 138 (decimal) for an e-circum
ex (ê) and you
are using the Computer Modern fonts, which have the circum
ex accent in position 18
and lowercase `e' in the usual ASCII position 101 decimal, you would use \charsubdef as
follows:

\charsubdef 138 = 18 101
For the plain TEX format to make use of this substitution, you have to rede�ne the

circum
ex accent macro \^ in such a way that if its argument is character `e' the expansion
\char138 is used instead of \accent18 e. Similar \charsubdef declaration and macro
rede�nitions have to be done for all other accented characters.

To disable a previous \charsubdef c, rede�ne c as a pair of zeros. For example:

Chapter 4: TEX: Typesetting 19

\charsubdef '321 = 0 0 % disable N tilde
(Octal '321 is the ISO Latin-1 value for the Spanish N tilde.)

\charsubdef commands should only be given once. Although in principle you can
use \charsubdef at any time, the result is unspeci�ed. If \charsubdef declarations are
changed, usually either incorrect character dimensions will be used or MLTEX will output
missing character warnings. (The substitution of a \charsubdef is used by TEX when
appending the character node to the current horizontal list, to compute the width of a
horizontal box when the box gets packed, and when building the \accent construction
at \shipout-time. In summary, the substitution is accessed often, so changing it is not
desirable, nor generally useful.)
4.5.1.2 \tracingcharsubdef: Substitution diagnostics

To help diagnose problems with `\charsubdef', MLTEX provides a new primitive param-
eter, \tracingcharsubdef. If positive, every use of \charsubdef will be reported. This
can help track down when a character is rede�ned.

In addition, if the TEX parameter \tracinglostchars is 100 or more, the character
substitutions actually performed at \shipout-time will be recorded.
4.5.2 TCX �les: Character translations

TCX (TEX character translation) �les help TEX support direct input of 8-bit inter-
national characters if fonts containing those characters are being used. Speci�cally, they
map an input (keyboard) character code to the internal TEX character code (a superset of
ASCII).

Of the various proposals for handling more than one input encoding, TCX �les were
chosen because they follow Knuth's original ideas for the use of the `xhcr' and `xord'
tables. He ventured that these would be changed in the WEB source in order to adjust
the actual version to a given environment. It turned out, however, that recompiling the
WEB sources is not as simple task as Knuth predicted; therefore, TCX �les, providing the
possibility of changing of the conversion tables on on-the-
y, has been implemented instead.

This approach limits the portability of TEX documents, as some implementations do
not support it (or use a di�erent method for input-internal reencoding). It may also be
problematic to determine the encoding to use for a TEX document of unknown provenance;
in the worst case, failure to do so correctly may result in subtle errors in the typeset output.

While TCX �les can be used with any format, using them breaks the LaTEX `inputenc'
package. This is why you should either use tcx�le or `inputenc' in LaTEX �les, but never
both.

This is entirely independent of the MLTEX extension (see Section 4.5.1 [MLTeX],
page 18): whereas a TCX �le de�nes how an input keyboard character is mapped to TEX'sinternal code, MLTEX de�nes substitutions for a non-existing character glyph in a font
with a \accent construction made out of two separate character glyphs. TCX �les involve
no new primitives; it is not possible to specify that an input (keyboard) character maps to
more than one character.

Specifying TCX �les:

Chapter 4: TEX: Typesetting 20

� You can specify a TCX �le to be used for a particular TEX run by specifying the
command-line option `-translate-file=tcx�le' or (preferably) specifying it explicitly
in the �rst line of the main document `%& -translate-file=tcx�le'.

� TCX �les are searched for along the WEB2C path.
� INITEX ignores TCX �les.
The Web2c distribution comes with at least two TCX �les, `il1-t1.tcx' and

`il2-t1.tcx'. These support ISO Latin 1 and ISO Latin 2, respectively, with
Cork-encoded fonts (a.k.a. the T1 encoding). TCX �les for Czech, Polish, and Slovak are
also provided.

Syntax of TCX �les:
1. Line-oriented. Blank lines are ignored.
2. Whitespace is ignored except as a separator.
3. Comments start with `%' and continue to the end of the line.
4. Otherwise, a line consists of one or two character codes:

src [dest]
5. Each character code may be speci�ed in octal with a leading `0', hexadecimal with

a leading `0x', or decimal otherwise. Values must be between 0 and 255, inclusive
(decimal).

6. If the dest code is not speci�ed, it is taken to be the same as src.
7. If the same src code is speci�ed more than once, it is the last de�nition that counts.
Finally, here's what happens: when TEX sees an input character with code src, it 1)

changes src to dest; and 2) makes code the dest \printable", i.e., printed as-is in diagnostics
and the log �le instead of in `^^' notation.

By default, no characters are translated, and character codes between 32 and 126 inclu-
sive (decimal) are printable. It is not possible to make these (or any) characters unprintable.

Specifying translations for the printable ASCII characters (codes 32{127) will yield un-
predictable results. Additionally you shouldn't make the following characters printable:
^^I (TAB), ^^J (line feed), ^^M (carriage return), and ^^? (delete), since TEX uses them
in various ways.

Thus, the idea is to specify the input (keyboard) character code for src, and the output
(font) character code for dest.
4.5.3 Patgen: Creating hyphenation patterns

Patgen creates hyphenation patterns from dictionary �les for use with TEX. Synopsis:
patgen dictionary patterns output translate

Each argument is a �lename. No path searching is done. The output is written to the
�le output.

In addition, Patgen prompts interactively for other values.
For more information, see Word hy-phen-a-tion by com-puter by Frank Liang (see Ap-

pendix B [References], page 54), and also the `patgen.web' source �le.
The only options are `-help' and `-version' (see Section 3.2 [Common options], page 7).

Chapter 4: TEX: Typesetting 21

4.6 IPC and TEX
(Sorry, but I'm not going to write this unless someone actually uses this feature. Let me

know.)
This functionality is available only if the `--enable-ipc' option was speci�ed to

configure during installation of Web2c (see Chapter 2 [Installation], page 2).
If you de�ne IPC_DEBUG before compilation (e.g., with `make XCFLAGS=-DIPC_DEBUG'),

TEX will print messages to standard error about its socket operations. This may be helpful
if you are, well, debugging.

4.7 TEX extensions
The base TEX program has been extended in many ways. Here's a partial list. Please

send information on extensions not listed here to the address in section \Reporting bugs"
in Kpathsea.
e-TEX Adds many new primitives, including right-to-left typesetting. Available from

http://www.vms.rhbnc.ac.uk/e-TeX/ and `CTAN:/systems/e-tex'.
Omega Adds Unicode support, right-to-left typesetting, and more. Available from

http://www.ens.fr/omega and `CTAN:/systems/omega'.
pdfTEX A variant of TEX that produces PDF instead of DVI �les. It also includes

primitives for hypertext. Available from `CTAN:/systems/pdftex'.
`TeX--XeT'

Adds primitives and DVI opcodes for right-to-left typesetting (as used
in Arabic, for example). An old version for TEX 3.1415 is available from
`CTAN:/systems/knuth/tex--xet'. A newer version is included in e-TEX.

File-handling TEXAdds primitives for creating multiple DVI �les in a single run; and appending
to output �les as well as overwriting. Web2c implementation available in the
distribution �le `web2c/contrib/file-handling-tex'.

Chapter 5: Metafont: Creating typeface families 22

5 Metafont: Creating typeface families

Metafont is a system for producing shapes; it was designed for producing complete
typeface families, but it can also produce geometric designs, dingbats, etc. And it has
considerable mathematical and equation-solving capabilities which can be useful entirely
on their own.

Metafont is a batch language, like C or Pascal: you compile a Metafont program into
a corresponding font, rather than interactively drawing lines or curves. This approach
has both considerable disadvantages (people unfamiliar with conventional programming
languages will be unlikely to �nd it usable) and considerable advantages (you can make
your design intentions speci�c and parameterizable). For a complete description of the
Metafont language, see The METAFONTbook (see Appendix B [References], page 54).

5.1 mf invocation
Metafont (usually invoked as mf) reads character de�nitions speci�ed in the Metafont

programming language, and outputs the corresponding font. This section merely describes
the options available in the Web2c implementation. For a complete description of the
Metafont language, see The Metafontbook (see Appendix B [References], page 54).

Metafont processes its command line and determines its memory dump (base) �le in a
way exactly analogous to MetaPost and TEX (see Section 4.1 [tex invocation], page 14, and
see Section 3.5.2 [Memory dumps], page 10). Synopses:

mf [option]... [mfname[.mf]] [mf-commands]
mf [option]... \�rst-line
mf [option]... &base args

Most commonly, a Metafont invocation looks like this:
mf '\mode:=mode; mag:=magni�cation; input mfname'

(The single quotes avoid unwanted interpretation by the shell.)
Metafont searches the usual places for the main input �le mfname (see section \Sup-

ported �le formats" in Kpathsea), extending mfname with `.mf' if necessary. To see all
the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1' before running
the program. By default, Metafont runs an external program named `mktexmf' to create
any nonexistent Metafont source �les you input. You can disable this at con�gure-time or
runtime (see section \mktex con�guration" in Kpathsea). This is mostly for the sake of the
EC fonts, which can be generated at any size.

Metafont writes the main GF output to the �le `basemfname.nnngf', where nnn is the
font resolution in pixels per inch, and basemfname is the basename of mfname, or `mfput'
if no input �le was speci�ed. A GF �le contains bitmaps of the actual character shapes.
Usually GF �les are converted immediately to PK �les with GFtoPK (see Section 10.2
[gftopk invocation], page 45), since PK �les contain equivalent information, but are more
compact. (Metafont output in GF format rather than PK for only historical reasons.)

Metafont also usually writes a metric �le in TFM format to `basemfname.tfm'. A TFM
�le contains character dimensions, kerns, and ligatures, and spacing parameters. TEX reads
only this .tfm �le, not the GF �le.

Chapter 5: Metafont: Creating typeface families 23

The mode in the example command above is a name referring to a device de�nition (see
Section 5.4 [Modes], page 24); for example, localfont or ljfour. These device de�nitions
must generally be precompiled into the base �le. If you leave this out, the default is
proof mode, as stated in The Metafontbook, in which Metafont outputs at a resolution
of 2602 dpi; this is usually not what you want. The remedy is simply to assign a di�erent
mode|localfont, for example.

The magni�cation assignment in the example command above is a magni�cation factor;
for example, if the device is 600 dpi and you specify mag:=2, Metafont will produce output at
1200 dpi. Very often, themagni�cation is an expression such as magstep(.5), corresponding
to a TEX \magstep", which are factors of 1.2p2.

After running Metafont, you can use the font in a TEX document as usual. For example:
\font\myfont = newfont
\myfont Now I am typesetting in my new font (minimum hamburgers).

The program accepts the following options, as well as the standard `-help' and
`-version' (see Section 3.2 [Common options], page 7):
`-kpathsea-debug=number'
`-ini'
`-base=basename'
`-progname=string '
`-translate-file=tcx�le'

These options are common to TEX, Metafont, and MetaPost. See Section 3.2
[Common options], page 7.

`-mktex=�letype'
`-no-mktex=�letype'

Turn on or o� the `mktex' script associated with �letype. The only value that
makes sense for �letype is `mf'.

5.2 inimf invocation
inimf is the \initial" form of Metafont, which does lengthy initializations avoided by the

\virgin" (vir) form, so as to be capable of dumping `.base' �les (see Section 3.5.2 [Memory
dumps], page 10). For a detailed comparison of virgin and initial forms, see Section 3.5.1
[Initial and virgin], page 9.

For a list of options and other information, see Section 5.1 [mf invocation], page 22.
The only memory dump �le commonly used with Metafont is the default `plain.base',

also known as `mf.base' (again, see Section 3.5.2 [Memory dumps], page 10). It is created
by default during installation, but you can also do so by hand if necessary (e.g., if a Metafont
update is issued):

inimf '\input plain; input modes; dump'
(The quotes prevent interpretation of the backslashes from the shell.) Then install the
resulting `plain.base' in `$(basedir)' (`/usr/local/share/texmf/web2c' by default),
and link `mf.base' to it.

For an explanation of the additional `modes.mf' �le, see Section 5.4 [Modes], page 24.
This �le has no counterpart in TEX or MetaPost.

Chapter 5: Metafont: Creating typeface families 24

In the past, it was sometimes useful to create a base �le `cmmf.base' (a.k.a. `cm.base'),
with the Computer Modern macros also included in the base �le. Nowadays, however, the
additional time required to read `cmbase.mf' is exceedingly small, usually not enough to
be worth the administrative hassle of updating the `cmmf.base' �le when you install a new
version of `modes.mf'. People actually working on a typeface may still �nd it worthwhile
to create their own base �le, of course.

5.3 virmf invocation
virmf is the \virgin" form of Metafont, which avoids the lengthy initializations done by

the \initial" (ini) form, and is thus what is generally used for production work. Usually it
is invoked under the name `mf'. For a detailed comparison of virgin and initial forms, see
Section 3.5.1 [Initial and virgin], page 9.

For a list of options and other information, see Section 5.1 [mf invocation], page 22.

5.4 Modes: Device de�nitions for Metafont
Running Metafont and creating Metafont base �les requires information that TEX and

MetaPost do not: mode de�nitions which specify device characteristics, so Metafont can
properly rasterize the shapes.

When making a base �le, a �le containing modes for locally-available devices should be
input after `plain.mf'. One commonly used �le is ftp://ftp.tug.org/tex/modes.mf; it
includes all known de�nitions.

If, however, for some reason you have decreased the memory available in your Metafont,
you may need to copy `modes.mf' and remove the de�nitions irrelevant to you (probably
most of them) instead of using it directly. (Or, if you're a Metafont hacker, maybe you can
suggest a way to rede�ne mode_def and/or mode_setup; right now, the amount of memory
used is approximately four times the total length of the mode_def names, and that's a lot.)

If you have a device not included in `modes.mf', please see comments in that �le for how
to create the new de�nition, and please send the de�nition to tex-fonts@mail.tug.org to
get it included in the next release of `modes.mf'.

Usually, when you run Metafont you must supply the name of a mode that was dumped
in the base �le. But you can also de�ne the mode characteristics dynamically, by invoking
Metafont with an assignment to smode instead of mode, like this:

mf '\smode:="newmode.mf"; mag:=magni�cation; input mfname'
This is most useful when you are working on the de�nition of a new mode.

The magni�cation and mfname arguments are explained in Section 5.1 [mf invocation],
page 22. In the �le `newmode.mf', you should have the following (with no mode_def or
enddef), if you are using `modes.mf' conventions:

mode_param (pixels_per_inch, dpi);
mode_param (blacker, b);
mode_param (fillin, f);
mode_param (o_correction, o);
mode_common_setup_;

(Of course, you should use real numbers for dpi, b, f, and o.)

mailto:tex-fonts@mail.tug.org

Chapter 5: Metafont: Creating typeface families 25

For more information on the use of smode, or if you are not using `modes.mf', see page
269 of The Metafontbook.

5.5 Online Metafont graphics
The Web2c implementation of Metafont can do online graphics with a number of devices.

(See the Metafont manual for more information about how to draw on your screen.) By
default, no graphics support is enabled.

Metafont examines the MFTERM environment variable or con�g �le value at runtime, or
the TERM environment variable if MFTERM is not set, to determine the device support to use.
Naturally, only the devices for which support has been compiled in can be selected.

Here is a table of the possibilities, showing the MFTERM value and the corresponding
configure option(s) in parentheses.
epsf (`--with-epsfwin') Encapsulated PostScript pseudo-window server (see

`web2c/window/epsf.c'). This device produces an EPS �le containing the
graphics which would be displayed online on other devices. The name of the
EPS �le defaults to metafont.eps but can be changed by setting the MFEPSF
environment variable to the new �lename. Contributed by Mathias Herberts.

hp2627 (`--with-hp2627win') HP2627a color graphics terminals.
mftalk (`--with-mftalkwin') Generic window server (see `web2c/window/mftalk.c').
next (`--with-next') NeXT window system. This requires a separate program,

called DrawingServant, available separately. See the `web2c/window/next.c'.
regis (`--with-regiswin') Regis terminals.
sun (`--with-suntoolswin') The old Suntools (not any
avor of X) window system.

(You can get the even older SunWindows gfx system by using `sun-gfx.c'.)
tek (`--with-tektronixwin') Tektronix terminals.
uniterm (`--with-unitermwin') Uniterm, Simon Poole's emulator of a smart Tektronix

4014 terminal. This may work with regular Tektronix terminals as well; it's
faster than the driver `--with-tek' selects.

xterm (`--with-x11win', `--with-x', `--with-x11') The X window system (version
11).
There are two variants of the X11 support, one that works with the Xt toolkit,
and another that works directly with Xlib. The Xt support is more e�cient and
has more functionality, so it is the default. If you must use the Xlib support,
use `configure --with-x --with-x-toolkit=no'.
You cannot specify any of the usual X options (e.g., `-geometry') on the Meta-
font command line, but you can specify X resources in your `~/.Xdefaults'
or `~/.Xresources' �le. The class name is Metafont. If you're using the Xt
support, all the usual X toolkit resources are supported. If you're using the
Xlib support, only the geometry resource is supported.

Chapter 5: Metafont: Creating typeface families 26

You specify the X display to which Metafont connects in the DISPLAY environ-
ment variable, as usual.

Writing support for a new device is straightforward. Aside from de�ning the basic
drawing routines that Metafont uses (see `mf.web'), you only have to add another entry to
the tables on the last page of `web2c/lib/texmfmp.c'. Or you can write an independent
program and use MFtalk (see `web2c/window/mftalk.c').

5.6 GFtoDVI: Character proofs of fonts
GFtoDVI makes proof sheets from a GF bitmap �le as output by, for example, Metafont

(see Chapter 5 [Metafont], page 22). This is an indispensable aid for font designers or
Metafont hackers. Synopsis:

gftodvi [option]... gfname[gf]
The font gfname is searched for in the usual places (see section \Glyph lookup" in

Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to
`-1' before running the program.

The su�x `gf' is supplied if not already present. This su�x is not an extension; no `.'
precedes it: for instance `cmr10.600gf'.

The output �lename is the basename of gfname extended with `.dvi', e.g., `gftodvi
/wherever/foo.600gf' creates `./foo.dvi'.

The characters from gfname appear one per page in the DVI output, with labels, titles,
and annotations, as speci�ed in Appendix H (Hardcopy Proofs) of The Metafontbook.

GFtoDVI uses several fonts besides gfname itself:
� gray font (default `gray'): for the pixels that actually make up the character. Simply

using black is not right, since then labels, key points, and other information could not
be shown.

� title font (default `cmr8'): for the header information at the top of each output page.
� label font (default `cmtt10'): for the labels on key points of the �gure.
� slant font (no default): for diagonal lines, which are otherwise simulated using hori-

zontal and vertical rules.
To change the default fonts, you must use special commands in your Metafont source

�le.
The program accepts the following option, as well as the standard `-verbose', `-help',

and `-version' (see Section 3.2 [Common options], page 7):
`-overflow-label-offset=points'

Typeset the so-called over
ow labels, if any, points TEX points from the right
edge of the character bounding box. The default is a little over two inches
(ten million scaled points, to be precise). Over
ow equations are used to locate
coordinates when their actual position is too crowded with other information.

Chapter 5: Metafont: Creating typeface families 27

5.7 MFT: Prettyprinting Metafont source
MFT translates a Metafont program into a TEX document suitable for typesetting, with

the aid of TEX macros de�ned in the �le `mftmac.tex'. Synopsis:
mft [option]... mfname[.mf]

MFT searches the usual places for mfname (see section \Supported �le formats" in
Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to
`-1' before running the program. The output goes to the basename of mfname extended
with `.tex', e.g., `mft /wherever/foo.mf' creates `./foo.tex'.

Line breaks in the input are carried over into the output; moreover, blank spaces at the
beginning of a line are converted to quads of indentation in the output. Thus, you have full
control over the indentation and line breaks. Each line of input is translated independently
of the others.

Further control is allowed via Metafont comments:
� Metafont comments following a single `%' should be valid TEX input. But Metafont

material can be included within vertical bars in a comment; this will be translated by
MFT as if it were regular Metafont code. For example, a comment like `% |x2r| is
the tip of the bowl' will be translated into the TEX `% x_{2r} is the ...', i.e.,
the `x2r' is treated as an identi�er.

� `%%' indicates that the remainder of an input line should be copied verbatim to the
output. This is typically used to introduce additional TEX material at the beginning or
an MFT job, e.g. code to modify the standard layout or the formatting macros de�ned
in `mftmac.tex', or to add a line saying `%%\bye' at the end of the job. (MFT doesn't
add this automatically in order to allow processing several �les produces by MFT in
the same TEX job.)

� `%%% token1 other-tokens' introduces a change in MFT's formatting rules; all the other-
tokens will henceforth be translated according to the current conventions for token1.
The tokens must be symbolic (i.e., not numeric or string tokens). For example, the
input line

%%% addto fill draw filldraw
says to format the `fill', `draw', and `filldraw' operations of plain Metafont just
like the primitive token `addto', i.e., in boldface type. Without such reformatting
commands, MFT would treat `fill' like an ordinary tag or variable name. In fact, you
need a `%%%' command even to get parentheses to act like delimiters.

� `%%%%' introduces an MFT comment, i.e., MFT ignores the remainder of such a line.
� Five or more `%' signs should not be used.
(The above description was edited from `mft.web', written by D.E. Knuth.)
The program accepts the following options, as well as the standard `-help' and

`-version' (see Section 3.2 [Common options], page 7):
`-change=ch�le[.ch]'

Apply the change �le ch�le as with Tangle and Weave (see Chapter 8 [WEB],
page 38).

Chapter 5: Metafont: Creating typeface families 28

`-style=mft�le[.mft]'
Read mft�le before anything else; a MFT style �le typically contains only MFT
directives as described above. The default style �le is named `plain.mft',
which de�nes this properly for programs using plain Metafont. The MFT �les
is searched along the MFTINPUTS path; see section \Supported �le formats" in
Kpathsea.
Other examples of MFT style �les are `cmbase.mft', which de�nes formatting
rules for the macros de�ned in `cm.base', and `e.mft', which was used in the
production of Knuth's Volume E, Computer Modern Typefaces.
Using an appropriate MFT style �le, it is also possible to con�gure MFT for
typesetting MetaPost sources. However, MFT does not search the usual places
for MetaPost input �les.

If you use eight-bit characters in the input �le, they are passed on verbatim to the TEXoutput �le; it is up to you to con�gure TEX to print these properly.

Chapter 6: MetaPost: Creating technical illustrations 29

6 MetaPost: Creating technical illustrations

MetaPost is a picture-drawing language similar to Metafont (see Chapter 5 [Metafont],
page 22), but instead of outputting bitmaps in a \font", it outputs PostScript commands.
It's primarily intended for creating technical illustrations.

MetaPost also provides for arbitrary integration of text and graphics in a natural way,
using any typesetter (TEX and Tro� are both supported) and a number of other subsidiary
programs, described below.

6.1 mpost invocation
MetaPost (installed as mpost) reads a series of pictures speci�ed in the MetaPost pro-

gramming language, and outputs corresponding PostScript code. This section merely de-
scribes the options available in the Web2c implementation. For a complete description of
the MetaPost language, see AT&T technical report CSTR-162, generally available as the
�le `texmf /doc/metapost/mpman.ps', where texmf is the root of TEX directory structure.
See also http://cm.bell-labs.com/who/hobby/MetaPost.html.

Also, a standard MetaPost package for drawing graphs is documented in AT&T technical
report CSTR-164, available as the �le `mpgraph.ps', generally stored alongside `mpman.ps'.

MetaPost processes its command line and determines its memory dump (mem) �le in a
way exactly analogous to Metafont and TEX (see Section 4.1 [tex invocation], page 14, and
see Section 3.5.2 [Memory dumps], page 10). Synopses:

mpost [option]... [mpname[.mp]] [mp-commands]
mpost [option]... \�rst-line
mpost [option]... &mem args

MetaPost searches the usual places for the main input �le mpname (see section \Sup-
ported �le formats" in Kpathsea), extending mpname with `.mp' if necessary. To see all
the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1' before running the
program.

MetaPost writes its PostScript output to a series of �les `basempname.nnn' (or perhaps
`basempname.ps', very occasionally `basempname.tfm'), where nnn are the �gure numbers
speci�ed in the input, typically to the beginfig macro, and basempname is the basename
of mpname, or `mpout' if no input �le was speci�ed. MetaPost uses the `.ps' extension
when the �gure number is out of range, e.g., if you say beginfig(-1).

You can use the output �les as �gures in a TEX document just as with any other
PostScript �gures. For example, with this TEX command:

\special{psfile="�lename"}
or by using `epsf.tex' (see section \EPSF macros" in Dvips).

The MetaPost construct
btex ... tex-input ... etex

calls MakeMPX to generate a MPX �le containing a MetaPost picture expression corre-
sponding to tex-input (see Section 6.4 [makempx invocation], page 31).

The construct

Chapter 6: MetaPost: Creating technical illustrations 30

verbatimtex ... tex-input ... etex
simply passes the tex-input through to MakeMPX and thus to TEX. For example, if you
are using LaTEX, your MetaPost input �le must start with a verbatimtex block that gives
the necessary \documentclass (or \documentstyle) \begin{document} command. You
will also need to set the enviroment variable TEX to `latex' (see Section 6.4 [makempx
invocation], page 31).

tex-input need not be speci�cally TEX input; it could also be Tro�. In that case, you
will need the `-m pictures' Tro� macro package (unfortunately absent from many Tro�
implementations), or an equivalent such as the `-m pspic' macros from GNU gro� described
in grops(1).

Other typesetters can be supported with no change to MetaPost itself; only MakeMPX
needs to be updated.

Naturally, you must use fonts that are supported by the typesetter; speci�cally, you'll
probably want to use standard PostScript fonts with Tro�. And only the TEX system
understands Computer Modern or other Metafont fonts; you can also use PostScript fonts
with TEX, of course.

MetaPost-generated PostScript �gures which do use Computer Modern fonts for labels
cannot be directly previewed or printed. Instead, you must include them in a TEX document
and run the resulting DVI �le through Dvips to arrange for the downloading of the required
fonts (see section \Fonts in �gures" in Dvips). To help with this, the MetaPost distribution
provides a small TEX �le `mproof.tex' which is typically called as:

tex mproof mp-output-�les... ; dvips mproof -o
The resulting �le `mproof.ps' can then be printed or previewed.

To generate EPSF �les, set the internal MetaPost variable prologues positive. To make
the output �les self-contained, use only standard PostScript fonts. MetaPost reads the same
`psfonts.map' �le as Dvips, to determine PostScript fonts that need to be downloaded (see
section \psfonts.map" in Dvips).

MetaPost can write output �les, via the write primitive; this opens a security hole. See
Section 4.1 [tex invocation], page 14.

The program accepts the following options, as well as the standard `-help' and
`-version' (see Section 3.2 [Common options], page 7):
`-kpathsea-debug=number'
`-ini'
`-mem=memname'
`-progname=string '
`-translate-file=tcx�le'

These options are common to TEX, Metafont, and MetaPost. See Section 3.2
[Common options], page 7.

`-T'
`-troff' Set the prologues internal variable to 1, and use makempx -troff to generate

MPX �les.
`-tex=texprogram'

When this option is given, the program texprogram is used to typeset the labels.

Chapter 6: MetaPost: Creating technical illustrations 31

6.2 inimpost invocation
inimpost is the \initial" form of MetaPost, which does lengthy initializations avoided

by the \virgin" (vir) form, so as to be capable of dumping `.mem' �les (see Section 3.5.2
[Memory dumps], page 10). For a detailed comparison of virgin and initial forms, see
Section 3.5.1 [Initial and virgin], page 9.

For a list of options and other information, see Section 6.1 [mpost invocation], page 29.
The only memory dump �le commonly used with MetaPost is the default, `plain.mem',

also known as `mpost.mem' (again, see Section 3.5.2 [Memory dumps], page 10). It is created
by default during installation, but you can also do so by hand if necessary (e.g., if a MetaPost
update is issued):

inimpost '\input plain dump'
(The quotes prevent interpretation of the backslashes from the shell.) Then install the
resulting `plain.mem' in `$(memdir)' (`/usr/local/share/texmf/web2c' by default), and
link `mpost.mem' to it.

MetaPost also provides a mem �le with all the features of plain Metafont, called
`mfplain.mem'. You can create that in the same way; just replace `plain' in the above
command with `mfplain'. `mfplain.mem' �le lets you directly process Metafont source �les
with MetaPost, producing character proofs (one �le for each character) similar to those
produced with Metafont in proof mode and GFtoDVI (see Section 5.6 [gftodvi invocation],
page 26).

6.3 virmpost invocation
virmpost is the \virgin" form of MetaPost, which avoids the lengthy initializations done

by the \initial" (ini) form, and is thus what is generally used for production work. For a
detailed comparison of virgin and initial forms, see Section 3.5.1 [Initial and virgin], page 9.

For a list of options and other information, see Section 6.1 [mpost invocation], page 29.

6.4 MakeMPX: Support MetaPost labels
In MetaPost, labels can be typeset using any document processor; the Web2c imple-

mentation supports TEX and Tro�. MakeMPX translates the labels from the typesetting
language back into low-level MetaPost commands in a so-called mpx �le, so text can be
manipulated like other graphic objects. It is invoked automatically by MetaPost. Synopsis:

makempx [-troff] mp�le mpx�le

The input comes from mp�le (no path searching is done), and the output goes to mpx�le.
However, if the �le mpx�le already exists, and is newer than mp�le, then nothing is done
(presumably the �le is up-to-date).

Otherwise:
1. MPto is run to extract the label text from the MetaPost source �le mp�le (see Sec-

tion 6.7 [mpto invocation], page 34).
2. The typesetting program itself is run, either TEX or Tro� (see below). If TEX, and the

�le named by the MPTEXPRE environment variable exists (`mptexpre.tex' by default),
that �le is prepended to the input from the MetaPost �le.

Chapter 6: MetaPost: Creating technical illustrations 32

3. The typesetter output (a DVI �le in the case of TEX, Ditro� output for Tro�) is trans-
lated back to MetaPost, by DVItoMP (see Section 6.5 [dvitomp invocation], page 33)
or DMP (see Section 6.6 [dmp invocation], page 33) respectively.

If any of the above steps fail, for example if there was a typesetting mistake in the original
mp�le, output may be left in �les named `mpxerr.{log,tex,dvi}' (TEX) or `mpxerr{,.t}'(Tro�), so you can diagnose the problem.

The `-troff' option to MPto selects the Tro� commands, rather than TEX. MetaPost
supplies this automatically if the `-T' or `-troff' option was speci�ed to MetaPost.

The MPX �le created by MakeMPX is a sequence of MetaPost picture expressions, one
for every label in the original MetaPost input �le.

The names of the commands run by MakeMPX, and the directory added to the shell
search PATH for the commands' location, are overridden by environment variables. Here is
a list:

MAKEMPX_BINDIR
The directory added to the PATH. Default is the `$(bindir)' Make directory,
which in turn is set from the con�gure-time `--bindir', `--exec-prefix' and
`--prefix' options; if nothing else is speci�ed, the default is �le `/usr/local'.

NEWER The command run to determine if mpx�le is out of date with respect to mp�le;
default is `newer'.

MPTOTEX The command run to extract MetaPost labels in TEX format; default is `mpto
-tex'.

MPTOTR Likewise, for Tro�; default is `mpto -troff'.

DVITOMP The command run to convert TEX output back to MetaPost; default is
`dvitomp'.

DMP Likewise, for Tro�; default is `dmp'.

TEX The command run to typeset the labels in TEX; default is `tex'. If you use
LaTEX, set this to latex, and supply an appropriate verbatimtex header in
the MP source (see Section 6.1 [mpost invocation], page 29).

TROFF Likewise, for Tro�; default is `'eqn -d\$\$ | troff -Tpost''. You may need
to replace `-Tpost' by `-Tterm', where term is the PostScript device name for
your Tro� implementation, e.g., `ps' or `psc'; see tro�(1).
If you change this, you will also need to set the TRFONTS environment variable
or con�guration value to point to the appropriate font directory, traditionally
`/usr/lib/font/devterm'.

Chapter 6: MetaPost: Creating technical illustrations 33

6.5 DVItoMP: DVI to MPX conversion
DVItoMP converts DVI �les into low-level MetaPost commands in a so-called MPX �le.

This program is generally invoked only by MakeMPX (see Section 6.4 [makempx invocation],
page 31). Synopsis:

dvitomp dvi�le[.dvi] [mpx�le[.mpx]]
If mpx�le is not speci�ed, the output goes to the basename of dvi�le extended with `.mpx',
e.g., `dvitomp /wherever/foo.dvi' creates `./foo.mpx'.

The only options are `-help' and `-version' (see Section 3.2 [Common options], page 7).

6.6 DMP: Ditro� to MPX conversion
DMP converts device-independent Tro� (ditro�) output �les into low-level MetaPost

commands in a so-called MPX �le. This program is generally invoked by MakeMPX (see
Section 6.4 [makempx invocation], page 31). Synopsis:

dmp [ditro�-�le [mpx�le]]
If ditro�-�le is not speci�ed, input comes from standard input; and ifmpx�le is not speci�ed,
output goes to standard output.

DMP was written to process the output of a Tro� pipeline fed the output of mpto
-troff (see Section 6.7 [mpto invocation], page 34). DMP understands all the `Dc' graph-
ics functions that dpost does, but it ignores `x X' device control functions such as `x X
SetColor:...', `x X BeginPath:', and `x X DrawPath:...'.

The available font names are de�ned in the support �le `trfonts.map', which DMP
looks for along the MPSUPPORT path.

Another support �le `trchars.adj', also looked for along the MPSUPPORT path, contains
a character adjustment table which should re
ect the shift amounts found in the standard
PostScript prologue for Tro� and dpost found in the TRFONTS directory. Such an adjustment
table is unnecessary for some Tro� implementations, in which case `trchars.adj' should
be replaced by an empty �le|but it must still exist.

DMP was written for one particular Tro� implementation, and it unfortunately has many
built-in assumptions about the output and fonts �le formats used by Tro�, which may not
be satis�ed in other environments. In particular, GNU gro� uses some extensions in its
�le formats described in gro� font(5) and gro� out(5) which make its output completely
unusable for DMP. On the other hand, the Tro� version found in Sun Solaris 2.x, and
perhaps other systems derived from System V R4, works �ne with the default settings.

If you run into trouble and want to adapt DMP to other systems, you might have to try
the following (this is primarily for hackers):
� If DMP complains about a missing font table (e.g., `Cannot find TR'), your Tro� may

not support the device `post'.
Check tro�(1) for the devices supported by your Tro� and set the TROFF environment
variable appropriately (see above). Also, locate the appropriate font directory and set
the TRFONTS variable as needed.

� If DMP complains about a missing font description �le (e.g., `Font TR was not in map
file'), your version of Tro� may be using internal font names di�erent from those in

Chapter 6: MetaPost: Creating technical illustrations 34

the distributed `trfonts.map'; e.g., TR and TI instead of R and I for Times-Roman
and Times-Italic.
In this case, you may have to adapt `trfonts.map' and perhaps also `trchars.adj' in
the MetaPost support directory (`texmf/metapost/support' by default).

� If DMP still complains that it cannot parse the font description �les or the Tro� output
(e.g., `TR has a bad line in its description file', you are probably out of luck and
have to hack the DMP program (in `web2c/mpware/dmp.c').
Such problems may be caused by subtle di�erences in the �le formats, such as use of
tabs vs. spaces as �eld separators or decimal vs. octal vs. hex format for font metric
data.
A reasonably good description of the expected Tro� �le formats can be found in AT&T
technical report CSTR-54 (Tro� User's Manual, Revised 1992). Documentation on the
subtle di�erences in other Tro� implementation is harder to �nd except for GNU gro�,
where it's all documented in the above-mentioned gro� font(5) and gro� out(5).
Any contributions to improve the portability of DMP or to make it work with GNU
gro� are welcome, of course.

(Some of the above description was edited from the `dmp.c' source �le, written by John
Hobby.)

The only options are `--help' and `--version' (see Section 3.2 [Common options],
page 7).

6.7 MPto: Extract labels from MetaPost input
MPto extracts the labels from a MetaPost input �le; this is the contents of any

btex...etex and verbatimtex...etex sections. This program is generally invoked by
MakeMPX (see Section 6.4 [makempx invocation], page 31). Synopsis:

mpto [option]... mp�le

The input comes from mp�le; no path searching is done. The output goes to standard
output. Leading and trailing spaces and tabs are removed, and various prede�ned typesetter
commands are included at the beginning of and end of the �le and of each section.

The program accepts the following options, as well as the standard `-help' and
`-version' (see Section 3.2 [Common options], page 7):
`-troff' Surround the MetaPost sections with Tro� commands.
`-tex' Surround the MetaPost sections with TEX commands. This is the default.

6.8 Newer: Compare �le modi�cation times
Newer compares �le modi�cation times. Synopsis:

newer src dependent

Newer exits successfully if the �le src exists and is older as dependent, i.e., the modi�cation
time (mtime) of src is greater than that of dependent. See section \Attribute Meanings"
in GNU C Library .

Chapter 6: MetaPost: Creating technical illustrations 35

Although this could be written as a Perl script (see section \File Operations" in Perl)
or using the `--full-time' option supported by ls (see section \ls invocation" in GNU
�le utilities), it seems undesirable to depend on such independent, and sadly non-universal,
programs.

This is used by MakeMPX (see Section 6.4 [makempx invocation], page 31).

Chapter 7: BibTEX: Bibliographies 36

7 BibTEX: Bibliographies

BibTEX automates much of the job of typesetting bibliographies, and makes bibliography
entries reusable in many di�erent contexts.

7.1 BibTEX invocation
BibTEX creates a printable bibliography (`.bbl') �le from references in a `.aux' �le,

generally written by TEX or LaTEX. The `.bbl' �le is then incorporated on a subsequent
run. The basic bibliographic information comes from `.bib' �les, and a BibTEX style
(`.bst') �le controls the precise contents of the `.bbl' �le. Synopsis:

bibtex [option]... aux�le[.aux]
The output goes to the basename of aux�le extended with `.bbl'; for example, `bibtex
/wherever/foo.aux' creates `./foo.bbl'. BibTEX also writes a log �le to the basename of
aux�le extended with `.blg'.

The names of the `.bib' and `.bst' �les are speci�ed in the `.aux' �le as well, via the
`\bibliography' and `\bibliographystyle' (La)TEX macros. BibTEX searches for `.bib'
�les using the BIBINPUTS and TEXBIB paths, and for `.bst' �les using BSTINPUTS (see
section \Supported �le formats" in Kpathsea). It does no path searching for `.aux' �les.

The program accepts the following options, as well as the standard `-help' and
`-version' (see Section 3.2 [Common options], page 7):
`-terse' Suppress the program banner and progress reports normally output.
`-min-crossrefs=n'

If at least n (2 by default) bibliography entries refer to another entry e via
their crossref �eld, include e in the .bbl �le, even if it was not explicitly
referenced in the .aux �le. For example, e might be a conference proceedings as
a whole, with the cross-referencing entries being individual articles published in
the proceedings. In some circumstances, you may want to avoid these automatic
inclusions altogether; to do this, make n a su�ciently large number.

See also:
`btxdoc.tex'

Basic LaTEXable documentation for general BibTEX users.
`btxhak.tex'

LaTEXable documentation for style designers.
`btxdoc.bib'

BibTEX database �le for the two above documents.
`xampl.bib'

Example database �le with all the standard entry types.
`ftp://ftp.math.utah.edu/pub/tex/bib/'

A very large `.bib' and `.bst' collection, including references for all the stan-
dard TEX books and a complete bibliography for TUGboat.

Chapter 7: BibTEX: Bibliographies 37

7.2 Basic BibTEX style �les
Here are descriptions of the four standard and four semi-standard basic BibTEX styles.

`CTAN:/biblio/bibtex' contains these and many more (for CTAN info, see section \unix-
tex.ftp" in Kpathsea).
plain Sorts entries alphabetically, with numeric labels. Generally formatted according

to van Leunen's A Handbook for Scholars. The other style �les listed here are
based on plain.

abbrv First names, month names, and journal names are abbreviated.
acm Names are printed in small caps.
alpha Alphanumeric labels, e.g., `Knu66'.
apalike No labels at all; instead, the year appears in parentheses after the

author. Should be used in conjunction with `apalike.tex' (plain TEX) or
`apalike.sty' (LaTEX), which also changes the citations in the text to be
`(author, year)'.

ieeetr Numeric labels, entries in citation order, ieee abbreviations, article titles in
quotes.

siam Numeric labels, alphabetic order, Math. Reviews abbreviations, names in small
caps.

unsrt Lists entries in citation order, i.e., unsorted.
btxbst.doc

The template �le and documentation for the standard styles.

Chapter 8: WEB: Literate programming 38

8 WEB: Literate programming

WEB languages allow you to write a single source �le that can produce both a com-
pilable program and a well-formatted document describing the program in as much detail
as you wish to prepare. Writing in this kind of dual-purpose language is called literate
programming. (The Usenet newsgroup `comp.programming.literate' and the mailing list
litprog@shsu.edu are devoted to this subject; they are gatewayed to each other.)

WEB-like languages have been implemented with many pairs of base languages: Cweb
provides C and Tro� (see Appendix B [References], page 54); CWEB provides C and TEX(`CTAN:/web/c_cpp/cweb'); Spiderweb provides C, C++, Awk, Ada, many others, and TEX(`CTAN:/web/spiderweb'); and, of course, the original WEB provides Pascal and TEX, theimplementation languages for the original TEX, Metafont, MetaPost, and related programs
to come from the TEX project at Stanford.

The original WEB language is documented in the �le `webman.tex', which is included
in the ftp://ftp.tug.org/tex/lib.tar.gz archive (and available in many other places,
of course).

8.1 Tangle: Translate WEB to Pascal
Tangle creates a compilable Pascal program from a WEB source �le (see Chapter 8

[WEB], page 38). Synopsis:
tangle [option]... web�le[.web] [change�le[.ch]]

The Pascal output is written to the basename of web�le extended with `.p'; for example,
`tangle /wherever/foo.web' creates `./foo.p'. Tangle applies change�le to web�le before
writing the output; by default, there is no change �le.

If the program makes use of the WEB string facility, Tangle writes the string pool to
the basename of web�le extended with `.pool'.

The Pascal output is packed into lines of 72 characters or less, with the only concession to
readability being the termination of lines at semicolons when this can be done conveniently.

The only options are `--help' and `--version' (see Section 3.2 [Common options],
page 7).

8.2 Weave: Translate WEB to TEX
Weave creates a TEX document from a WEB source �le (see Chapter 8 [WEB], page 38),

assuming various macros de�ned in `webmac.tex'. It takes care of typographic details such
as page layout, indentation, and italicizing identi�ers. It also automatically gathers and
outputs extensive cross-reference information. Synopsis:

weave [option]... web�le[.web] [change�le[.ch]]
The output is to the basename of web�le extended with `.tex'; for example, `weave
/wherever/foo.web' creates `./foo.tex'. Weave applies change�le to web�le before writ-
ing the output; by default, there is no change �le.

The program accepts the following option, as well as the standard `-verbose', `-help'
and `-version' (see Section 3.2 [Common options], page 7):

mailto:litprog@shsu.edu

Chapter 8: WEB: Literate programming 39

`-x' Omit the cross-reference information: the index, the list of WEB module names,
and the table of contents (an empty `CONTENTS.tex' �le will still be written
when the Weave output �le is processed by TEX using the default `webmac.tex',
though).

Conventionally, WEB programmers should de�ne the TEX \title macro at the be-
ginning of the source �le. Also, to get output of only changed modules, one can say
\let\maybe=\iffalse (usually as the �rst change in the change �le).

8.3 Pooltype: Display WEB pool �les
Pooltype shows the so-called string number of each string in a WEB pool �le (see Chap-

ter 8 [WEB], page 38), as output by Tangle (see Section 8.1 [tangle invocation], page 38),
including the �rst 256 strings corresponding to the possible input characters. Pooltype
primarily serves as an example of WEB conventions to implementors of the TEX system.
Synopsis:

pooltype [option]... pool�le[.pool]
No path searching is done for pool�le. Output is to standard output.

The only options are `--help' and `--version' (see Section 3.2 [Common options],
page 7).

As an example of the output, here is the (edited) output for `tex.pool':
0: "^^@"
1: "^^A"
...
255: "^^ff"
256: "pool size"
...
1314: "Using character substitution: "
(23617 characters in all.)

In Metafont and MetaPost, the �rst 256 characters are actually represented as single
bytes (i.e., themselves), not in the `^^' notation. Consider Pooltype as showing the results
after conversion for output.

Chapter 9: DVI utilities 40

9 DVI utilities

TEX outputs a �le in DVI (DeVice Independent) format as a compact representation of
the original document. DVI �les can be translated to meet the requirements of a real phys-
ical device, such as PostScript printers (see section \Introduction" in Dvips), PCL printers
(see dvilj(1)), and X displays (see xdvi(1)). In fact, DVI translators are available for virtu-
ally all common devices: see `CTAN:/dviware' (for CTAN info, see section \unixtex.ftp"
in Kpathsea).

For the precise de�nition of the DVI �le format, see (for example) the source �le
`web2c/dvitype.web'.

The DVI-processing programs in the Web2c distribution are not device drivers; they
perform generic utility functions.

9.1 DVIcopy: Canonicalize virtual font references
DVIcopy reads a DVI �le, expands any references to virtual fonts (see section \Virtual

fonts" in Dvips) to base fonts, and writes the resulting DVI �le. Thus you can use virtual
fonts even if your DVI processor does not support them, by passing the documents through
DVIcopy �rst. Synopsis:

dvicopy [option]... [indvi[.dvi] [outdvi[.dvi]]]
DVIcopy reads standard input if indvi is not speci�ed, and writes standard output if

outdvi is not speci�ed.
The program accepts the following options, as well as the standard `-help' and

`-version' (see Section 3.2 [Common options], page 7):
`-magnification=integer'

Override existing magni�cation in indvi with integer; 1000 speci�es no magni-
�cation. This is equivalent to setting TEX's \mag parameter.

`-max-pages=n'
Process n pages; default is one million.

`-page-start=page-spec'
Start at the �rst page matching page-spec, which is one or more (signed) inte-
gers separated by periods, corresponding to TEX's \count0...9 parameters at
\shipout time; `*' matches anything. Examples: `3', `1.*.-4'.

9.2 DVItype: Plain text transliteration of DVI �les
DVItype translates a DeVice Independent (DVI) �le (as output by TEX, for example)

to a plain text �le that humans can read. It also serves as a DVI-validating program, i.e.,
if DVItype can read a �le, it's correct. Synopsis:

dvitype [option]... dvi�le[.dvi]
DVItype does not read any bitmap �les, but it does read TFM �les for fonts referenced in
dvi�le. The usual places are searched (see section \Supported �le formats" in Kpathsea).
To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1' before
running the program.

Chapter 9: DVI utilities 41

Output goes to standard output.
The program accepts the following options, as well as the standard `-help' and

`-version' (see Section 3.2 [Common options], page 7):
`-dpi=real'

Do pixel movement calculations at real pixels per inch; default 300.0.
`-magnification=integer'

Override existing magni�cation in indvi with integer; 1000 speci�es no magni-
�cation. This is equivalent to setting TEX's \mag parameter.

`-max-pages=n'
Process n pages; default is one million.

`-output-level=n'
Verbosity level of output, from 0 to 4 (default 4):
� 0: Global document information only.
� 1: Most DVI commands included, and typeset characters summarized.
� 2: Character and movement commands explicitly included.
� 3: DVI stack and current position calculations included.
� 4: Same information as level 3, but DVItype does random positioning in

the �le, reading the DVI postamble �rst.
`-page-start=page-spec'

Start at the �rst page matching page-spec, which is one or more (signed) inte-
gers separated by periods, corresponding to TEX's \count0...9 parameters at
\shipout time; `*' matches anything. Examples: `1', `5.*.-9'.

`-show-opcodes'
Show numeric opcode values (in decimal) for DVI commands, in braces after
the command name. This can help in debugging DVI utilities. We use decimal
because in the DVI format documentation (in `dvitype.web', among others)
the opcodes are shown in decimal.

9.2.1 DVItype output example

As an example of the output from DVItype (see section above), here is its (abridged)
translation of the `story.dvi' resulting from running the example in The TEXbook, with`-output-level=4' and `-show-opcodes' on.

...
Options selected:

Starting page = *
Maximum number of pages = 1000000
Output level = 4 (the works)
Resolution = 300.00000000 pixels per inch

numerator/denominator=25400000/473628672
magnification=1000; 0.00006334 pixels per DVI unit
' TeX output 1992.05.17:0844'
Postamble starts at byte 564.

Chapter 9: DVI utilities 42

maxv=43725786, maxh=30785863, maxstackdepth=3, totalpages=1
Font 33: cmsl10---loaded at size 655360 DVI units
Font 23: cmbx10---loaded at size 655360 DVI units
Font 0: cmr10---loaded at size 655360 DVI units
42: beginning of page 1
87: push {141}
level 0:(h=0,v=0,w=0,x=0,y=0,z=0,hh=0,vv=0)
88: down3 -917504 {159} v:=0-917504=-917504, vv:=-58
92: pop {142}
...
104: putrule {137} height 26214, width 30785863 (2x1950 pixels)
113: down3 5185936 {159} v:=655360+5185936=5841296, vv:=370
117: push {141}
level 1:(h=0,v=5841296,w=0,x=0,y=0,z=0,hh=0,vv=370)
118: right4 12265425 {146} h:=0+12265425=12265425, hh:=777
[]
123: fntdef1 23 {243}: cmbx10
145: fntnum23 {194} current font is cmbx10
146: setchar65 h:=12265425+569796=12835221, hh:=813
147: w3 251220 {150} h:=12835221+251220=13086441, hh:=829
151: setchar83 h:=13086441+418700=13505141, hh:=856
...
164: setchar82 h:=17448202+565245=18013447, hh:=1142
165: x0 -62805 {152} h:=18013447-62805=17950642, hh:=1138
166: setchar89 h:=17950642+569796=18520438, hh:=1174
[A SHORT STORY]
167: pop {142}
level 1:(h=0,v=5841296,w=0,x=0,y=0,z=0,hh=0,vv=370)
...
550: pop {142}
level 0:(h=0,v=42152922,w=0,x=0,y=0,z=0,hh=0,vv=2670)
551: down3 1572864 {159} v:=42152922+1572864=43725786, vv:=2770
555: push {141}
level 0:(h=0,v=43725786,w=0,x=0,y=0,z=0,hh=0,vv=2770)
556: right4 15229091 {146} h:=0+15229091=15229091, hh:=965
561: setchar49 h:=15229091+327681=15556772, hh:=986
[1]
562: pop {142}
level 0:(h=0,v=43725786,w=0,x=0,y=0,z=0,hh=0,vv=2770)
563: eop {140}

Explanation:
� The DVItype options are recorded at the beginning, followed by global information

about the document, including fonts used.
� Each DVI command is preceded by its byte position in the �le (`42:', `87:', . . .),

and (because of the `-show-opcodes') followed by its decimal opcode value in braces
(`{141}', `{142}', . . .).

� The `level' lines record information about the DVI stack; `h' and `v' de�ne the current

Chapter 9: DVI utilities 43

position in DVI units, while `hh' and `vv' are the same in pixels.
� Text sequences are summarized in brackets, as in `[A SHORT STORY]' and the `[1]'.

Chapter 10: Font utilities 44

10 Font utilities

The Web2c programs described here convert between various TEX-related font formats;
the �rst section below brie
y describes the formats. GFtoPK is the only one that is routinely
used, as Metafont outputs GF format, but it's most e�cient for device drivers to use PK.

The precise de�nitions of the PK, GF, TFM, PL, VF, and VPL formats mentioned below
are in the source �les that read them; `pktype.web', `gftype.web', `tftopl.web', etc.

10.1 Font �le formats
(For another perspective on this, see section \Font concepts" in Dvips).
Font �les come in several varieties, with su�xes like:

.tfm .*pk .*gf .*pxl (obsolete) .pl .mf .vf .vpl
Each represents a �le format.

A TFM (TEX font metric) �le is a compact binary �le that contains information about
each character in a font, about combinations of characters within that font, and about the
font as a whole. The font metric information contained in TFM �les is device-independent
units is used by TEX to do typesetting. Unlike the bitmap (raster) fonts described below,
TFM font �les contain no information about the shapes of characters. They describe rect-
angular areas and combinations thereof, but not what will eventually be printed in those
areas.

Since TEX does scaling calculations, one TFM �le serves for all magni�cations of a given
typeface. On the other hand, the best printed results are obtained when magni�ed (or
reduced fonts) are not produced geometrically (as done by PostScript, for example) but
rather optically, with each size a separate design (as done with Computer Modern and the
EC fonts, for example); then a separate TFM �le is needed for each size.

At any rate, TEX produces a DVI (DeVice Independent) �le from your source document.
In order to print DVI �les on real devices, you need font �les de�ning digitized character
shapes and other data. Then previewers and printer-driver programs can translate your
DVI �les into something usable by your monitor or printer. Bitmap fonts come with su�xes
such as `.600pk' or `.600gf' or `.3000pxl', where the `600' is the horizontal dots-per-inch
resolution at which the font was produced, and the `pk' or `gf' or `pxl' indicates the font
format. Outline fonts in PostScript Type 1 format have su�xes such as `.pfa' or `.pfb'.

Fonts in pk (packed) format are in the tightly packed raster format that is pretty much
the standard today. They take up less space than fonts in the gf (generic font) format that
Metafont generates, and far less space than fonts in pxl format. Fonts in pxl format take
up gross amounts of disk space and permit only 128 characters. They are obsolete.

Font �les with the `.pl' (property list) su�x are the plain text (human-readable) analog
of the binary `.tfm' �les. The TFtoPL and PLtoTF programs convert between the two
formats (see Section 10.6 [tftopl invocation], page 49 and Section 10.7 [pltotf invocation],
page 51).

Font �les with the `.mf' su�x are in Metafont source format. These are the �les used
by Metafont to generate rastered fonts for speci�c typefaces at speci�c magni�cations for
the speci�c resolution and type of mapping used by your device.

Chapter 10: Font utilities 45

The su�x `.vf' identi�es \virtual font" �les, for which `.vpl' is the human-readable
analog. See Section 10.8 [vftovp invocation], page 51 and Section 10.9 [vptovf invocation],
page 52. For further discussion of virtual fonts, see `CTAN:/doc/virtual-fonts.knuth',
`CTAN:/help/virtualfonts.txt', and section \Virtual fonts" in Dvips.

(This section is based on documentation in the original Unix TEX distribution by Pierre
MacKay and Elizabeth Tachikawa.)

10.2 GFtoPK: Generic to packed font conversion
GFtoPK converts a generic font (GF) �le output by, for example, Metafont (see Sec-

tion 5.1 [mf invocation], page 22) to a packed font (PK) �le. PK �les are considerably
smaller than the corresponding gf �les, so they are generally the bitmap font format of
choice. Some DVI-processing programs, notably Dvips, only support PK �les and not GF
�les. Synopsis:

gftopk [option]... gfname.dpi[gf] [pk�le]
The font gfname is searched for in the usual places (see section \Glyph lookup" in Kpath-
sea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1'
before running the program.

The su�x `gf' is supplied if not already present. This su�x is not an extension; no `.'
precedes it: for instance, `cmr10.600gf'.

If pk�le is not speci�ed, the output is written to the basename of `gfname.dpipk', e.g.,
`gftopk /wherever/cmr10.600gf' creates `./cmr10.600pk'.

The only options are `--verbose', `--help', and `--version' (see Section 3.2 [Common
options], page 7).

10.3 PKtoGF: Packed to generic font conversion
PKtoGF converts a packed font (PK) �le to a generic font (GF) �le. Since PK format is

much more compact than GF format, the most likely reason to do this is to run GFtype (see
Section 10.5 [gftype invocation], page 47) on the result, so you can see the bitmap images.
Also, a few old utility programs do not support PK format. Synopsis:

pktogf [option]... pkname.dpi[pk] [g�le]
The font pkname is searched for in the usual places (see section \Glyph lookup" in Kpath-
sea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1'
before running the program.

The su�x `pk' is supplied if not already present. This su�x is not an extension; no `.'
precedes it: for instance, `cmr10.600pk'.

If g�le is not speci�ed, the output is written to the basename of `pkname.dpigf', e.g.,
`pktogf /wherever/cmr10.600pk' creates `./cmr10.600gf'.

The only options are `--verbose', `--help', and `--version' (see Section 3.2 [Common
options], page 7).

Chapter 10: Font utilities 46

10.4 PKtype: Plain text transliteration of packed fonts
PKtype translates a packed font (PK) bitmap �le (as output by GFtoPK, for example)

to a plain text �le that humans can read. It also serves as a PK-validating program, i.e., if
PKtype can read a �le, it's correct. Synopsis:

pktype pkname.dpi[pk]
The font pkname is searched for in the usual places (see section \Glyph lookup" in

Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to
`-1' before running the program.

The su�x `pk' is supplied if not already present. This su�x is not an extension; no `.'
precedes it: for instance, `cmr10.600pk'.

The translation is written to standard output.
The only options are `-help' and `-version' (see Section 3.2 [Common options], page 7).
As an example of the output, here is the (abridged) translation of the letter `K' in

`cmr10', as rendered at 600 dpi with the mode `ljfour' from modes.mf (available from
`ftp://ftp.tug.org/tex/modes.mf').

955: Flag byte = 184 Character = 75 Packet length = 174
Dynamic packing variable = 11
TFM width = 815562 dx = 4259840
Height = 57 Width = 57 X-offset = -3 Y-offset = 56
[2]23(16)17(8)9(25)11(13)7(27)7(16)7(28)4(18)7(28)2(20)7(27)...
...
(14)9(24)12(5)[2]23(13)21

Explanation:
`955' The byte position in the �le where this character starts.
`Flag byte'
`Dynamic packing variable'

Related to the packing for this character; see the source code.
`Character'

The character code, in decimal.
`Packet length'

The total length of this character de�nition, in bytes.
`TFM width'

The device-independent (TFM) width of this character. It is 2^24 times the
ratio of the true width to the font's design size.

`dx' The device-dependent width, in scaled pixels, i.e., units of horizontal pixels
times 2^16.

`Height'
`Width' The bitmap height and width, in pixels.
`X-offset'
`Y-offset'

Horizontal and vertical o�set from the upper left pixel to the reference (origin)
pixel for this character, in pixels (right and down are positive). The reference

Chapter 10: Font utilities 47

pixel is the pixel that occupies the unit square in Metafont; the Metafont ref-
erence point is the lower left hand corner of this pixel. Put another way, the
x-o�set is the negative of the left side bearing; the right side bearing is the
horizontal escapement minus the bitmap width plus the x-o�set.

`[2]23(16)...'
Finally, run lengths of black pixels alternate with parenthesized run lengths of
white pixels, and brackets indicate a repeated row.

10.5 GFtype: Plain text transliteration of generic fonts
GFtype translates a generic font (GF) bitmap �le (as output by Metafont, for example)

to a plain text �le that humans can read. It also serves as a GF-validating program, i.e., if
GFtype can read a �le, it's correct. Synopsis:

gftype [option]... gfname.dpi[gf]
The font gfname is searched for in the usual places (see section \Glyph lookup" in

Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to
`-1' before running the program.

The su�x `gf' is supplied if not already present. This su�x is not an extension; no `.'
precedes it: for instance, `cmr10.600gf'.

The translation is written to standard output.
The program accepts the following options, as well as the standard `-help' and

`-version' (see Section 3.2 [Common options], page 7):
`-images' Show the characters' bitmaps using asterisks and spaces.
`-mnemonics'

Translate all commands in the GF �le.
As an example of the output, here is the (abrdiged) translation of the letter `K' in

`cmr10', as rendered at 600 dpi with the mode `ljfour' from `modes.mf' (available from
ftp://ftp.tug.org/tex/modes.mf), with both `-mnemonics' and `-images' enabled.

GFtype outputs the information about a character in two places: a main de�nition and
a one-line summary at the end. We show both. Here is the main de�nition:

2033: beginning of char 75: 3<=m<=60 0<=n<=56
(initially n=56) paint (0)24(12)20
2043: newrow 0 (n=55) paint 24(12)20
2047: newrow 0 (n=54) paint 24(12)20
2051: newrow 0 (n=53) paint 24(12)20
2055: newrow 7 (n=52) paint 10(21)13
2059: newrow 8 (n=51) paint 8(23)9
...
2249: newrow 8 (n=5) paint 8(23)11
2253: newrow 7 (n=4) paint 10(22)12
2257: newrow 0 (n=3) paint 24(11)22
2261: newrow 0 (n=2) paint 24(11)22
2265: newrow 0 (n=1) paint 24(11)22
2269: newrow 0 (n=0) paint 24(11)22

Chapter 10: Font utilities 48

2273: eoc
.<--This pixel's lower left corner is at (3,57) in METAFONT coordinates
************************ ********************
************************ ********************
************************ ********************
************************ ********************

********** *************
******** *********

...
******** ***********
********** ************

************************ **********************
************************ **********************
************************ **********************
************************ **********************
.<--This pixel's upper left corner is at (3,0) in METAFONT coordinates

Explanation:
`2033'
`2043'
`...' The byte position in the �le where each GF command starts.
`beginning of char 75'

The character code, in decimal.
`3<=m<=60 0<=n<=56'

The character's bitmap lies between 3 and 60 (inclusive) horizontally, and be-
tween 0 and 56 (inclusive) vertically. (m is a column position and n is a row
position.) Thus, 3 is the left side bearing. The right side bearing is the hori-
zontal escapement (given below) minus the maximum m.

`(initially n=56) paint (0)24(12)20'
The �rst row of pixels: 0 white pixels, 24 black pixels, 12 white pixels, etc.

`newrow 0 (n=55) paint 24(12)20'
The second row of pixels, with zero leading white pixels on the row.

`eoc' The end of the main character de�nition.
Here is the GF postamble information that GFtype outputs at the end:

Character 75: dx 4259840 (65), width 815562 (64.57289), loc 2033
Explanation:

`dx' The device-dependent width, in scaled pixels, i.e., units of horizontal pixels
times 2^16. The `(65)' is simply the same number rounded. If the vertical
escapement is nonzero, it would appear here as a `dy' value.

`width' The device-independent (TFM) width of this character. It is 2^24 times the
ratio of the true width to the font's design size. The `64.57289' is the same
number converted to pixels.

`loc' The byte position in the �le where this character starts.

Chapter 10: Font utilities 49

10.6 TFtoPL: TEX font metric to property list conversion
TFtoPL translates a TEX font metric (TFM, see section \Metric �les" in Dvips) �le

(as output by Metafont, for example) to property list format (a list of parenthesized items
describing the font) that humans can edit or read. This program is mostly used by people
debugging TEX implementations, writing font utilities, etc. Synopsis:

tftopl [option]... tfmname[.tfm] [pl�le[.pl]]
The font tfmname (extended with `.tfm' if necessary) is searched for in the usual places

(see section \Supported �le formats" in Kpathsea). To see all the relevant paths, set the
environment variable KPATHSEA_DEBUG to `-1' before running the program.

If pl�le (which is extended with `.pl' if necessary) is not speci�ed, the property list �le
is written to standard output. The property list �le can be converted back to TFM format
by the companion program TFtoPL (see the next section).

The program accepts the following option, as well as the standard `-verbose', `-help'
and `-version' (see Section 3.2 [Common options], page 7):
`-charcode-format=type'

Output character codes in the PL �le according to type: either `octal' or
`ascii'. Default is `ascii' for letters and digits, octal for all other characters.
Exception: if the font's coding scheme starts with `TeX math sy' or `TeX math
ex', all character codes are output in octal.
In `ascii' format, character codes that correspond to graphic characters, except
for left and right parentheses, are output as a `C' followed by the single character:
`C K', for example. In octal format, character codes are output as the letter `O'
followed by octal digits, as in `O 113' for `K'.
`octal' format is useful for symbol and other non-alphabetic fonts, where using
ASCII characters for the character codes is merely confusing.

As an example of the output, here is the (abridged) property list translation of
`cmr10.tfm':

(FAMILY CMR)
(FACE O 352)
(CODINGSCHEME TEX TEXT)
(DESIGNSIZE R 10.0)
(COMMENT DESIGNSIZE IS IN POINTS)
(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)
(CHECKSUM O 11374260171)
(FONTDIMEN

(SLANT R 0.0)
(SPACE R 0.333334)
(STRETCH R 0.166667)
(SHRINK R 0.111112)
(XHEIGHT R 0.430555)
(QUAD R 1.000003)
(EXTRASPACE R 0.111112)
)

(LIGTABLE

Chapter 10: Font utilities 50

...
(LABEL C f)
(LIG C i O 14)
(LIG C f O 13)
(LIG C l O 15)
(KRN O 47 R 0.077779)
(KRN O 77 R 0.077779)
(KRN O 41 R 0.077779)
(KRN O 51 R 0.077779)
(KRN O 135 R 0.077779)
(STOP)
...
)

...
(CHARACTER C f

(CHARWD R 0.305557)
(CHARHT R 0.694445)
(CHARIC R 0.077779)
(COMMENT

(LIG C i O 14)
(LIG C f O 13)
(LIG C l O 15)
(KRN O 47 R 0.077779)
(KRN O 77 R 0.077779)
...
)

)
...

As you can see, the general format is a list of parenthesized properties, nested where
necessary.
� The �rst few items (FAMILY, FACE, and so on) are the so-called headerbyte information

from Metafont, giving general information about the font.
� The FONTDIMEN property de�nes the TEX \fontdimen values.
� The LIGTABLE property de�nes the ligature and kerning table. LIG properties de�ne

ligatures: in the example above, an `f' (in the `LABEL') followed by an `i' is a ligature,
i.e., a typesetting program like TEX replaces those two consecutive characters by the
character at position octal '014 in the current font|presumably the `�' ligature. KRN
properties de�ne kerns: if an `f' is followed by character octal '047 (an apostrophe),
TEX inserts a small amount of space between them: 0.077779 times the design size the
font was loaded at (about three-quarters of a printer's point by default in this case, or
.001 inches).

� The CHARACTER property de�nes the dimensions of a character: its width, height, depth,
and italic correction, also in design-size units, as explained in the previous item. For
our example `f', the depth is zero, so that property is omitted. TFtoPL also inserts
any kerns and ligatures for this character as a comment.

Chapter 10: Font utilities 51

10.7 PLtoTF: Property list to TEX font metric conversion
PLtoTF translates a property list �le (as output by TFtoPL, for example) to TEX font

metric (TFM, see section \Metric �les" in Dvips) format. It's much easier for both programs
and humans to create the (plain text) property list �les and let PLtoTF take care of creating
the binary TFM equivalent than to output TFM �les directly. Synopsis:

pltotf [option]... pl�le[.pl] [tfm�le[.tfm]]
If tfm�le (extended with `.tfm' if necessary) is not speci�ed, the TFM �le is written

to the basename of `pl�le.tfm', e.g., `pltotf /wherever/cmr10.pl' creates `./cmr10.tfm'.
(Since TFM �les are binary, writing to standard output by default is undesirable.)

The only options are `-verbose', `-help', and `-version' (see Section 3.2 [Common
options], page 7).

For an example of property list format, see the previous section.

10.8 VFtoVP: Virtual font to virtual property lists
VFtoVP translates a virtual font metric (VF, see section \Virtual fonts" in Dvips) �le

and its accompanying TEX font metric (TFM, see section \Metric �les" in Dvips) �le (as
output by VPtoVF, for example) to virtual property list format (a list of parenthesized
items describing the virtual font) that humans can edit or read. This program is mostly
used by people debugging virtual font utilities. Synopsis:

vftovp [option]... vfname[.vf] [tfmname[.tfm] [vpl�le[.vpl]]]
The fonts vfname and tfmname (extended with `.vf' and `.tfm' if necessary) are

searched for in the usual places (see section \Supported �le formats" in Kpathsea). To see
all the relevant paths, set the environment variable KPATHSEA_DEBUG to `-1' before running
the program. If tfmname is not speci�ed, vfname (without a trailing `.vf') is used.

If vpl�le (extended with `.vpl' if necessary) is not speci�ed, the property list �le is
written to standard output. The property list �le can be converted back to VF and TFM
format by the companion program VFtoVP (see the next section).

The program accepts the following option, as well as the standard `-verbose', `-help'
and `-version' (see Section 3.2 [Common options], page 7):
`-charcode-format=type'

Output character codes in the PL �le according to type: either `octal' or
`ascii'. Default is `ascii' for letters and digits, octal for all other characters.
Exception: if the font's coding scheme starts with `TeX math sy' or `TeX math
ex', all character codes are output in octal.
In `ascii' format, character codes that correspond to graphic characters, except
for left and right parentheses, are output as a `C' followed by the single character:
`C K', for example. In octal format, character codes are output as the letter `O'
followed by octal digits, as in `O 113' for `K'.
`octal' format is useful for symbol and other non-alphabetic fonts, where using
ASCII characters for the character codes is merely confusing.

Chapter 10: Font utilities 52

10.9 VPtoVF: Virtual property lists to virtual font
VPtoVF translates a virtual property list �le (as output by VFtoVP, for example) to

virtual font (VF, see section \Virtual fonts" in Dvips) and TEX font metric (TFM, see
section \Metric �les" in Dvips) �les. It's much easier for both programs and humans to
create the (plain text) property list �les and let VPtoVF take care of creating the binary
VF and TFM equivalents than to output them directly. Synopsis:

vptovf [option]... vpl�le[.vpl] [v�le[.vf] [tfm�le[.tfm]]]
If v�le (extended with `.vf' if necessary) is not speci�ed, the VF �le is written to the

basename of `vpl�le.vf'; similarly for tfm�le. For example, `vptovf /wherever/ptmr.vpl'
creates `./ptmr.vf' and `./ptmr.tfm'.

The only options are `-verbose', `-help', and `-version' (see Section 3.2 [Common
options], page 7).

10.10 Font utilities available elsewhere
The Web2c complement of font utilities merely implements a few basic conversions.

Many other more sophisticated font utilities exist; most are in `CTAN:/fonts/utilities'
(for CTAN info, see section \unixtex.ftp" in Kpathsea). Here are some of the most
commonly-requested items:
� AFM (Adobe font metric) to TFM conversion: see section \Invoking afm2tfm" in

Dvips, and `CTAN:/fonts/utilities/afmtopl'.
� BDF (the X bitmap format) conversion: ftp://ftp.tug.org/tex/bdf.tar.gz.
� Editing of bitmap fonts: Xbfe from the GNU font utilities mentioned below; the

X BDF-editing programs available from ftp://ftp.x.org/R5contrib/xfed.tar.Z
and ftp://ftp.x.org/R5contrib/xfedor.tar.Z; and �nally, if your fonts have only
128 characters, you can use the old gftopxl, pxtoch, and chtopx programs from
ftp://ftp.tug.org/tex/web.

� PK bitmaps from PostScript fonts: gsftopk from the `xdvik' distribution
or from `CTAN:/fonts/utilities/gsftopk'; alternatively, ps2pk, from
`CTAN:/fonts/utilities/ps2pk'.

� PostScript Type 1 font format conversion (i.e., between PFA and PFB formats):
ftp://ftp.tug.org/tex/t1utils.tar.gz.

� Scanned image conversion: the (aging) GNU font utilities convert type specimen im-
ages to Metafont, PostScript, etc.: ftp://prep.ai.mit.edu/pub/gnu/fontutils-
0.6.tar.gz.

� Virtual font creation: `CTAN:/fonts/utilities/fontinst'.

Appendix A: Legalisms 53

Appendix A Legalisms

In general, each �le has its own copyright notice stating the copying permissions for that
�le. Following is a summary.

The Web2c system itself and most of the original WEB source �les are public domain.
`tex.web', the MLTEX code, `mf.web', and `bibtex.web', are copyrighted by their au-

thors. They may be copied verbatim, but may be modi�ed only through a `.ch' �le.
MetaPost-related �les, including `mp.web' itself, are copyrighted under X-like terms; the

precise notice is included below.
Finally, almost all of the Kpathsea library is covered by the GNU Library General

Public License, but part of one �le is covered by the regular GNU General Public License
(see section \Introduction" in Kpathsea). Therefore, the binaries resulting from a standard
Web2c compilation are also covered by the GPL; so if you (re)distribute the binaries, you
must also (o�er to) distribute the complete source that went into those binaries. See the
�les `COPYING' and `COPYING.LIB' for complete details on the GPL and LGPL.

The following notice must be included by the terms of the MetaPost copyright.
Permission to use, copy, modify, and distribute this software and its documen-
tation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that the copyright
notice and this permission notice and warranty disclaimer appear in supporting
documentation, and that the names of AT&T Bell Laboratories or any of its
entities not be used in advertising or publicity pertaining to distribution of the
software without speci�c, written prior permission.
AT&T disclaims all warranties with regard to this software, including all implied
warranties of merchantability and �tness. In no event shall AT&T be liable
for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or pro�ts, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use
or performance of this software.

Appendix B: References 54

Appendix B References

1. Kpathsea: See section \Top" in Kpathsea.
2. Dvips and Afm2tfm: See section \Top" in Dvips.
3. For a bibliography of formal articles and technical reports on the TEX project, see the

books TEX: The Program or Metafont: The Program cited below.
4. TUGboat: ftp://ftp.math.utah.edu/pub/tex/bib/tugboat.bib.
5. TEX and computer typesetting in general:

ftp://ftp.math.utah.edu/pub/tex/bib/texbook1.bib.
6. [Bil87] Neenie Billawala. Write-white printing engines and tuning fonts with Metafont.

TUGboat, 8(1):29{32, April 1987.
7. [GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTEX

Companion. Addison-Wesley, Reading, MA, USA, 1994.
8. [Hob89] John D. Hobby. A Metafont-like system with PS output. TUGboat, 10(4):505{

512, December 1989.
9. [Hob92] John D. Hobby. A User's Manual for MetaPost. Technical Report CSTR-162,

AT&T Bell Laboratories, 1992.
10. [Hob93] John D. Hobby. Drawing Graphs with MetaPost. Technical Report CSTR-164,

AT&T Bell Laboratories, 1993.
11. [HS91] Samuel P. Harbison and Guy L. Steele Jr. C|A Reference Manual. Prentice-

Hall, Upper Saddle River, NJ 07458, USA, third edition, 1991. An authoritative refer-
ence to the C programming language, and a good companion to Kernighan and Ritchie.

12. [KL93] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Docu-
mentation, Version 3.0. Addison-Wesley, Reading, MA, USA, 1993.

13. [Knu84] Donald E. Knuth. A torture test for TEX. Report No. STAN-CS-84-1027,
Stanford University, Department of Computer Science, 1984.

14. [Knu86a] Donald E. Knuth. A Torture Test for METAFONT. Report No. STAN-CS-
86-1095, Stanford University, Department of Computer Science, 1986.

15. [Knu86b] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

16. [Knu86c] Donald E. Knuth. TEX: The Program, volume B of Computers and Typeset-
ting. Addison-Wesley, Reading, MA, USA, 1986.

17. [Knu86d] Donald E. Knuth. The METAFONTbook, volume C of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

18. [Knu86e] Donald E. Knuth. METAFONT: The Program, volume D of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

19. [Knu86f] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

20. [Knu89] Donald E. Knuth. The errors of TEX. Software|Practice and Experience,
19(7):607{681, July 1989. This is an updated version of iteKnuth:1988:ET.

21. [Knu90] Donald Knuth. Virtual Fonts: More Fun for Grand Wizards. TUGboat,
11(1):13{23, April 1990.

Appendix B: References 55

22. [Knu92] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27.
Stanford University Center for the Study of Language and Information, Stanford, CA,
USA, 1992.

23. [Lam94] Leslie Lamport. LaTEX: A Document Preparation System: User's Guide
and Reference Manual. Addison-Wesley, Reading, MA, USA, second edition, 1994.
Reprinted with corrections in 1996.

24. [Lia83] Franklin Mark Liang. Word hy-phen-a-tion by com-pu-ter. Technical Report
STAN-CS-83-977, Stanford University, August 1983.

25. [Mac91] Pierre A. MacKay. Looking at the pixels: Quality control for 300 dpi laser
printer fonts, especially Metafonts. In Robert A. Morris and Jacques Andre, editors,
Raster Imaging and Digital Typography II|Papers from the second RIDT meeting,
held in Boston, Oct. 14{16, 1991, pages 205{215, New York, 1991. Cambridge Univer-
sity Press.

26. [Spi89] Michael D. Spivak. LAMSTEX, The Synthesis. The TEXplorators Corporation,3701 W. Alabama, Suite 450-273, Houston, TX 77027, USA, 1989.
27. [Spi90] Michael D. Spivak. The Joy of TEX|A Gourmet Guide to Typesetting with

the AMSTEX macro package. American Mathematical Society, Providence, RI, USA,
2nd revised edition, 1990.

Index 56

Index

(Index is nonexistent)

i

Table of Contents

1 Introduction . 1

2 Installation . 2
2.1 configure options . 2
2.2 Compile-time options . 3
2.3 Additional targets . 4
2.4 Trip, trap, and mptrap: Torture tests . 5
2.5 Runtime options . 5

3 Commonalities. 7
3.1 Option conventions . 7
3.2 Common options . 7
3.3 Path searching . 8
3.4 Output �le location . 9
3.5 Three programs: Metafont, MetaPost, and TEX 9

3.5.1 Initial and virgin . 9
3.5.1.1 Preloaded executables 10

3.5.2 Memory dumps . 10
3.5.2.1 Creating memory dumps 10
3.5.2.2 Determining the memory dump to use . . 11
3.5.2.3 Hardware and memory dumps 11

3.5.3 Editor invocation . 12
3.5.4 \input �lenames . 12

4 TEX: Typesetting . 14
4.1 tex invocation . 14
4.2 initex invocation . 16
4.3 virtex invocation . 17
4.4 Formats . 17
4.5 Languages and hyphenation . 18

4.5.1 MLTEX: Multi-lingual TEX . 18
4.5.1.1 \charsubdef: Character substitutions . . 18
4.5.1.2 \tracingcharsubdef: Substitution

diagnostics . 19
4.5.2 TCX �les: Character translations 19
4.5.3 Patgen: Creating hyphenation patterns 20

4.6 IPC and TEX . 21
4.7 TEX extensions . 21

ii
5 Metafont: Creating typeface families 22

5.1 mf invocation . 22
5.2 inimf invocation . 23
5.3 virmf invocation . 24
5.4 Modes: Device de�nitions for Metafont 24
5.5 Online Metafont graphics . 25
5.6 GFtoDVI: Character proofs of fonts . 26
5.7 MFT: Prettyprinting Metafont source . 27

6 MetaPost: Creating technical illustrations . . 29
6.1 mpost invocation . 29
6.2 inimpost invocation . 31
6.3 virmpost invocation . 31
6.4 MakeMPX: Support MetaPost labels . 31
6.5 DVItoMP: DVI to MPX conversion . 33
6.6 DMP: Ditro� to MPX conversion . 33
6.7 MPto: Extract labels from MetaPost input 34
6.8 Newer: Compare �le modi�cation times 34

7 BibTEX: Bibliographies 36
7.1 BibTEX invocation . 36
7.2 Basic BibTEX style �les . 37

8 WEB: Literate programming 38
8.1 Tangle: Translate WEB to Pascal . 38
8.2 Weave: Translate WEB to TEX. 38
8.3 Pooltype: Display WEB pool �les . 39

9 DVI utilities . 40
9.1 DVIcopy: Canonicalize virtual font references 40
9.2 DVItype: Plain text transliteration of DVI �les 40

9.2.1 DVItype output example . 41

10 Font utilities . 44
10.1 Font �le formats . 44
10.2 GFtoPK: Generic to packed font conversion 45
10.3 PKtoGF: Packed to generic font conversion 45
10.4 PKtype: Plain text transliteration of packed fonts 46
10.5 GFtype: Plain text transliteration of generic fonts 47
10.6 TFtoPL: TEX font metric to property list conversion 49
10.7 PLtoTF: Property list to TEX font metric conversion 51
10.8 VFtoVP: Virtual font to virtual property lists 51
10.9 VPtoVF: Virtual property lists to virtual font 52
10.10 Font utilities available elsewhere . 52

Appendix A Legalisms . 53

iii
Appendix B References . 54

Index . 56

	Introduction
	Installation
	configure options
	Compile-time options
	Additional targets
	Trip, trap, and mptrap: Torture tests
	Runtime options

	Commonalities
	Option conventions
	Common options
	Path searching
	Output file location
	Three programs: Metafont, MetaPost, and TeX{}
	Initial and virgin
	Preloaded executables

	Memory dumps
	Creating memory dumps
	Determining the memory dump to use
	Hardware and memory dumps

	Editor invocation
	{@rawbackslashxx }input filenames

	TeX{}: Typesetting
	tex invocation
	initex invocation
	virtex invocation
	Formats
	Languages and hyphenation
	MLTeX{}: Multi-lingual TeX{}
	{@rawbackslashxx }charsubdef: Character substitutions
	{@rawbackslashxx }tracingcharsubdef: Substitution diagnostics

	TCX files: Character translations
	Patgen: Creating hyphenation patterns

	IPC and TeX{}
	TeX{} extensions

	Metafont: Creating typeface families
	mf invocation
	inimf invocation
	virmf invocation
	Modes: Device definitions for Metafont
	Online Metafont graphics
	GFtoDVI: Character proofs of fonts
	MFT: Prettyprinting Metafont source

	MetaPost: Creating technical illustrations
	mpost invocation
	inimpost invocation
	virmpost invocation
	MakeMPX: Support MetaPost labels
	DVItoMP: DVI to MPX conversion
	DMP: Ditroff to MPX conversion
	MPto: Extract labels from MetaPost input
	Newer: Compare file modification times

	BibTeX{}: Bibliographies
	BibTeX{} invocation
	Basic BibTeX{} style files

	WEB: Literate programming
	Tangle: Translate WEB to Pascal
	Weave: Translate WEB to TeX{}
	Pooltype: Display WEB pool files

	DVI utilities
	DVIcopy: Canonicalize virtual font references
	DVItype: Plain text transliteration of DVI files
	DVItype output example

	Font utilities
	Font file formats
	GFtoPK: Generic to packed font conversion
	PKtoGF: Packed to generic font conversion
	PKtype: Plain text transliteration of packed fonts
	GFtype: Plain text transliteration of generic fonts
	TFtoPL: TeX{} font metric to property list conversion
	PLtoTF: Property list to TeX{} font metric conversion
	VFtoVP: Virtual font to virtual property lists
	VPtoVF: Virtual property lists to virtual font
	Font utilities available elsewhere

	Legalisms
	References
	Index

