
B a s k e r v i l l e
The Annals of the UK TEX Users’ Group Editor: Editor: Sebastian Rahtz Vol. 5 No. 2

ISSN 1354–5930 March 1995

Articles may be submitted via electronic mail tobaskerville@tex.ac.uk , or on MSDOS-compatible discs, to
Sebastian Rahtz, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, to whom any
correspondence concerningBaskervilleshould also be addressed.

This reprint ofBaskervilleis set in Times Roman, with Computer Modern Typewriter for literal text; the source is
archived onCTAN in usergrps/uktug .

Back issues from the previous 12 months may be ordered from UKTUG for £2 each; earlier issues are archived on
CTAN in usergrps/uktug .

Please send UKTUG subscriptions, and book or software orders, to Peter Abbott, 1 Eymore Close, Selly
Oak, Birmingham B29 4LB. Fax/telephone: 0121 476 2159. Email enquiries about UKTUG touktug-
enquiries@tex.ac.uk .

Contents

I Editorial . 3
1 Portable documents meeting . 3
2 Bits and pieces . 3

II Letters to the editor 1: Maths in LATEX, Part 3 . 3
III Letters to the editor 2: Maths in LATEX, Part 3. 5
IV Letters to the editor 3: DANTE . 6
V Portable Documents: Why Use SGML?. 7

1 Introduction . 7
2 Documents . 7
3 Portability . 7
4 Who needs portable documents, and why? 7
5 Examples of successful portability. 8
6 Achieving portability . 8
7 Why use SGML? . 8

7.1 An example . 8
8 The future . 8

VI Formatting SGML Manuscripts. 9
VIIHTML & T EX: Making them sweat. 14

1 Markup . 14
2 The World Wide Web . 14

2.1 HTML Markup . 15
2.2 Implementation . 15
2.3 Presentation . 17

3 Publishing with HTML . 17
3.1 Printing from HTML . 18
3.2 Problems . 18

4 Development . 18
VIIIThe Inside Story of Life at Wiley with SGML, LATEX and Acrobat. 20

1 Introduction . 20
2 Setting the Scene. 20
3 Complementary not Competitive . 20
4 SGML in Practice . 20

4.1 Production Considerations. 21

–1–

reprinted from Baskerville Volume 5, Number 2

4.2 Problems Encountered. 21
5 LATEX in Practice . 21

5.1 Steps in the Process . 21
6 Acrobat at Arm’s Length . 22
7 Conclusion . 23

IX Theory into Practice: working with SGML, PDF and LATEX at Elsevier Science. 24
1 The Company . 24
2 The move into electronic publishing . 24
3 The concept of Computer Aided Publishing (CAP) 24
4 Practicalities: How we do it. 24
5 TEX and LATEX . 25
6 Practical Problems . 25
7 The Future . 26

X SGML and LATEX . 27
0.1 Further reading . 29

XI Questions and Answers. 30
XIIMaths in LATEX: Part 4, Numbered and Unnumbered Things. 33

5 Numbered and Unnumbered Displays. 34
5.1 Unnumbered Maths displays. 34
5.2 Unnumbered word displays . 34
5.3 Numbered Maths displays . 34
5.4 Numbered word displays . 34
5.5 Numbering equations within sections 35
5.6 One-off numbering of equations . 35
5.7 Subsequences of equations . 36

6 Theorems and their friends . 36
6.1 Basics . 36
6.2 Named theorems . 37
6.3 Sequences of numbering . 37
6.4 Unnumbered environments . 38
6.5 Other systems of numbering . 38
6.6 Changing the fonts . 38
6.7 Proofs . 39
6.8 Questions and Exercises . 39

7 Other numbered things . 40
7.1 Numbered lists . 40
7.2 Footnotes . 40

XIIIOne by one the guests arrive. 41
1 Why, . 41
2 Conclusion . 42

XIVSomething is happening, but you don’t know what it is. 43
XVMalcolm’s Gleanings. 45

1 Spivaking anyone? . 45
2 Stability or statis . 45
3 TUGboat . 45
4 A few last words . 45

–2–

I Editorial

1 Portable documents meeting

Most of the articles in this issue are based on talks given at the UKTUG’s successfulPortable Documentsmeeting
on January 19th at the Bridewell Theatre, Fleet Street. We are very grateful to Jonathan Fine for his hard work in
transcribing the panel session, and to him, Malcolm Clark and Carol Hewlett for working so hard to make the day a
success. Jonathan also provided the following summary of the papers:

Why Use SGML?by David Barron gives an overview of why portable documents are important, and the value
of SGML. Formatting SGML Manuscriptsby Jonathan Fine first describes some typographic problems, and then
describes a new TEX macro package which will typeset directly from SGML document instances.HTML & TEX
by Peter Flynn gives an overview, from the HTML document side, of the rapidly expanding World Wide Web, and
expresses opinion as to its future.The Inside Story of Life at Wileyby Geeti Granger is just that. It provides a valuable
insight into the real-world problems and solutions that arise in a busy production department.Theory into Practice
. . . at Elsevier Scienceby Martin Key describes the progress they have made towards holding all new journal articles
in standard electronic form.Questions and Answers, prepared for publication by Jonathan Fine, is an edited version
of the lively and informative Panel Discussion which closed the Bridewell meeting.SGML and LATEX by Horst Szillat
compares the two, and argues that there is a need to manipulate the data during the conversion process. (This paper
was not presented at Bridewell.)

2 Bits and pieces

Readers will already have noticed that this issue ofBaskervillehas been expanded to make room for all the Bridwell
papers, as well as the usual more traditional TEX fare. Thankfully, almost no room is left for editorial comment. But
we do need room to pass on a correction from Arthur Smith about the HyperTEX project described inBaskerville4.5;
the mailing lists have changed:

I am currently maintaining two mailing lists based atsnorri.chem.washington.edu : hypertex-
announce is for major announcements of new software or macros, and hypetex-dev is for detailed discussions
of the development of HyperTEX. Send e-mail tomajordomo@snorri.chem.washington.edu with
subscription and information requests, or contact me directly (asmith@mammoth.chem.washington.
edu).

and to pass on important news from Peter Abbott. Firstly,Thinking in Postscriptby Glenn Reid is out of print and
Addison-Wesley say unlikely to be reprinted. So don’t order it. Secondly, Peter has negotiated group licences for
the shareware products OzTeX version 1.8; DVIPS,METAFONT and the Alpha text editor for Macintosh; and the
Eddi4TEX TEX shell and editor for DOS. Contact Peter for details if you want to take advantage of these licences; they
are only available to individual UKTUG members.

II Letters to the editor 1: Maths in LATEX, Part 3

I am delighted to see the esteemed Professor Bailey so wholeheartedly deprecate the re-definition of a Plain TEX
command by an adjunct package (AMSTEX); what is less clear is why she does not vent the same spleen on the
author(s) of LATEX, who have pre-empted many more fundamental commands than just\emptyset .

Yours etc,

Philip Taylor
The author replies:I think that there is some confusion here, as well as a difference of opinion. I was com-
plaining about a redefinition in the fileamstex.sty , which is a package explicitly for use with the LATEX
format. That is a different matter from a redefinition in a format file, such asAMSTEX.
In my opinion there is a world of difference between changing the definition of the name of a glyph, which any

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

author may want to use, and changing the definition of a programming command. The former should absolutely
not happen, because it affects people who have no idea how to get round it. I am agnostic about the latter, but
would not be surprised if it were necessary in a format file.

R. A. Bailey, QMW

–4–

III Letters to the editor 2: Maths in L ATEX, Part 3

David Carlisle

The comments on the inadvisability of redefining user level commands are valid, but the example in question,
\emptyset in the AMS packages, is just due to an error in the first printing ofThe LATEX Companion(as noted in
compan.err in the LATEX distribution.) The ‘amssymb’ package does not redefine\emptyset . It still looks like a
0 with a line through it. The same glyph as in plain TEX. \varnothing is a slashed-circle.

Actually this raises an interesting side issue. The error in the Companion printing was due to an error in the styles
for Lucida fonts. (The Companion does not use the cm or AMS fonts). As Lucida does provide both glyphs, it was
simply an error to have the names interchanged, but consider a hypothetical situation of a math font family that only
provides one slashed-closed-curve. How visually dis-similar to/0 may it be before it becomes unacceptable to assign
it to the command\emptyset ? For text fonts large differences are acceptable. ‘Q’ does not look much like ‘Q’ but
both are accessed by ‘Q’ and any differences are accepted by the reader as differences in font design. In mathematics
the situation is not at all clear. . .

reprinted from Baskerville Volume 5, Number 2

IV Letters to the editor 3: D ANTE

Philip Taylor

RHBNC;

Technical Director, NTS project

At the end of the first paragraph of “Malcolm’s Gleanings”, the author urges readers to ‘Expunge. . . from your minds
[the malicious and/or mischievous gossip that “DANTE was reluctant to support Haralambous’ and Plaice’s Omega
project since it was thought to compete with NTS”]’. Despite having a close and mutually beneficial relationship with
DANTE, such allegations were completely new to me, as I suspect they were to the majority if not all of your readers:
one must therefore ask at whose door these allegations of malice or mischief should properly be laid?

I would further add that I know of no-one, either within DANTE or within the NTS team, who would wish John
and Yannis anything less than complete success with their project; the world will be enriched, not diminished, by the
availability of alternative derivatives of TEX.

Yours etc.

reprinted from Baskerville Volume 5, Number 2

V Portable Documents: Why Use SGML?

David Barron

Department of Electronics and Computer Science

University of Southampton

1 Introduction

In this article we present a few ideas as a framework for the discussion of portable documents. We address a number
of questions:

• What are portable documents?
• Who needs them, and why?
• How to produce them, now and in the future

2 Documents

Traditionally, a document was a file (or a deck of cards), and consisted solely of text. Today, documents are typically
compound, a mixture of text and graphics (bit-map or line art) that can be rendered on paper or screen. Additionally,
they may include hypertext links (in which case they can only be viewed on screen). A recent development is the
ability to incorporate video and sound in a compound document, either embedded within the document or linked by a
pointer: such a document is amultimediadocument. Hypertext-style links may also be included to form ahypermedia
document: evidently, multimedia and hypermedia documents can only be ‘read’ on a suitably equipped computer
system.

World Wide Web (WWW) documents are a special case of compound hypermedia documents where the links are
to other documents elsewhere on the Internet. They can be regarded as virtual documents, in the sense that the whole
document never exists as a single identifiable object. More generally, we can define avirtual documentas a structured
collection of information from which instances of documents and other resources can be derived. Examples include:

• The Oxford English Dictionary which exists as a database from which are derived various printed editions (Shorter,
Concise, Pocket etc.), as well as the CD-ROM version
• Critical editions of a literary text, where a single source ‘document’ contains all the variations, and can be printed

out using different variants as the base text

3 Portability

The definition of portability that we shall use in this discussion is the ability to transmit the document digitally (over a
network, or on a disk or CD-ROM) and re-create a faithful rendering of the document after transmission, if need be on
a different hardware and/or software platform from that on which the document was originally created. It is important
to observe that there are three different forms in which the text and graphics in a document might be re-created:

• with absolute visual fidelity
• with approximate visual fidelity
• retaining content only

4 Who needs portable documents, and why?

Three different needs for portable documents can be adduced

1. Publishers need them in order to distribute electronic books and journals
2. Communities with common interests who need to share information need them. An example is a scientific research

community whose members use diverse hardware and software
3. Librarians responsible for digital archives need portable documents, since they cannot assume that a particular

hardware/software platform will exist in perpetuity

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

5 Examples of successful portability

• Computer science researchers and software manufacturers distribute documents as PostScript files. This works well
if the fonts employed are restricted to the basic 35, and the use of Adobe Acrobat (pdf files) increases portability
when other fonts are used.
• The Physics pre-print library at Los Alamos National Laboratory is used by many physicists world-wide: over

10,000 retrievals per day are reported. The archive holds pre-prints in LATEX and PostScript formats (figures in
PostScript only). This is successful because the Physics community has for some years used TEX as its preferred
means of exchanging information.
• WWW documents are highly portable, since their rendering is (almost entirely) determined by the browser soft-

ware, and the use of a common mark-up language (HTML) ensures portability

6 Achieving portability

At first sight it appears that portability might be achieved by agreeing standards (e.g. LATEX, PostScript, ODA, HTML).
At present there is too much choice, and no obvious winner, especially in hypermedia documents. This is a sign of
an immature technology. Another important fact to take into account is that it is difficult to impose standards in some
environments (e.g., academia) where personal preferences lead to the equivalent of religious wars.

Particular problems in achieving portability arise from varying fonts and character codes e.g. in handling European
languages. Unicode will go a long way towards solving the character codes problem.

7 Why use SGML?

SGML provides a formal and portable definition of document structure. SGML syntax can define a hierarchical struc-
ture of embedded document parts, and can associate a type with each component in the hierarchy. By associating a
rendering definition with each type of component, it is possible to achieve a portable document. In particular, SGML
provides a uniform archive format for a library of portable documents.

7.1 An example
Suppose it is required to maintain a library of technical documents in an environment where some authors use LATEX,
whilst others use Microsoft Word. We can define an SGML DTD for the document structure, together with LATEX and
Word styles to define the rendering. This opens up three possibilities:

1. Author in SGML and use a tool to produce a LATEX or Word version from which the printed version can be produced

2. Author in LATEX and use a tool to translate to SGML to produce the archive copy
3. Author in Word and use a tool to translate the RTF form to SGML to produce the archive copy.

In addition to the SGML version of the documents, the archive must contain the Word and LATEX style files and the
translation tools. Once this is done, anyone can collect a document, the required style files and tools and produce a
copy of the document. This will of course only work for text documents. For any document with graphics content, and
for hypermedia documents, more is required. This is possible in principle, but much remains to be done

8 The future

A combination of SGML and OpenDoc is probably the best way forward. OpenDoc provides an architecture for
portable documents: it treats a document as a container for a collection of ‘parts’, each of which can have other parts
embedded within it. Each type of part has associated programs to edit and render it, so that documents can be re-created
with varying degrees of fidelity depending on the availability of rendering software for the particular varieties of parts
that it includes.

OpenDoc is a dynamic architecture, and assumes that a new type of part may occur at any time. In principle SGML
can be used to describe the static structure of an OpenDoc document, providing the final link in the portability chain.

–8–

VI Formatting SGML Manuscripts

Jonathan Fine

This article is about typography, SGML, TEX, andSIMSIM, which is a new TEX macro package. Close by are copies
of several of the OHP transparencies. They were typesetdirectly from an SGML document instanceusingSIMSIM.

First some words about the title slide. Documents can be formatted for several purposes. They may be typeset for
printing, or for conversion to Adobe PDF format. They might be formatted for viewing on a computer monitor, as is
done by the WEB browsers for HTML. They might be formatted for display and alteration by a visual or WYSIWYG
editor. Formatting is the process of supplying fonts, dimensions, line and page breaking rules and so forth, so as to
produce a representation of the document that is (we hope) well adapted to the display medium and the needs of the
user. Rendering will convert this formatted document into bitmaps or whatever that can be displayed or printed.

In my opinion SGML is as important for structured documents as ASCII is for character sets (and SQL is for
databases). It is the standard that will allow different machines and different software programs to share documents.
In the title I use the words ‘manuscripts’ to emphasise that my focus is on human communication from author to
reader, and not transference of bytes from one machine to another. Human beings have special qualities, which can be
reflected in the manuscripts they produce. More on this later.

Still on the title slide, the subtitle ‘Much Ado about Nothing’ has two meanings. The first is that in five to ten years
the formatting of SGML manuscripts will be no big deal, just as today Postscript is nothing very special. The second
is that success requires taking pains or ‘making much ado’ over the spaces. Which brings us on to the second slide.

Spaces Between Words
Typography is not the only art where a sound sense of space is vital. Architecture and music are others. The quotation
from Schnabel expresses my view beautifully. It is one thing to get the fonts and sizes right (to play the notes on
the score) and another to get the little pauses or spaces right, and also the timing of the line and page breaks. InThe
TEXbook, Knuth quote Jan Tschichold “Every shape exists only because of the space around it. . . . Hence there is a
‘right’ position for every shape in every situation. If we succeed in finding that position, we have done our job.” Much
of the typographic art involves getting the space right. Getting the choice of fonts right is another skill.

Even if we cannot reach the subtle virtues just expressed, we should strive to avoid gross errors. I’m sure we have
all seen two words on a page with an extra space between them, as compared to their neighbors. Often this happens
because the author has for some reason placed two spaces between the words (this is the sort of things that humans
are good at doing) both of which have been treated as significant by the subsequent processing. TEX’s default reading
rules automatically solve most of these problems, but not when braces for emphasised text and the like are present.

The writing of this article (in LATEX) provided an example of this. In an earlier version I had written
\subsection*{ Who owns what?}

and the like to begin subsections. This results in an unwanted space at the start of the title. Like so:

Who owns what?
The making of books involves lots of co-operation, and the participants benefit when there are clear boundaries and
responsibilities. For example, many authors expect their spelling and punctuation to be corrected during the publishing
process, but object to their words being otherwise changed. Newspaper journalism necessarily has different rules,
as does academic journal publishing. But as a general rule the author supplies the words, the formatter the spaces.
Problems arise if the author has control over spacing, or fonts for that matter. During production copy-editing and
other changes will be made to the author’s words. If supplied as a computer file, the author can reasonably expect to
be sent back another computer file just like the one that was sent in, but containing the words as actually printed. This
returned file should not exercise any control over the spaces between words, for neither did the author’s original file.

Punctuation is a great problem. By and large, the author should supply the correct punctuation mark or logical
structure. The formatter must choose the font and the spacing around the punctuation mark. This will depend on the
rules of style required by the publisher. So at least three parties are involved. Should the design or rules or style used by
the formatter be changed, so too may the punctuation marks used. The more that can be programmed into the software,
the less need there is for human action. There will always be exceptions. Production staff will need on occasion to
impose their will on the software’s production of the formatted document.

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

FORMATTING

SGML

MANUSCRIPTS

- or -

MUCH ADO

ABOUT

NOTHING

UKTUG and BCS-EPSG meeting

(c) Copyright 1995
Jonathan Fine
203 Coldhams Lane
Cambridge
CB1 3HY

SPACES BETWEEN WORDS

The notes I handle no better
than many pianists. But the
pauses between the notes — ah,
that is where the art resides.

Artur Schnabel (1885–1951)

Basic to quality are the spaces between
words, the breaking of text into lines,
and the breaking of lines into pages.

Another basic is the space separating
vertically stacked elements.

Designers understand such things.

When the spacing between words or
elements is wrong, there is no remedy
to make the result good.

1

WHO OWNS WHAT?

The words belong to the author.

The spaces between the words belong
to the formatter (which should be
person and program working in
harmony).

Each participant needs to respect
the others.

Punctuation is a battlefield. It is
neither word nor space, but shares
qualities with both. Consider:

Rules of style.
Quote marks versus quote font.
Depends on language.
Interaction between space,
punctuation and change of font.

2

MANUSCRIPT PROBLEMS

Authors are not yet always perfect.
Just because it parse without error,
that doesn’t mean it is without error.

Should the messages

<mess>Hello world!</>

<mess> Hello world! </>

<mess> Hello world ! </>

be formatted identically? And how
should

one <bold> two </>

buckle <bold>my</> shoe

three<bold>four</>

close<bold> the </>door

be formatted? Is it the author, parser
or formatter who fixes such problems?

3

THE FLAVOUR OF SIMSIM

The SGML declarations

<!ELEMENT par ANY>

<!ATTLIST par

font (rm|bf|it) rm >

together with the code

def (par) // links to <par>

{

paragraph

{

// parameters go here

}

(par|font) // attribute

}

def (par*rm) // name token

// ... etc

tell SIMSIM what to do.

6

FIVE IMPORTANT QUESTIONS

When can I get SIMSIM?
I’m working on it! Hope for the
first test release within months.
This depends on clients’ non-SGML
requirements. Any takers?

Can SIMSIM do tables and math?
Yes. SIMSIM can be made to do
anything TEX can do.

Does SIMSIM implement all of SGML?
No. For markup minimization,
validation etc., use with a parser.

Is SIMSIM compatible with LaTEX?
Is LaTEX compatible with SGML?

What will it cost?
SIMSIM has been five years in
the making

7

Manuscript Problems

These will, in an ideal world, never arise. In an ideal world others do all they can to prevent or solve your problems. And
we do all we can to help others. In reality the author might be preparing the manuscript using an ordinary text editor,
or a word-processor with an SGML add-on. There are likely to be stray spaces and carriage returns scattered across
the file. There might even be space between the last word of a sentence and the closing period or other punctuation!
Particularly if an end-tag intervenes. If not ignored, if they influence the final printed page, then a few authors will
discover and use this feature. Others will be distracted from the writing of words by the need to get the spaces ‘right’.
But we have agreed that the spaces belong to the formatter. Thus, the three ‘Hello world’ messages should be formatted
identically. To do otherwise is to allow the author power over spacing.

For most elements it is reasonable to assume that their boundaries do not divide words. And also that between words
a space should be supplied. Thus, each line in the displayed nursery rhyme should be formatted in the same way. The
formatter should ignore ‘extra’ spaces and supply those that are ‘missing’. More subtle is this. What is the natural size
of space to provide between a bold word and a word in the default (say roman) font? This is a typographic question,

–10–

Formatting SGML Manuscripts

and so has nothing to do with which element (if any) the space character appears in. Should it be a bold-sized space, a
roman-sized space, the larger, some average, or some other value.

(The OHPs have been set, for simplicity, with a space between characters depending only on current font size, but
not font style. Where speed is more valuable than typography, as when an author is writing the words of a manuscript,
or when the display device is a computer monitor incapable of subtle expression, this is the right choice. A quality
publisher might wish to specify more closely the interword spacing.)

The thrust of this slide is that the formatting process cannot assume that the input file is ‘just so’ and correct for the
intended processing. More likely it is an electronic manuscript, with electronic analogues to the physical imperfections
that paper manuscripts present. We do hope, however, that it can be read.

What is TEX the program?
TEX is the portable programpar excellence. It also has very few bugs. It is stable across time. It has an ethos different
from commercial software, which often charges maintenance for bug reports to be responded to. With TEX one is given
a modest monetary reward for finding a bug.

It is worth remembering that LATEX is not only a macro package but also an input file syntax. Because TEX is
programmable, no fixed input syntax is required. Given sufficiently tricky macros, the mighty lion that is TEX can be
made to imitate other beasts, such as the unforgetting elephant that is SGML.SIMSIM is just such a set of macros.

(The usual TEX approach, when confronted with SGML files to typeset, is to translate into LATEX or the like before
calling on TEX to do the typesetting. However, it seems to me that this approach cannot but fail to give the author
control over spacing, and to mishandle manuscript problems, unless the translation process is extremely sophisticated.
It will need to know about the typography intended for each element and also the character data attributes. Add to this
the legendary problems LATEX has with verbatim in titles and so forth, and the limitations should become apparent.
Translation to LATEX might have been the best there was available, but it is certainly not the best that is possible.)

What isSIMSIM?
This brings us to the final part of the talk, which is a software announcement. The OHPs were typeset using a pre-
liminary version of a TEX macro packageSIMSIM that I have been developing for several years, and which is close to
completion. The English word ‘sesame’ is already a registered computer software trademark, so I have chosen to use
the Arabic word ‘simsim’. Both are descended from an Akkadian word, current in Mesopotamia at least 4500 years
ago. Simsim is one of the oldest words known to humanity. It is also the key in the classic story of Ali Babar.

There are two sides toSIMSIM. Input and output. Input is SGML and also style files. Output is pages formatted by
TEX. The title slide of the talk was typeset from:

<title-page title =
"FORMATTING / &SGML / MANUSCRIPTS /

- or - /
MUCH ADO / ABOUT /NOTHING"
>

<par> UKTUG and BCS-EPSG meeting </>

 (c) Copyright 1995 </>
 Jonathan Fine </>
 203 Coldhams Lane </>
 Cambridge </>
 CB1 3HY </>

</title-page>

Notice that the title has been entered as an attribute value, with the line breaks denoted by forward slash ‘/ ’ or
solidus characters. This is a notation in wide use for displaying line breaks in verse quoted as flowing text within a
paragraph. Suppose one were presented with the title slide and were asked to encode as an SGML element. This is
the sort of thing that the Text Encoding Initiative Guidelines were developed for. One would record that it was a title
page, that such and such was the title text, and so forth. It is this approach that led me to use the solidus to denote
line breaks in the title text. This then is the sort of input manuscript thatSIMSIM will be dealing with. Note that the

–11–

reprinted from Baskerville Volume 5, Number 2

formatter has not been misled by the irregular spaces in the title attribute value. The&SGMLis an entity reference. In
the title it produces itself in the current font, but elsewhere it is appearing in a smaller font. This is done using TEX’s
macro capabilities.

The Flavour ofSIMSIM

The parsing of an SGML manuscript makes the data within it available to the formatting (or whatever) application.
There is even a specification (the Element Structure Information Set) of what data is available and when. Built into
SIMSIM is an SGML parser. Writing aSIMSIM style file is a matter of linking TEX actions to SGML events, such as the
parsing of a start tag. The less technically minded might like to skim the following description as to how this is done.

Another part ofSIMSIM is an enhanced programming environment for the writing of TEX macros andSIMSIM style
files. Within aSIMSIM macro file the characters(par) denote a token that is called at the end of the parsing of a
<par> start tag. It is up to the application or style file to define this token to perform the required actions.

Start tags can carry attributes. The characters

(title-page|title)

in a SIMSIM file represent a control sequence whose expansion is the text read by the parser as the value of the
(character data) attributetitle of thetitle-page tag. It is then up to the style file to typeset this data, or to write
it to a file, or to otherwise dispose of it.

The other main type of attribute is the name-group. Loosely, this corresponds to the ‘radio buttons’ that graphical
user interfaces provided. Each such attribute has a short finite list of possible values. For example, the HTMLIMG tag
has anALIGN name group attribute, whose values can betop , middle , or bottom . BecauseSIMSIM incorporates
an SGML parser, the style file need not worry about getting this information. Indeed, great errors are liable to occur if
it attempts to do so. Rather, the parser makes this data available for the application to use.

For example, with the HTMLALIGN name group attribute the process goes like this. Within theSIMSIM program-
ming environment the characters

(img|align)

represent a token whose expansion will be set by the parser to be one of

(img*top)
(img*middle)
(img*bottom)

according to the option selected by the author of the manuscript. The style file should assign appropiate values to the
three tokens above, for example

let (img*top) = vtop
let (img*middle) = vbox
let (img*bottom) = vcenter

(these are illustrative values, and are not necessarily sensible) and then

(img|align)
{

// the image goes here
...

}

will cause the image to be processed in accordance with the attribute value specified in the manuscript. This is all
rather easier to do than to explain. Similar mechanisms are provided to link actions toSDATAentitities.

The observant reader may notice that I have played fast and loose with the case of tag and attribute names. For the
reference concrete syntax (used by almost all SGML applications) these names are to be converted to uppercase when
read. (This is controlled by a parameter in the SGML declaration.) This is in practice quite important, and soSIMSIM

converts to uppercase when it parses tag and attribute names, and the same with the programming environment.

Five Important Questions
This slide is my attempt to anticipate the questions the audience would like to ask. (The untechnical should stop
skimming.) To amplify my answers, I am looking for SGML-aware TEX users who would like to be early users of
SIMSIM. Tables and math capabilities will, I hope, be developed to meet customers’ specific needs. I do not think it
best that I try to anticipate their requirements. So much will depend on the SGML DTDs they use, or intend to use.
Please contact me if you have any specific questions, and particularly if you are interested in being a test site.

At the meeting I was asked some good questions. Firstly, it is possible to have the processing attached to a tag

–12–

HTML & TEX: Making them sweat

depend on the context? The answer is yes. For example, the bulleted items on slide two are elements, as on
the title page, but within a<bl> rather that list. This is because the action attached to a tag is held as a TEX
control sequence token, whose meaning can be changed just like any other control sequence. So the token represented
by (bl) can change the meaning attached to(li) . (In fact this may not be the best method, there are other ways.)

Another question was how does it relate to LATEX? So far as I am concerned there is no relation with LATEX, and no
means of converting documents from one form to another. Or style files for that matter.SIMSIM and LATEX both start
with uninitialised TEX, but from there proceed in different directions and with different assumptions. I don’t see any
interaction between theSIMSIM and the LATEX worlds, and if somebody creates one, that’s not my doing. A related
question (motivated by legacy documents perhaps) is whether, if you have well structured TEX documents, you can get
something like SGML out of it. My answer is that probably you can, but that is not the problem I set myself, and not
a problem I have plans to solve.

Performance was another question. How long would it take to process a long document? This depends on the
computer one has, and on the mix of text and markup in the document. Preliminary tests indicate the same order of
speed as LATEX. And do I have a manual? At the moment it’s not developed to such a point that I can offer manuals. But
I’d like to. I want it to be a proper product. At this point it is in the process of development and I’m looking for clients
who’d like to take some risk with me, or at least make some effort. I also want to supply support. Further to that, I was
asked, will I be offering maintenance costs (the usual commercial practice) or rewards (Knuth’s practice with TEX)?
After the laughter had died down, I declined to answer the question, explaining that I did need to earn money. This
was the last question.

–13–

#! /bin/sh

echo Content-type: text/html
echo

cat <<EOH
<html><head><title>Date and time</title></head><body><p>It is now
EOH
date
cat <<EOT
</p></body></html>
EOT

Figure 1. Example of a Unix shell script to return the date and time as a HTML file

VII HTML & T EX: Making them sweat

Peter Flynn

University College, Cork

Summary
HTML is often criticised for its presentation-oriented conception. But it does contain sufficient structural information
for many everyday purposes and this has led to its development into a more stable form. Future platforms for the World
Wide Web may support other applications of SGML, and the present climate of popularity of the Web is a suitable
opportunity for consolidation of the more stable features. TEX is pre-eminently stable and provides an ideal companion
for the process of translating HTML into print.

1 Markup

HTML, a HyperText Markup Language[1], is the language used to structure text files for use in the World Wide Web,
an Internet-based hypertext and multimedia distributed information system. HTML is an application of SGML, the
Standard Generalized Markup Language, ISO 8879[3]. Contrary to popular belief, neither SGML nor HTML is new:
SGML gained International Standard status in 1986 and HTML has been in use since 1989.

SGML is a specification for writing descriptions of text structure. In itself SGML does notdo anything, any more
than, say, Kernighan and Ritchie’s specification of the C language[4]doesanything: users and implementors have
to do somethingwith it. It has been slow to achieve popularity, partly because writing effective Document Type De-
scriptions (DTDs) is a non-trivial task, and partly because software to make full use of its facilities has traditionally
been expensive. It was therefore seen as a ‘big business only’ solution to text-handling problems until the popularisa-
tion of HTML owing to increased use of the World Wide Web. Since 1992 the software position has also improved
considerably — an extensive list of tools is maintained by Steve Pfeffer at UIO[6].

2 The World Wide Web

WWW (W3 or just ‘the Web’) is a client-server application on the Internet. Users’ clients (‘browsers’) request files
from servers run by information providers and display them, using the HTML markup embedded in the text to render
the formatting. Some of the markup can provide filenames for the retrieval of graphics as illustrations, or act as anchor-
points for links to other documents, which can be further text, or graphics, sound or motion video. This latter capability
gives the Web a hypertext and multimedia dimension, and allows crosslinking of files almost anywhere on the Internet.

Because the HTML files are plain text with embedded plain text markup, in traditional SGML manner, they are
immediately portable between arbitrary makes and models of computer or operating system, making the Web one of
the first genuinely portable, multiplatform applications of its kind.

reprinted from Baskerville Volume 5, Number 2

HTML & TEX: Making them sweat

<html>
<head>

<title>Fleet Street Eats</title>
</head>
<body>
<h1>Where to eat in Fleet Street</h1>
<p>There are many restaurants in the City, from

fast-food joints to <i>haute cuisine</i>.</p>
...

Document title: Fleet Street Eats

Where to eat in Fleet Street

There are many restaurants in the City, from fast-food joints tohaute cuisine.
. . .

Figure 2. Example of HTML markup and possible rendering

2.1 HTML Markup
An example of simple markup and an appropriate rendering is illustrated in Figure 2. The conventions of SGML’s Ref-
erence Concrete Syntax[3] are used, so markup ‘tags’ are enclosed in angle brackets (less-than and greater-than signs),
in pairs surrounding the text to which they refer, with the end-tag being preceded by a slash or solidus immediately
after its opening angle bracket.

The rendering is left almost entirely to the user’s client program, as there are almost no facilities within HTML for
the expression of appearance apart from a minimal indication of font change (italics, boldface and typewriter-type).
Indeed, most recent browsers allow theuserarbitrary control over which fonts, sizes and colours should be used to
instantiate the tagged elements of text.

2.2 Implementation
HTML was devised for the Web by non-SGML-experts who saw it as an ideal mechanism for implementing plain-
text portability while preserving sufficient structural information for online rendering: one of the classical reasons
for adopting SGML. It is now becoming standardised by an IETF working group who have produced a draft speci-
fication in the form of a formal DTD[1]. Because of the need to allow this specification to model existing ‘legacy’
documents (most of which would be regarded as fragments rather than document instances), as well as provide for
more robust usage, the current DTD has two modes: a non-rigorous ‘deprecated’ mode for describing the legacy and a
‘recommended’ mode for creating and maintaining files in conventional form.

HTML is sufficient for minimal documents, providing the structural and visual features shown in Figure 3. A future
version (3.0) is being developed by the IETF Working Group, which will allow the description of mathematics, tables
and some additional visual- and content-oriented features.

Despite the coming improvements, HTML is likely to be joined in the Web by other DTDs in future. One well-
known SGML software house already has a prototype browser which can handle instances of arbitrary DTDs, given
sufficient formatting information. This would make it possible to use the Web for transmission and display of docu-
ments using other SGML applications such as CALS (US Military), DocBook (O’Reilly/Davenport), the TEI (Text
Encoding Initiative) and corporation-specific DTDs (such as those of Elsevier).

The next version of the DTD, HTML3, contains specifications for mathematics, tables and some additional ele-
ments for content-descriptive material, as well as a few extra visual keys such as anALIGN attribute for positional
specification. Most of this work is being implemented on a test basis in the Arena browser (Unix/X only at the moment)
at CERN.

Although Web browsers can reference files by any of several methods (HTTP, the Web’s ‘native’ protocol; FTP;
Telnet; Gopher; WAIS; and others) by using the URL (Universal Resource Locator: a form of file address on the
Internet), the most powerful tool lies at the server end: the ability of servers to execute scripts, provided their output is
HTML. A trivial example is shown in Figure 1, which returns the date and time.

Such a script can contain arbitrary processing, including the invocation of command-line programs and the passing
of arguments. Data can be gathered from the user either with the<isindex> tag in the header, which causes a single-

–15–

reprinted from Baskerville Volume 5, Number 2

Structural Descriptive Visual

html document type a hypertext link
anchor-point

b bold type

head document header cite citations br forced line-break

title document title code computer code hr horizontal rule

base root address for
incomplete
hypertext
references

em emphasis i italics

meta specification of
mapped headers

kbd keyboard input tt typewriter type

link relationship of
document to
outside world

samp sample of input img illustrations

isindex specifies a
processable
document which
can take an
argument

strong strong emphasis

var program variable

body contains all the
text

h1...h6 six levels of
section heading

p paragraph

pre preformatted text

blockquote block quotations Form-fill Obsolete:
address addresses form contains a form listing usepre

ol ordered lists textarea free-text entry xmp usepre

ul unordered lists input input field (text,
checkbox, radio
button,etc

plaintext usepre

menu menu lists select drop-down menu nextid editing control

dir directory lists option menu item dfn definition of term

li list item

dl definition lists

dt definition list
term

dd definition list
description

Figure 3. Markup available in HTML 2.0 (indentation implies the item must occur within the domain of
its [non-indented] parent)

–16–

HTML & TEX: Making them sweat

line data-entry field to appear, or with the more complex<form> element with scrollable text boxes, checkboxes,
radio buttons and menus. In this manner, complete front-ends can be manufactured to drive data-retrieval engines of
any kind, provided that they operate from the command line, and that the script returns their output in HTML. The
user (and the browser) remain unaware that the result has been generated dynamically.

2.3 Presentation
HTML is criticised for being ‘presentation-oriented’, but as can be seen from Figure 3, the overwhelming majority of
the markup is structural or content-descriptive. However, this does not prevent the naïve or sophisticated author from
using or abusing the markup in attempts to coerce browsers into displaying a specific visual instantiation, primarily
because none of the browsers (with the partial exceptions of Arena andw3-mode for GNU Emacs) performs any form
of validation parsing, and will thus display any random assemblage of tags masquerading as HTML. This behaviour
has misled even some eminent authorities to dismiss HTML as ‘not being SGML’.

There is thus a conflict between the SGML purist on the one side, who decries any attempt at encoding visual
appearance; and the uninformed author on the other, who has been unintentionally misled into thinking that HTML
and the Web constitute some kind of glorified networked DTP system.

The purists are few in number but eloquently vocal: however, in general, they acknowledge that visual keys can
be included if they are carefully coded. A perceived requirement to allow an author to recommend the centering of
an element is thus achieved in HTML3 by thealign="center" attribute, rather than the unnecessary<center>
element proposed by the authors of Netscape.

The demands of the author are at their most marked in the approach of publishers and marketing users, who have
been accustomed for the last 550 years to exert absolute control over the final appearance of their text. But the Web
is not paper, and the freedoms and constraints of the Press do not apply: it is as much a new medium as radio or
television. For such an author to insist that she must be able to control the final display to the same extent as on
paper is as pointless as insisting that a viewer with a black-and-white television must be able to see the colours in a
commercial.

The paradigm has been established that the browser controls the appearance, using the markup as guidelines. There
is indeed no reason at all why attributes could not be added so that an author could write

<h1 color=green font=LucidaBrightBoldItalic size=24 shading=50>
but the user of Lynx or WWW (two popular text-only browsers for terminal screens) would still only see the heading in
fixed-width typewriter characters. The habit of insisting that everyone ‘must’ see a particular typographic instantiation
is an unfortunate result of a misinterpretation of the objective of the Web: to deliver information in a compact, portable
and arbitrarily reprocessable form.

But publishers accustomed to paper, insistent on ‘keeping control’, have of course an entirely valid point, one with
which the present author has great sympathy. Why should a carefully-prepared document be made a hames of by a
typographically illiterate user who has set<h2> to display as 44pt Punk Bold in diagonal purple and green stripes?

The solution probably lies in the implementation of style sheets, perhaps along the lines of those discussed by the
authors of Arena[5]. They would in any case only be recommendations: not every user has a CD-ROM of Adobe or
Monotype fonts. In any event, if 100% control is essential, as in the display of typographic examples, all graphical
browsers can be configured to spawn a window to display PostScript file, although the download time may be a strong
disincentive.

It is entirely possible that the control of content will ultimately prove a more attractive option than the control of
appearance.

3 Publishing with HTML

Setting aside the unresolved questions of display, there are more pressing business problems about publishing on the
Web.

The authentication of users is being addressed at several levels, from simple, non-authoritative checks using
identd to the more complex username-and-password systems employed on some Web pages. From the user’s end,
the authentication of the data being accessed is equally important. The openness of the Internet in its raw form allows
‘spoofing’ in both directions, so the emergence of protocols to provide checks is to be welcomed.

The security of network-accessible texts from break-ins remains a concern to anyone providing high-value mer-
chandise, and Web text is in this sense no different from any other computer data. Normal precautions must therefore
be taken to prevent theft through other channels (such as remote login), as distinct from theft perpetrated by falsifica-
tion of Web access.

–17–

reprinted from Baskerville Volume 5, Number 2

There is a need for robust solutions to charging and billing for usage, and the secure transmission of financial data,
including credit card numbers, digital signatures, and perhaps even EFT transactions. The Secure HTTP (SHTTP)
mechanism being marketed by MCom and others is becoming popular as a way of achieving some of this, but the In-
ternet must shed some of its image of lax controls and sloppy housekeeping if it is to achieve sufficient ‘respectability’
to attract the business of those who are not networking specialists.

The handling of copyright and the intellectual property of electronic texts remains, as ever, an unsolved problem.
While copyright law can be used to provide a remedy for breach, the difficulty lies in preventing the breach occurring
in the first place. The reason is that (as with other electronic material), copying and reproduction is fast, cheap and
easy, once the material is in the hands of the customer. While a supplier may use SHTTP to protect the details of the
transaction, once a print file has been sent to someone, the supplier retains no control whatsoever over its use, reuse
and abuse. Copies could be sent to dozens others, or printed many times, in the space of minutes.

3.1 Printing from HTML
The demand for printed copies of Web material is surprisingly high. Although in some cases it is reminiscent of those
people who insist on printing their email, it is undeniable that there is a serious requirement for good quality print
from Web documents.

Existing solutions to printing SGML text are usually application-specific, being embedded in SGML editors or
DTP systems, but there are also some more generic packages:

• Format by Thomas Gordon (LATEX)
• HTMLtoPS by Jan Kårrman (PostScript)
• SGML2TeXandWebSet by Peter Flynn (TEX/LATEX)
• SimSim by Jonathan Fine (TEX)

The use of TEX systems for most of these seems to indicate that the similarity of markup concepts has not gone
unnoticed by practitioners. The author’s own contributions are experimental, but the second of them is planned as an
interactive Web service, to be introduced in the summer of 1995. Emailing a URL to the point of service will cause it
to be retrieved, typeset, and the output returned to the user by email in PostScript form. As a form of email browser,
the control of appearance may lie in the hands of the user, but suggestions for how implement this are currently being
sought[2].

3.2 Problems
Implementing a professional level of typesetting from HTML raises some interesting questions:

• most HTML files are invalid
• most HTML authors don’t understand SGML
• most HTML authors couldn’t care less
• most World Wide Web users couldn’t care less

The handling of missing, damaged or abused tags in a gracious manner is not a feature of most SGML parsers.
At the best, a typesetter-browser can only be expected to report to the user that a file is invalid, and while it may be
displayed by browsers which do not make any claim to typographic quality, an attempt to make a respectable print job
of an invalid file is unlikely to succeed.

4 Development

The future of the World Wide Web and HTML is uncertain. While development continues, and while new users are
anxious to start surfing the net, the existing designs and implementations will suffice. In the longer term, a coalescing
of services is likely to occur, but for this to happen, a number of changes need to take place:

• The Web will start to make use of other DTDs, as outlined above. Any file containing a<!doctype...> at the
beginning could cause a browser to retrieve the DTD specified, along with a style sheet, and work much as any
SGML-conformant DTP system would.
• Browsers will become pickier, able to offer better services at the expense of rejecting invalid or badly broken files.

Arena already perfoms a form of consistency check on the HTML code of files, and displays ‘Bad HTML’ in the
top corner when an offender is spotted.
• Users will become pickier, demanding better response from the browser, better response from the server, and better

facilities from both. As users become more educated about the use of SGML, developers will no longer be able to
hide the deficiencies of products under the cover of technical detail.

–18–

HTML & TEX: Making them sweat

• This presupposes more user education, which is inevitable in a developing technology. 100 years ago, motor cars
appeared on the roads, but few passengers in them understood the use of the levers and rods which controlled them.
With some minor exceptions, it is now expected that a driver knows that turning the wheel clockwise turns the car
to the right, andvice versa. It will not take us that long to perceive the innards of HTML, but it can only be done
by training and education.
• At some stage, investment is always needed. Many companies have put substantial sums into the development of

Internet resources, and those that have done so with forethought and planning deserve to reap a rich reward. It
is a long-term investment, more akin to a partnership, but support is always needed by those who undertake the
developments, especially as much of it is done in personal time and at personal expense.

There is still some way to go before we achieve the ease of use of the telephone or the radio, but the path is becoming
easier with each new development.

References

[1] Berners-Lee T & Connolly D,HyperText Markup Language Specification — 2.0, Internet Draft, IETF Working Group on
HTML, December 1994.

[2] Flynn P,Typographers’ Inn, TEX and TUG NEWS,4, 1, March 1995.
[3] Goldfarb C,The SGML Handbook, OUP, 1990, ISBN 0–19–853737–9.
[4] Kernighan BW & Ritchie DM,The C Programming Language, Prentice-Hall, 1978.
[5] Lie H et al, HTML Style sheets, http://www.w3.org/hypertext/WWW/Style/

[6] Pepper S,The Whirlwind Guide: SGML tools and vendors, ftp://ftp.ifi.uio.no/pub/SGML/SGML-Tools/
SGML-Tools.txt

–19–

VIII The Inside Story of Life at Wiley with SGML, L ATEX and Acrobat

Geeti Granger

John Wiley & Sons Ltd,

Baffins Lane,

Chichester, W. Sussex PO19 IUD

1 Introduction

As a brief introduction I should say that John Wiley & Sons is a scientific, technical and medical publisher. It is an
independent, American family-owned company that was established in 1807, with subsidiaries in Europe, Canada,
Australia and Singapore. The European subsidiary opened in London in 1960 and moved to Chichester in 1967 (if
folklore is to be believed this was so that the then Managing Director could more easily pursue his love of sailing!).

We publish books, including looseleaf and encyclopaedias, and journals, and most recently electronic versions of
some of our printed products. In the future the electronic component of our publishing programme is bound to include
products that are only available electronically.

2 Setting the Scene

Now to the topic in hand—Portable Documents: Acrobat, SGML and TEX. Our association with TEX dates back to
1984 when we made the significant decision to install an in-house system for text editing and composition. It was
the only software available that wasn’t proprietary, which stood a chance of coping with the complex mathematical
material we had to set.

As a company we have monitored the progress of SGML since 1985, but have only recently used it in earnest. Our
first project is a 5000 page encyclopaedia about Inorganic Chemistry. We rarely get the opportunity to dip our toes in
the water—it’s straight in at the deep-end! Having said this, we do have a set of generic codes that has been used for a
number of years, and everyone is well aware of the principles involved and the value of this approach to coding data.

Adobe Acrobat was launched in June 1993. Our experience of this software dates back a little further than this,
because of our links with Professor David Brailsford and the Electronic Publishing Research Group at the University
of Nottingham, and their work on the CAJUN (CD-ROM Acrobat Journals Using Networks) project, which we jointly
sponsored with Chapman & Hall.

3 Complementary not Competitive

The first thing to make clear is that SGML, TEX and Acrobat do not compete with each other in any way. SGML is a
method of tagging data in a system-independent way. TEX is one possible way of preparing this data for presentation
on paper, while Acrobat is software capable of delivering data electronically for viewing on screen, or for committing
to paper.

From our point of view the fundamental requirement for:

• capturing data
• processing data (text and graphics)
• delivering data (paper/disk/CD/Internet)

is to remain system independent for as long as possible.
SGML, TEX and Acrobat achieve this in their part of the whole process. PostScript provides the link that completes

the chain.

4 SGML in Practice

To describe our experience with SGML I will use theEncyclopedia of Inorganic Chemistryas a case study. This
encyclopaedia is an 8 volume set made up of 5000 large-format, double-column pages (more than 3 million words).
The data consists of approximately 250 articles interspersed with 750 definitions and 750 cross-reference entries. The

reprinted from Baskerville Volume 5, Number 2

The Inside Story of Life at Wiley with SGML, LATEX and Acrobat

text was marked-up and captured using SGML, validated and preprocessed for typesetting. The floating elements
(all 2300 figures, 8000 equations, 2000 structures, 1100 schemes and 900 tables) were prepared electronically and
delivered as encapsulated PostScript files. Some 150 halftones, about a third of which are colour, complete the data
set!

Despite the complex nature of this project, or maybe because of it, we were convinced that using SGML was the
right approach. We had to be very sure because this decision presented us with many additional difficulties. Different
considerations had to be made at all stages of the production process. (Manufacturing remained untouched.)

Initially, having established the probable requirement for an electronic version, there was the need to justify the use
of SGML because of:

• the extra cost involved in data capture
• the different working practices that had to be established
• the project management overhead
• the need to find new suppliers, and the risks that this involved for such a large, high profile project.

4.1 Production Considerations

This project had an external Managing Editor to commission and receive contributions before it became a live project
for us. Once contributions started to arrive it very quickly became apparent that a project management team was needed
if this project was to succeed. The initial steps had to be ones of project analysis, determining data flow, deciding who
was responsible for what, and ensuring that a progress reporting system was established. It certainly semed like a
military operation at times.

Having made the decision to go with SGML and to ensure that all components were captured electronically we had
to find a set of new suppliers. None of our regular suppliers could meet our specifications. Locating potential suppliers
was the first hurdle, and then assessing their suitability was the next. Having done this we then had to draw them all
together to establish who did what, and who was responsible for what. It had to be a team effort from start to finish
and regular progress meetings involving representatives of all parties was the key to an ultimately successful project.

4.2 Problems Encountered

One of the first considerations was how on earth do we name the files? To ensure portability we set ourselves the
restriction of the eight plus three DOS convention. It took some time but we achieved it in the end so you can now
identify from the file name the type of text entry, the type of graphics and whether it is single or double column or
landscape, and its sequential placement within its type. When you consider the number of files involved, this was no
mean feat.

Designing the DTD without all the material available is not the best way to start, but needs must. It meant that some
amendments had to be made as the project progressed but none of them proved to be too significant.

Choosing Adobe typefaces, to avoid problems later on, meant that some compromises had to be made. Many people
feel that the Adobe version of Times is not as elegant as some.

Also the quality of the typesetting, hyphenation and justification, interword spacing and overall page make-up is
not as high as that normally achieved by a dedicated chemistry typesetter.

In addition to the above, we found a bug in Adobe Illustrator! Because the EPS files were being incorporated elec-
tronically the accuracy of the bounding-box coordinates was crucial. To cut a long story short they weren’t accurate.
We spent quite some time establishing the cause of the problem and then had to have a program written to resolve it.

This is not an exhaustive list but I think it will give you a feel for the practical issues involved. Having shared all
this with you I should add that all of us involved in the original recommendations remain convinced that it was the
right approach. In fact we are now processing two more projects in the same way!

5 LATEX in Practice

We’ve done far too many projects in TEX (many in Plain, but a growing number in LATEX) to select one as a case
study. What I can do is very readily identify the production issues involved in using this software in a commercial
environment.

5.1 Steps in the Process

Establishing ourselves as a forward-thinking, progressive company by developing in-house expertise has brought with
it certain pressures. In the early days, not only did we have to learn how to use TEX, we also had to make it achieve
typesetting standards expected of more sophisticated systems. Our colleagues could not see why they should accept

–21–

reprinted from Baskerville Volume 5, Number 2

lower standards from us—after all they were paying us (we operate a recharge system so that it doesn’t distort the
project costing when compared with externally processed projects).

Next came the requests for us to supply style files. Authors knew we used the same software as they did, and
wanted to prepare their submission so it looked like the finished product. Some wanted to produce camera-ready copy.
In principle this would seem a sensible idea; in fact our commissioning editors, especially those who handle a number
of CRC projects, thought it was a brilliant idea. It would save them an immense amount of time and hassle.

Now, preparing style files for in-house use is one thing; preparing them for use by others is something else again.
We have to work within strict time and cost constraints, and there are many occasions (dare I admit it?) when we have
to resort to, shall we say, less than the most sophisticated way of achieving the required visual result!

When I have attended courses on TEX and have asked about writing style files the answer has often been along the
lines of ‘leave it to the professionals’. (I should say it’s usually people who make their living in this way who give this
response.) This may be fine if a) you can find and afford the professional; b) you don’t need to support the file when it is
in general use. In our experience the first is difficult to do and the second is an impossibility. The need to support style
files cannot be ignored; once they have been provided, no matter on what pre-agreed conditions, queries will arise. It
can be very time-consuming, as often queries are not restricted to the style file, but relate to the sytem being used. It
can also take a while to establish the context of the query, resolve it and respond. To meet the expectation that we will
support, customise at short notice, resolve technical issues, and communicate via e-mail (preferably responding within
the hour) can be difficult, given the level of human resource available.

Once you’ve got over this initial stage, the practical issues involved in accepting LATEX submissions can be many.
Delivery is the first. Now that we have the ability to receive data electronically our authors cannot understand why we
hesitate, and why we still insist on hard copy. Experience tells us that, without hard copy, it is difficult to be sure we
have received the final version, and discovering this after a project has been processed is very costly, both in time and
money. Any submission that circumvents a stage in the current administration process may drop through a hole and
end up taking more time, rather than less, to reach publication. Consideration is being given to this issue, and there
is no doubt that in the future electronic delivery will be an acceptable method of submission, but in the meantime
everyone has to be patient.

Copy-editing remains a conventional process in the main, although experiments are taking place with copy-editing
on disk. This issue is not resticted to LATEX projects, but the rate of progress is dictated by the ability of our freelance
copy-editors to provide this service.

Once you move on to the processing stage the first thing you have to do is find a supplier who is capable of actually
processing in this software. This is easier said than done, because it is not considered to be cost-effective by most of
our regular suppliers. However, as a result of our persistent requests, some can now provide this service, so we don’t
have to process all such submissions in-house.

From our own experience we know that producing page proofs is not always straightforward. Over the years we
have struggled with amending style files to achieve the correct layout and controlling page make-up. Now that authors
are submitting graphics on disk, as well as the text, we are faced with another set of problems. Portability of graphic
formats is even more difficult to achieve. I think the number of answers to the question ‘When is a PostScript file (or
EPS file) not a portable PostScript file?’ must be infinite. Even when the content of the file itself is OK, you can still
be faced with problems in achieving the required size and position on the page.

Despite all these disadvantages our lives would not be the same without LATEX, and when compared with processing
in other software it can be a real joy! Our archive of projects coded in a form of TEX will be far easier to reuse than
those processed in other software.

6 Acrobat at Arm’s Length

Although we haven’t used Acrobat on a live project in-house yet, we have been closely involved with the development
of the EPodd CD. The CAJUN project has been running for well over a year and during this time the complete archive
of volumes 1–6 has been converted to PDF, annotated to add PDFmarks and generally massaged into a suitable format
for delivery on CD.

As always, the work involved in such a project is more than anticipated at the outset, but it has been an invaluable
learning exercise. Being involved in the beta-testing of the software helps you appreciate just how much development
work is required for a new piece of software, and although it currently has its limitations the future looks good. Version
2, which is due for release any day now, is much improved, and it is rewarding to see that many of the comments put
forward by members of the team have been incorporated.

–22–

Theory into Practice: working with SGML, PDF and LATEX at Elsevier Science

We are experimenting with small projects in-house to give us a deeper understanding of the practical advantages
and limitations of Acrobat. It is easy to get caught up in the euphoria and hype that accompanies the release of a new
product, and to overlook the day-to-day difficulties its rapid adoption might bring. Having said this, there is no doubt
that it will have a place in our publishing procedures, and may be used in the production cycle for journal articles.
Provided that the general administration can cope with the deviation from the norm, supplying author proofs in this
way has its attractions. The fact that readers are now freely available and the PDF file can be read on any of the three
main platforms is a real boon.

The use of Acrobat for delivering existing print products in an electronic form is one worth considering, especially
now that it is possible to integrate it with project-specific software and the security issue has been addressed.

From an inter-company point of view the perceived use of Acrobat for distributing internal documents could again
have its attractions. For this to be a real possibility it must be recognised that the use of such procedures is not an
innate skill, and so the appropriate level of training and support must be available if it is to be successful.

7 Conclusion

The comments I have made and the case study I have described may leave you with a somewhat negative feeling.
I wonder if I have emphasised the problems and not balanced these by identifying the plus points. To put this into
context I should say that details of the advantages of any particular approach are usually more readily available, so I
have tried to capture a more down-to-earth view.

In reality I am very enthusiastic about the use of SGML, TEX and Acrobat, but am also well aware of what their
use in a productive environment can mean. I believe, as do several of my colleagues, that portability of documents
is crucial to our ability to deliver data efficiently in a variety of forms, whether this be page-based, highly structured
databases or tagged ASCII files. To this end we must be flexible in our approach, and must not be afraid of making
investments now that may not bear fruit until some time in the future. This can be a very unnerving decision to make,
and for one I am glad it isn’t ultimately mine. While I can extol the virtues of a purist’s technical approach, obtain the
relevant costs and assess the schedule implications, I do not have the entrepreneurial skills required to know when a
project is commercially viable (or worth taking a risk on). It is at this point I take my hat off to our commissioning
editors, who have the responsibility for turning these experiments into profit for us to reinvest in the next Big Thing!

–23–

IX Theory into Practice: working with SGML, PDF and LATEX at Elsevier Science

Martin Key

Elsevier Science Ltd

m.key@elsevier.co.uk

1 The Company

While I do not want to make this article a plug for Elsevier, it is first necessary to put our activities into context.
Therefore, for those who do not know us, Elsevier Science is part of the Reed Elsevier Group and, in terms of number
of journals, is by far the largest publisher of scientific journals in the world. The original Elsevier Company was Dutch
based, but now, through acquisition and merger, is an international company with offices in the Netherlands, UK, USA,
Switzerland, Eire and the Far East. We publish well over 1,000 scientific, technical and medical journals covering all
sections of academe and business.

2 The move into electronic publishing

Elsevier’s major customers are academic and research institutes throughout the world. Traditionally, academic publish-
ing has relied on authors submitting papers via external academic editors who arrange for the necessary peer reviews.
Once accepted, papers are sent to Elsevier for copy-editing, typesetting and compilation into issues. As a result we
have in the past received paper manuscripts of varying levels of presentation from around the world. Over the last
10 years it has become apparent that most authors use some form of word processing or computer generated text to
prepare their papers. To have these papers typeset means rekeying the manuscript and, what is worse, ending up with
electronic files produced by many types of typesetting equipment and software with minimal chance to reuse this
material at a later date. For some years the Elsevier Group have been looking at ways to avoid rekeying manuscripts
whilst at the same time automating the production process, produce proofs more quickly and create electronic files for
multiple use in the foreseeable future.

After many surveys, experiments and discussion groups it was clear that Elsevier should work to accepted inter-
national generic standards in order to achieve these goals. The major standards agreed on were Standard Generalised
Mark-up Language (SGML) for text, Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG) and
Encapsulated PostScript (EPS) for graphics and PostScript, and the Portable Document Format, (PDF), also known
as Acrobat, for pages. Unlike typesetting codes, SGML does not drive any particular application but can be readily
converted to numerous formats for typesetting on paper, database applications, CD Rom and so on. It is therefore an
ideal archive medium. TIFF, JPEG and EPS are well documented graphic file formats and are widely supported in
terms of external applications. PDF is, perhaps, a risk in that it is the property of a commercial developer (Adobe) but
its great flexibility and rapid acceptance by professionals and the academic community, together with the track record
of PostScript itself — now a de facto standard — makes its long-term future seem relatively safe. The decision by
Adobe to make the Acrobat reader available free-of-charge is another positive sign.

3 The concept of Computer Aided Publishing (CAP)

Once the standards were agreed the process known internally as CAP (Computer Aided Publishing) took clearer shape.
There are a number of activities which form part of CAP. These include the following: the converting of manuscripts
and artwork into electronic files; structuring of text with SGML; editing on screen; automatic proofing; moving and
maintaining files on a network; creating SGML (text) and graphic files; receiving PDF files from our typesetters. In
addition, a number of journals receive, and use, papers in LATEX format which will be discussed later.

4 Practicalities: How we do it

CAP started in Elsevier in January 1994, in both Amsterdam and Oxford, with a limited set of journals. The number of
journals has been increasing rapidly and in 1995, as software and hardware stabilises, the number of journals is being
increased dramatically.

reprinted from Baskerville Volume 5, Number 2

Theory into Practice: working with SGML, PDF and LATEX at Elsevier Science

The first action when receiving a paper, either on paper or disk, is to log the information on to our production
tracking system. All the important details are recorded — title, authors, number and type of graphics, whether it is
available on disk etc. This record follows the manuscript throughout its production process and is updated at each stage
of its progress through the system. Elsevier encourage authors to submit on disk, and the numbers are rising. If it is on
disk it is initially converted to our standard CAP format which allows it to be used by our SGML tagging and editing
tool — Pandora — which was developed by staff working in Amsterdam. If it is only available on paper it is either
OCR (Optical Character Recognition) scanned and then converted into the CAP format or, if the paper is too complex
for scanning, it is keyed by off-shore keying agencies. Whatever the route, it arrives at our Pre-Edit Department in the
generic CAP format. Simultaneously graphics are scanned — TIFF for line art and JPEG for half-tones — or redrawn
and saved as EPS in some instances.

The text is then tagged using Pandora. The Document Type Definition (DTD) used is the Elsevier DTD (which
Elsevier has made publicly available subject to certain conditions) which is fairly complex covering not only text but
also tables and mathematics.

After coding and parsing, the text is loaded onto the network server, together with the graphics, using an in-house
developed Document Management System which monitors, names and controls the files. As one article can produce
more than 20 files, with an average issue of a journal containing 10 articles, the number of files can quickly mount
making such management essential. Once the files are on the server, they can be retrieved by the Production Editor
who will then edit the article for style, spelling, grammar, etc. and add any additional tags necessary. Graphic files are
also checked at this stage to ensure that the correct graphics are linked to the relevant caption. The file is then parsed
again to check its validity. Author proofs can then be produced and, once they are received back from the authors and
corrections made, the final SGML and graphic files are exported to the typesetter for making up the final pages.

We expect typesetters to retain the validity of the SGML files when producing the pages, and this is strictly moni-
tored. Due to the complexity of the DTD and the relevant inexperience of most typesetters in using precoded SGML
files, we have to work with our typesetters quite closely, answering specific queries and offering advice where nec-
essary. However, we do not expect to develop the systems for the typesetters — that is their responsibility. The final,
additional requirement we demand from our typesetters is that they supply each individual article, and other elements
of the issue, in PDF format. This means that they must have a PostScript setter in order to create these files.

5 TEX and LATEX

In some disciplines TEX and LATEX are used extensively by authors and, not unnaturally, they would like to submit their
articles in this format. Experience has shown that this can be hard work for the Publisher. In some cases, hacking in to
such a file to find out how the author’s carefully developed macros have been used can be very time-consuming and, in
some cases, can take considerably longer than having the paper professionally typeset. However, whenever possible,
we will try and use submitted LATEX files and, to a lesser extent, plain TEX files. However, Elsevier encourage authors
to use the Elsevier style file which produce a pre-print type output. This style is then replaced with the journal-specific
style file which makes the Publisher’s task considerably easier. The Elsevier style files, together with the instruction
manual, are available from the three CTAN sites or direct from Elsevier.

LATEX has a number of advantages. Pages in camera ready format can be produced readily in-house without recourse
to a typesetter, and PDF files can also be generated from the dvi files. Recently, the Production Methods Group at
Elsevier Science Ltd has further developed the ‘dvihps’ converter and LATEX macros from the HyperTEX project, to
fully retain the hypertext links available in the LATEX file, as well as generating automatic ‘bookmarks’ or contents list,
directly into the PDF file. In order to meet the full CAP requirements previously mentioned, there is one final part of
the equation to be completed — a LATEX to SGML conversion. Due to the complexity of the Elsevier DTD this is not
a simple task but work is currently taking place to see how far down this road it is possible to go.

6 Practical Problems

As with most technical developments there are always problems to be addressed. In the case of CAP they have been
surprisingly few. The major problem experienced at an early stage was the lack of SGML editors which could cope
with the Elsevier DTD, particularly in the area of tables and mathematics. This problem has been largely resolved by
the development of Pandora, a tool which has far exceeded its initial specification as a package which would enable
compuscripts to be handled by typesetters. The second problem was one of logistics — how do you train Produc-
tion Editors to work with SGML on screen editing whilst simultaneously producing journal issues? As previously
mentioned, there is also the increased demand we place on typesetters, many of whom have had limited experience

–25–

reprinted from Baskerville Volume 5, Number 2

of handling complete journals in SGML. Finally, as Production Editors began to use the DTD in earnest, additional
requirements are discovered which means that the DTD must be further developed. As a result, the DTD has become
a moving target with more complex requirements being asked for almost daily.

7 The Future

Some people may ask why we are putting ourselves through so much pain. Is it worth it? The market is demanding
electronic products in addition to, and sometimes instead of, the traditional paper ones. For those publishers who have
tried to use typesetters’ tapes for such products, the answer is clear. The availability of generic coded data which can
be manipulated in multifarious ways is clealy the route to take. In addition to meeting the demands of our market, we
are also satisfying the demands of our producers — the authors — who create ‘electronic’ versions of their articles
and who naturally expect that we, the Publishers, should be able to use them. Finally, the Production process itself is
being streamlined allowing for more efficient and faster production times.

–26–

X SGML and LATEX

Horst Szillat

szillat@berlin.snafu.de

SGML — Standard Generalized Markup Language— is a formal language to describe structured text documents.
It should be introduced here by comparison to TEX and LATEX.

It is interesting to have a look at how Donald E. Knuth introduces TEX in the TEXbook himself. The beginning is
to simply type in the text and TEX mainly does what one expects it to do. Quite a lot of more or less complex rules
have been implemented to provide these results. An example of this behaviour is thespace factor code(\sfcode).
Using this code TEX is able to identify most of the ends of sentences. Moreover TEX is realized in a way that one can
program almost all kinds of printing layouts. In this way one can program a macro which influences the layout in any
place. So TEX is a layout oriented system which is able to format texts for printing and to do a bit more.

Although LATEX simply is TEX, too, and has all these characteristics, too, it introduces a new idea of representing
the text input. The basic idea is that a text is given in the form ofembedded environments. The layout of a text portion
depends on the environment it is embedded in. Moreover, the layout of whole environments may depend on which
other environment they are embedded in. The user can define new environments (\newenvironment) which realize
a user defined layout. But the main point is that the author inputs his text on a less technical but a more abstract level.
This way LATEX enforces the idea of separating the text structure from the printing layout. Changing the layout in
LATEX means to replace the existing style files, only. One could do the same in plainTEX directly, of course. One can
do structured programming in assembler, too, but assembler does not enforce it.

Now one can simply say SGML is LATEX without TEX to be written in a slightly different manner. This means
SGML is a representation of the text in its hierarchical structure without any idea of a layout. If one has lost the layout
there has to be an advantage on the side of the text structuring. And so it is, indeed. LATEX’s environments are called
elementsin SGML. Within a certain model one can now define which way the elements are embedded in each other
and where text is to be allowed. Within that model the amount and the order of embedded elements and text is defined.

Such a definition of a text structure is calleddocument type definition(DTD). The “best-known” example of a SGML
document type definition is HTML (Hypertext Markup Language) used for the World Wide Web. While processing
the document an SGML-parser is able to validate the structure of the document by the given document type definition.
A simple example should illustrate this:
<!ELEMENT section - - (paragraph?,subsection+)>
<!ELEMENT subsection - - (paragraph,paragraph+)>
<!ELEMENT paragraph - - (#PCDATA)>

These lines are to be read as follows: An environment/element calledsection consists of maximum one
paragraph and at least onesubsection in this order. Asubsection consists of exactly oneparagraph
plus at least oneparagraph , e.g. at least twoparagraph s. And at last, aparagraph consists of letters. Here
it is not possible anymore — unlike in LATEX — to put the first subsection before the first section. One could define
the LATEX environments with such control structures, too. But again, LATEX is not designed for this goal and does not
enforce it, while such validating is the nature of SGML.

Another structural advantage over LATEX is the consequent distinction betweenparameteranddata. The lines
\label{Hallo!}
\section{Errors}
\unknown{whatever}

show that in LATEX one can never be sure what is human readable text (data) and what is internal technical information
(parameter). On the other hand SGML has a strict idea of this distinction. As long as the SGML structures are not mis-
used malevolently it is possible to make this distinction without even understanding the content. This is an important
condition for any computer based data processing. An example will be given later.

But even in the days of total computerizing the final goal of text representing is to print the text onto paper. There
are two projects/tools specially designed for the printing of SGML documents. FOSI (Formatted Output Specification
Instance) and DSSSL (Document Style Semantics and Specification Language). But why not use LATEX? LATEX has
some characteristics which make it the first choice.

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

concept of a
document

⇒ SGML-
document

⇒ LATEX-
document

⇒ printed
document

DTD
(structure)

?

styles
(layout)

?

Figure 1. Processing of a SGML document

• The structure of SGML and LATEX are very close, so that the documents are easily to convert.
• LATEX is a programming language and therefore can realize a wide range of unforeseen layouts.
• LATEX has been used for many years by a large number of people. So there exists a widespread experience.

A principal scheme of the processing might look as shown Figure 1.
Unfortunatly it is not sufficient to convert the elements into environments and to write the needed style files. As

already mentioned SGML and LATEX have different ideas of what is data and parameters. So it is especially necessary to
transform SGML-data to LATEX-parameter so that LATEX can handle it more flexibly. A typical example is the following:

<section label="main-section">
<title>section title</title>
section content
</section>

What one would like to get is something like this:

\section{section title}\label{main-section}
section content

One should note thatmain-section is a parameter before as well as after conversion whilesection title
moves from being data to being a parameter. The easiest way to solve this problem is to introduce additional braces
within the LATEX environment. Depending on the number of parameters defined in the definition of the environment
the data is treated as a parameter or the last parameter is treated as data:

<name parameter="value">data</name>

converts to

\Bsgml{name}{value}{%
data%
}\Esgml{name}

With some (yet still to be defined) command
\NewSgmlEnv{name}[n]{...}
one gets:

• bothvalue anddata being a parameter forn = 2.
• value being a parameter anddata being data within the environment forn = 1.
• bothvalue anddata being data within the environment forn = 0.

Note that this conversion can be done without any conversion parameters. All programming, e.g. replacements are
done in LATEX. This is a major difference to the widely used SGML-to-whatever converterformat which works with
replacement tables.

But the real reason for why I started to develop my own SGML to LATEX converter is that I felt the necessity to
manipulate the data within the conversion process.

The main questions are what information about the used words are needed for typesetting and where this informa-
tion comes from. Again this seems to be a typical non-English problem. In German there are two similar problems:
hyphenation and (wrong) ligatures.

Basically German hyphenation rules are easily to be adapted for pattern matching and ligatures can be applied.
(Hyphenation is allowed before the last consonant out of a group of consonants. There is no hyphenation within a
group of consonants at the very beginning or end of a word. Certain combinations of consonants count as one single
consonant. Easy, isn’t it?) At the present there is a problem with the umlauts. But this problem should disappear with
the dc –fonts. The real problem raises with complex words, e.g. words which are composed of several words but

–28–

Questions and Answers

look like one. These words have to be hyphenated between the elements of the compound. This fools every pattern
matching. Moreover, there should not be any ligature in these places. The reason is that one does not want to have less
space “between words”.

An example of a rather unsuspicious word isaufflammen . One would guess the hypenationauff\-lam\-men ,
which is wrong, of course. The english translation gives a hint:flame up. Within terms ofgerman.sty one should
write auf"|flam\-men , where"| means: hyphenation is allowed but no ligature is allowed. The printing result is
“aufflammen” instead of “aufflammen”.

Unfortunately TEX is unable to store this information neither in the hyphenation table nor in the document preamble
by \hyphenation . Maybe a successor of TEX will be able to do so. So far an author writing in LATEX has to input
this information directly into the document, well — if he cares. . .

Using a conversion from SGML to LATEX the converter would be the right place to insert the additional hyphenation
and ligature information. The converter has to use two dictionaries — a standard dictionary and a special dictionary.
It is not unusual that special matters need special terms and consequently special dictionaries. But in German the
problem is that one can create new complex words ad hoc. These new compounds may be specific to a particular
document. So it would be a nice idea to ship this special dictionary as a structural part of the document!

In this way the author does not have to care about every single hyphenation and ligature exception, but additionally
has a spell checker.

But unfortunately there is even a worse case which needs special treatment. It is the wordBaumast , which can
be Bau\-mast (mast used in building) Baum\-ast (bough of a tree), both made of wood, of course. This is a
really rare case that a word must be tagged with an additional information where it occurs within the document. This
information should explain which word is to be meant. One could do that in the form of an explicit hyphenation
information. In SGML it could look like

<word which="Baum\-ast">Baumast</word>
(This example is simplified. It would be more correct to use a SDATA-Entity so that the LATEX-specifics are hidden.)
Note that the hyphenation information on the wordsaufflammen andBaumast are totally different things. The

first one is part of the layout information (how to print out?), while the second one is a structural part of the document
(which word?).

Summarizing one can state that SGML and LATEX are a good pair. Using the specifics of both systems one can do a
lot of things correctly in an easier way.

0.1 Further reading
• H. Szillat:SGML — Eine praktische EinführungISBN 3-929821-75-3, Int. Thomson Publ.
• ftp-server:ftp.ifi.uio.no
• news groups: comp.text.sgml, sgml-l

–29–

XI Questions and Answers

compiled by Jonathan Fine

The last session of the Bridewell meeting was a panel comprising the speakers David Barron [DB] and Martin Key [MK] , joined
by Lou Burnard [LB] (Oxford, Text Encoding Initiative) and David Evans [DE] (part of David Brailsford’s group in Nottingham).
The session was chaired by David Penfold [DP] from the co-sponsors, the BCS Electronic Publishing Special Group.

(I have prepared this report from a not always audible tape recording. Remarks have been edited. I hope I have not introduced
any error or misrepresentation. Questions have been set in italics.—Jonathan Fine)
What solutions are there going from one encoding method to another, say from Microsoft to LATEX?
[LB] I recommend via SGML as internal format. The public domain tool Rainbow Makers has an interesting approach. It takes a
document marked up with formatting codes, and turns those codes into SGML tags. So you do get terrible things such as tags for
font and type-size, but now they are represented using the SGML format. Translating from that to real SGML is a lot easier.
[DP] Word-for-Wordhas been well used in the publishing industry for years. It converts between stacks of mainly word-processor
(but also Frame for example) formats. I expect they will eventually get round to SGML.
[Malcolm Clark] If all I’m interested in is portable documents, in other words shifting a document from one site to another
electronically, why don’t I just standardise on Microsoft Word? It’s not high enough quality for publishing, but for 90% of what I
do, memos and stuff like that, I do it in Word and attach it to the electronic mail message I am sending. The recipient at a Windows
or Macintosh unbundles it and they’ve got it in the same format I created it in. It’s solved all the problems.
[LB] Because then you can only talk to people who’ve done the same thing.
[MK] Several answers. As a company, Elsevier wishes to retain the material they produce for some considerable time. We still sell
material that is 10 or 20 years old. Microsoft Word as a format is fine for sending it off today, but in 10 years time, who knows?
It probably won’t be compatible with anything. So retaining it in that format is no use. We have to convert it into something we
can do things with. Secondly, there are limitations with what you can do with a Word document. Such as how you can search text,
specifying where the author’s name is, etc. SGML allows us to structure the complete document properly.
[DB] There is a distinction between portability for immediate delivery and portability for archiving (see his article). Also, Warwick
University (MC’s location) must be different from Southampton, where no such uniformity exists. For example computer scientists
use TEX. The problem is like herding sheep to get them to move in the same direction.
[Allan Reese] Word is not a standard, it’s a mess. At our site we have different versions of Word on different platforms, and they
have different and incompatible document formats. The lowest common denominator of portability is to have the text transmitted
from one place to another. With the Internet this is generally not possible. As soon as you are using a particular character set lying
outside ASCII you are lost. One example is a text file (produced by a software company) which was transferred from Mac Word
to Win Word without being checked carefully. The left quote character had come out as a ‘O’ slash. These funny things happen.
Another example is from Spain, sent to a news group. The sender has the character ‘ñ’ on his keyboard. He presses this key and it
comes out as ‘ñ’ on the screen. He sends it to me and it comes out as ‘$’. He can’t even send the word ‘Español’ to the Spanish
language news group! Transmission of text is a big problem which a lot of users haven’t yet tackled. In academic publishing one
will have to deal with multiple character sets, if only to be to accomodate authors’ names.
[Jonathan Fine] Two related questions. Firstly, where will we be in the year 2000? If we have a meeting here in five years time,
what will have happened? Secondly, if SGML succeeds, what will fail?
[LB] In five years time people will talking about Microsoft in rather the same way we talk about IBM. Remember IBM, they used
to make computers. What will fail will be the forces of the evil empire. Namely the idea that it is perfectly legal and correct for any
software company or equipment vendor to take information away from the people who have created it and lock it up in a proprietary
format. That is an idea that I really would like to see the end of. (Others expressed doubt at the early demise of Microsoft.)
[MK] As a publisher, still dependent on paper. Five years is not very long. Unless an electronic product appears that is really user
friendly to read for any length of time, we will still want paper. There will be more electronic products, particularly on CD-ROM.
In our environment a lot of specific document formats will probably fail. Ventura Publisher for example. People will concentrate on
just three or four products eventually. LATEX and TEX will still be around, and a few word processors.
[Sebastian Rahtz] A slightly heretical question about maths and chemistry. A lot of effort has gone into providing DTDs for these
things. Perhaps these will just wither and die. In five years time perhaps we will stop pretending that math is structured and regard
it in the same way as we regard graphics? Would any one like to defend the SGML markup of maths?
[MK] The only reason it is useful, is that it is independent of fonts. With LATEX you are still dependent on the font. When we
combine different articles into a book, we want a uniform appearance. We don’t want a mixture of fonts, otherwise we’re back to
the horrible camera ready copy. As for the fact that SGML maths is structured, I wouldn’t particularly want to defend it.

There was quite some discussion of this from the floor, which the tape recorder did not clearly pick up.
[Dina Desai] We would like to use SGML markup for our maths. What would you suggest?
[DB] Do you mean what DTD, or what software, or both?What DTD?

(Some information given by Mike Popham about specific math DTDs.)

reprinted from Baskerville Volume 5, Number 2

Questions and Answers

[Gerard van Nes] The whole problem with maths and SGML is that we simply need an SGML editing program which is able
to display as we write such complicated formulae. It is of course very uncomfortable to write the huge amount of mark-up as one
needs for SGML maths. But if you have a really good SGML editor it’s no problem at all.
[DB] I would have for maths a single tag, which says<maths> with an attribute which is notation, whose values will obviously
be tex , eqn , etc. If you know it’seqn or whatever, it is searchable. You can put hyperlinks into it.
About DTDs. About compound documents really. Say someone wants a journal with a video snip of the author explaining the article,
a sound bite, or what have you. Where would one get a DTD for this?
[DB] Much the same as the maths. A tag that says<sound> and an attribute which says which encoding scheme you are using.
[LB] There is an application of SGML called HyTime which is (about to become?) an ISO Standard. It defines time-based media
of all kinds and also different architectures within which you can associate events happening in time. There is one product that can
function against HyTime specifications, it is something to watch out for. There is in the TEI Guidelines a simplified version of some
HyTime concepts.
[DB] In the latest issue of EPodd there is a paper with the titleWhy Use HyTime?
[Angus Duggan] Adobe put a lot of effort into Acrobat as a static encapsulation format, able to reproduce the exact form of
documents. Will this in the future be important, or will content be all? Will the first published form of the document be important?
[DE] For archival purposes things like Acrobat are very useful, because they can encapsulate exactly how a document looked.
For other things, such as database access and searching it is the content which is more important. So you might want two different
electronic forms of the document. Also, the printed and on-screen versions of the document might be formatted differently.
[Angus Duggan] If we want to represent content and we do want keep the original form it was published in, then obviously Acrobat
solves the one problem and SGML the other. What thoughts about document formats which maintain both equally as well?
[LB] I’d like to question one of your premises. You talk about the orginal form of the document. I think we’re going to forget what
that is very soon. I don’t know what the original form of the TEI guidelines as published is. It was produced as an SGML document.
At home it is white letters on a black background. In the office black on a white. In yellow on green when I was in Chicago. This
was the authoring. Similar remarks apply to the printing, on US and UK sized paper. We had to do some fiddling around with the
page numbers, as you can imagine. There is another version of the guidelines which is equally authorative and has exactly the same
content, and that exists on a DynaText screen. It has no page numbers at all. I’m trying to make the point that I don’t know which
is the original form. They’re all equally valid.
[MK] When authors have their references in the article they often refer to an article in a book by its page number. How on earth
will you make a reference to a location in an electronic document which does not have page numbers?
[LB] By referring to the logical organisation of the text. Paragraph 38 within division 3 of etc.
[MK] I’m sure that we will eventually have a combined product which will have the format and all the structure in it from the
SGML. All in one product. Because there’s so much more you can do with that than you can with just PDF. The problem, as David
Brailsford mentioned this morning, is the Brand-X between the SGML and the PDF. Until we can resolve that problem we can get
to PDF, but not via the generic route, which is what we as publishers want.
[Allan Reese] About chasing up a reference. Page numbers are physical objects, and when the document changes the physical
indexing is out of date. With electronic documents you will go just by keyword and content indexing. You won’t have to know
where it is. You just say I want the paper by Fred Smith or whoever.
[MK] That works when you are searching an electronic product from another electronic product. It won’t work from a paper to an
electronic product.
[Angus Duggan] Intermediate version of documents. If people are publishing on the Internet, if you put a content link in a
document to a document being revised, this may change or break the link. So you need to have links to particular versions of
particular documents.
[David Coton] Chapters and verses are a menace. We are looking at how to regard text in an object-oriented way. One big probelm
with such a scheme is that Bible text has two hierarchical structures. It has chapter - verse structure, and it has section - paragraph -
sentence structure. Both are useful, both are valid. Both are in different circumstances necessary. But the two do not coincide. Any
object-oriented system has difficulty with that. There are ways round it. We are looking at introducing small enough units of text
to give coincident boundaries. SGML also has a problem with this. I’m told that the standard allows for dual hierarchies. However,
none of the existing tools implement it.
[DB] There is only one product I’ve seen that supports this CONCUR feature, which is the Mark-it parser, which is quite old. This
problem is discussed in the TEI guidelines. I don’t think this is an SGML problem. It is a characteristic of textual materials that
they can be organised in many different ways. This is inherent in the nature of text.
[Jonathan Fine] I’m not sure I should be asking this question. What future for typography?
[MK] If you believe the formatted original will continue, not replaced by a large amorphous glob of text, there still is a case for
typography. It is very important to read something, to understand how it’s put together. Reading off a screen is difficult anyway.
Typography is purely there to allow you to read something easily and quickly. I can’t see any reason why it should disappear.
Especially as I still believe paper will be around for a while.
[LB] I think that typography is hard, hard, difficult and very important. There are so many people clamouring in the Web and other
electronic marketplaces, that anything that stands out will be enormously important. One of the skills conspicuously missing on the
Web is good typographic understanding. The skills needed to present stuff effectively and well in the electronic medium are really
an outgrowth from the skills the typographers have developed in the past.
[DP] Typography is one aspect, but information design is perhaps an even more important. We’ve hardly covered information

–31–

reprinted from Baskerville Volume 5, Number 2

design. If more and more people are putting things on the Web and not thinking about how they design the document, then the
morass of information overload is going to get worse and worse.
[DB] If you go to www.whitehouse.gov you’ll find that it has been done by a professional graphics designer. That really
makes it stand out on the Web.
[Mary Dyson] Can I add to that? Typography on the screen. Have we got it well sussed? I don’t think we have yet. To go back to
the old chestnut, it’s not necessarily just transferring the same principles. Italics are not terribly good for emphasis on screen. So
you want perceptual equivalents of legibility.
[DP] We’ve come to a good point to stop. One final thing. The Web assumes one model of access to information. There are many
others, such as browsing, which are virtually impossible on the Web. Maybe we should be thinking about how other forms of access
to information are possible. Can I thank the four people on the panel and everyone else, particularly the speakers.

–32–

XII Maths in LATEX: Part 4, Numbered and Unnumbered Things

R. A. Bailey

Queen Mary and Westfield College,

University of London

Recall

This is the fourth in a sequence of tutorials on typesetting Mathematics in LATEX. The first three appeared in issues 4.4,
4.5 and 5.1 ofBaskerville. The series includes some things which can be found in [4], but I am working in more things
which, while straightforward and necessary for Mathematical work, are not in [4] or [5]. In this tutorial I concentrate
not on Mathematical formulae but on things like equations and theorems which Mathematicians like to display in
special ways and to number (or not).

In case you missed the first three tutorials, I remind you that I expect you, the reader, to do some work. Every so
often comes a group of exercises, which you are supposed to do. Use LATEX to typeset everything in the exercise except
sentences in italics, which are instructions. If you are not satisfied that you can do the exercise, then tell me. Either
write to me at

School of Mathematical Sciences
Queen Mary and Westfield College
Mile End Road
London E1 4NS

with hard copy of your input and output, or email me atr.a.bailey@qmw.ac.uk with a copy of the smallest
possible piece of LATEX input file that contains your attempt at the answer. In either case I will include a solution in the
following issue ofBaskerville: you will remain anonymous if you wish.

Answers

I promised to answer all questions arising from this series of articles (as far as I can).

Size of parentheses
Charles M. Goldie asks why I put(tg−1

)v in Exercise 26 instead of using\bigl(and\bigr) to make the paren-
theses larger than what they enclose. The answer is that you would need\Bigl(and\Bigr) to make them large
enough in this case: I should have used\left and\right (see Part 2 of this series) but I was lazy.

Both he and Charles Leedham-Green have asked why I permit, or even encourage, deeply nested parentheses, as in

u(P((1− ε)z)), (1)

without using commands like\bigl(to make some of the outer parentheses somewhat larger. In Chapter 17 of [3],
Knuth advises that authors should use\bigl and its relatives to specify the size of parentheses and other expandable
fences, to improve the readability of their formulae. However, I have deliberately avoided telling people about these
commands.

I have two reasons for ignoring Knuth’s advice. The first is that I regard LATEX primarily as a system forauthors,
not for typesetters. Authors should not be stopping to worry about the size of parentheses, particularly if the level of
nesting may change in a later version of the document. Conventions on size of fence should be a matter for the style
designer, not the author. If someone can write a style file that automatically detects the level of nesting and adjusts
the size accordingly, well and good. I have no objection to using such a style file; I do object to interrupting my
Mathematical thoughts to fret over niceties of sizing.

My second reason is related to the first. Journal editors and executive editors tend to have policies about the size of
fences, and they will impose these policies whatever we as authors do. So it is generally acomplete waste of timefor
authors to use\Bigr and the like, or for referees to insist on them.

This is not to say that I disapprove of\left and\right . These commands automatically adjust the size of the
fence to fit what is inside it. Adding, say, an extra item inside a\left(... \right) does not cause the author

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

to rethink the size of the parentheses. In fact, in my basic style file I have macros such as\probab , \setof and
\card which use\left and \right precisely so that I can type as I think,the set of . . .rather thansquiggly
brackets, now what size and how much space?(Oh, all right:

\newcommand{\card}[1]{\left|#1\right|}

—you can guess the others.) In fact,\left and\right make no difference to the formula in (1), so neither of my
questioners will be satisfied by my answer.

Interchangeability of parentheses, brackets and braces
Charles M. Goldie also asks if I have an opinion about whether nested parentheses should be routinely replaced so
that one uses the sequence{[(. . .)]}, which is demanded by some journals. I do have an opinion, quite a strong one,
probably because one of the journals in which I publish most frequently insists on the sequence[{(. . .)}] and shows
surprise (or the executive editor does) each time that I explain that I am using{. . .} to denote aset. My opinion has
been admirably expressed by Ellen Swanson in her bible of Mathematical typesetting [6]:

Often, however, the author of research mathematics attaches a special meaning to different types of enclosures,
and this author believes that theyshould be left in whatever order and variety the author has indicated in the
manuscript.

(her italics).

5 Numbered and Unnumbered Displays

5.1 Unnumbered Maths displays
Use\[and\] for an unnumbered single line of displayed Maths: see Part 1. If you have two or more lines of displayed
Maths that must be vertically aligned then you need one of thearray environments. I shall deal with them in the final
tutorial in this series.

5.2 Unnumbered word displays
Sometimes what you want to display is not simply a formula but a verbal condition that may or may not involve short
pieces of notation. For example:

each basis vectorf in VT,B is orthogonal to every basis vector inVB,T exceptf ψ.

If this will fit on a single line then you can use\[\mbox{...}\] , but this is not very satisfactory because you have
to stop and think how long it is and it is subject to changes in the line width. I find that thequote environment works
well for such displays.

5.3 Numbered Maths displays
Use theequation environment for a numbered single line of displayed Maths such as (1) in the ‘Answers’ section
above. If you have two or more consecutive equations or formulae that do not need to be vertically aligned, simply use
oneequation environment per line. For vertical alignment, wait until the tutorial on arrays.

If you put a\label within anequation you can painlessly refer back (or forward) to that equation.

For contrasts, we put
\begin{equation}
W_T = V_T \cap V_0^\perp
\label{contrasts}
\end{equation}
The space~W_T was defined
in Equation~(\ref{contrasts}).

For contrasts, we put
WT = VT ∩V⊥0 (2)

The spaceWT was defined in Equation (2).

5.4 Numbered word displays
Sometimes word displays also need to be numbered for reference. LATEX does not directly provide an environment for
this, but I find that the following works quite well.

There is a bijection ...
\begin{equation}
\begin{minipage}[t]{0.8\linewidth}

–34–

Maths in LATEX: Part 4, Numbered and Unnumbered Things

each basis vector~f ...
\end{minipage}
\end{equation}
Using ...

There is a bijectionψ between the bases which satisfies:

each basis vectorf in VT,B is orthogonal to every basis vector inVB,T exceptf ψ. (3)

Usingψ, we can show that . . .
These displays are numbered in the same sequence as theequation s, and can be labelled and referred to in just the
same way. Note that I have made no attempt to make the indentation the same as that inquote .

You can suppress the[t] if you want the number to be vertically centred on the display. You can replace 0.8 by
any reasonable fraction. There is a catch, however: if you have numbered word displays labelled (9) and (10) you may
find that the second one comes out shifted to the left, to allow space for the wider label. Whether or not this happens
depends on the settings of other parameters, such as\linewidth . With the default width for A4 paper in 10pt in
LATEX 2ε, I found that I had to decrease 0.8 to 0.75 in order to have satisfactory word displays numbered (9) and (10).

Of course, if you have two or more such displays you should make an environment for them. I do it as follows.
\newenvironment{condition}%

{\equation%
\begin{minipage}[t]{0.8\linewidth}}%

{\end{minipage}\endequation}

You may wonder why I have used\equation and \endequation in the definition instead of
\begin{equation} and \end{equation} . This is because of the clever things that LATEX does with spaces
before and after displayed material. When you type the line

\end{equation}

LATEX ignores the spaces on the rest of the line; if you type the line
\end{condition}

and the final part of thecondition environment is\end{equation} then this forgetfulness about spaces is not
passed through to\end{condition} . Use of the more primitive\equation and\endequation does pass on
the forgetfulness.

5.5 Numbering equations within sections
By default,equation s are numbered 1, 2, . . . right through the document in thearticle class. To make them
numbered within sections you need

\renewcommand{\theequation}%
{\thesection.\arabic{equation}}

Then the first equation in Section 1 will be numbered 1.1, the next 1.2, and so on. However, if there are four equations
in Section 1, then the first equation in Section 2 will be numbered 2.5 because theequation counter has not been
reset at the start of the new section. To correct this, you also need

\@addtoreset{equation}{section}

Because of the@sign in this command, you must either place it in a style file or make sure that it comes between the
commands\makeatletter and\makeatother in the preamble to the document.

5.6 One-off numbering of equations
Occasionally you want to number an equation not in the main sequence but by a particular symbol, such as (∗) or (1.1′).
Use the followingoneoff environment in place ofequation , putting the desired symbol as the single parameter.
\newenvironment{oneoff}[1]{\equation%

\addtocounter{equation}{-1}%
\renewcommand{\theequation}{\mbox{#1}}}%
{\endequation}

For example,
\begin{oneoff}{$*$}
a(p_i,q) - a(p_j,q) = 0 \bmod s
\end{oneoff}

–35–

reprinted from Baskerville Volume 5, Number 2

a(pi,q)−a(pj ,q) = 0 mods (∗)
(See [4, page 92] or [5, pages 98–99] for how these counter commands work.) Note that automatic cross-referencing
does not work for such equations.

If you want a one-off equation numbered 1.1′ related to Equation (1.1) then give the latter a label (say,rowsum)
and then do

\begin{oneoff}{\ref{rowsum}$’$} ...

5.7 Subsequences of equations
Suppose that between Equations (5) and (7) you want a sequence of equations numbered (6a), (6b) etc. Put the follow-
ing in the preamble to the document (or in the style file).
\newsavebox{\saveeqn}
\newcounter{subeqnno}
\renewcommand{\thesubeqnno}{\alph{subeqnno}}
\newenvironment{subequations}%

{\refstepcounter{equation}%
\savebox{\saveeqn}{\theequation}%
\setcounter{subeqnno}{0}}%

{}
\newenvironment{subeqn}%

{\refstepcounter{subeqnno}%
\oneoff{\usebox{\saveeqn}\thesubeqnno}}%

{\endoneoff}

(See [4, page 101] or [5, pages107–108] for details of\savebox .) Then usesubeqn in place ofequation for
each of the equations (6a), (6b) etc., and place the whole subsequence in thesubequations environment.

Automatic cross-referencing doesn’t work for these either. The reason is that in constructingoneoff andsubeqn
I haveusedthe equation environment rather thanmimicking it, with the result that any\label picks up the
equation counter. To do this properly you would have to copy out theequation part of latex.tex (which
is well documented) and hack it (for 2.09ers; of course, LATEX 2ε persons would have to hack part ofltmath.dtx
andclasses.dtx , which some would argue are even better documented). I have never needed this construct often
enough to bother to do it properly, but I am sure that it could be done.

Exercises

Exercise 48 Make a numbered displayed equation saying

t (vPg) =
(

tg−1
)

v

and a sentence which refers to it.

Exercise 49 Make an unnumbered word display saying

There is a natural surjective homomorphismφ:G→G/N with ker(φ)' Im(φ).

Exercise 50 Make a displayed numbered verbal condition saying

for all A, B, C in P : if A≺ B andB≺C thenA≺C; and if A� B andB� A thenA = B.
Then add a sentence which refers to it.

6 Theorems and their friends

6.1 Basics
To make a new environment calledthm for theorems, do

\newtheorem{thm}{Theorem}

This sets up the environment, which is then used as follows.
\begin{thm}
The kernel of a homomorphism
is a congruence.

–36–

Maths in LATEX: Part 4, Numbered and Unnumbered Things

\label{basic}
\end{thm}
In Theorem~\ref{basic} we ...

Theorem 1 The kernel of a homomorphism is a congruence.
In Theorem 1 we . . .

The theorems are all given the heading ‘Theorem’. They are numbered automatically, and may be cross-referred to in
the usual way.

For clarity in the rest of this section, I shall call the item likethm thetheorem environment, the item likeTheorem
thetheorem name, the text like ‘Theorem 1’ thetheorem head, and the text like ‘The kernel of . . . ’ thetheorem body.

Note that there is nothing to prevent two different theorem environments having the same theorem name. Indeed,
the theorem name can be empty.

By default, the theorem head is in bold and the theorem body is in italics. The theorems are numbered in arabic
numbers, in a single sequence throughout the document (in thearticle class). All of these defaults can be changed,
as I show below.

It may not be obvious to the novice user, but there is more to an environment created with\newtheorem than
special layout and automatic numbering. The spacing before and after each theorem environment is controlled, and
penalties are set so that no page break will come after the first line of a theorem environment unless there is a natural
break-point in the text.

Unfortunately, there is a bug (oops, feature) in LATEX which means that if you put\label{...} immediately
after \begin{thm} you spoil this page-breaking penalty. But the\label should be somewhere easy to find, so I
always play safe and put it immediately before\end{thm} .

6.2 Named theorems
If you have a theorem environmentthm then you can use an optional argument tothm to obtain a named theorem.
For example,

\begin{thm}[The Central Limit Theorem]
If X_1, ...

Theorem 2 (The Central Limit Theorem) If X1, X2, . . . , Xn are independent . . .

or

\begin{thm}[Galois, 1832]

Theorem 3 (Galois, 1832)If L : K is a finite normal . . .

6.3 Sequences of numbering
Two optional arguments to\newtheorem give you control of which theorem environments are numbered in which
sequences. Although it is logical to number theorems, lemmas, corollaries etc. all in their own sequences, it is much
easier to find your way around a long document if they are all in a single sequence. To get a theorem environmentlem
numbered in the same sequence asthm , do

\newtheorem{lem}[thm]{Lemma}

After the theorems we have had so far, if we now do

\begin{lem}
With the above notation ...
\end{lem}

we get

Lemma 4 With the above notation . . .

The other optional argument numbers the theorem environment inside something else. If you want the second
example in Section 3 to be numbered 3.2 irrespective of how many examples there were in previous sections, then do

\newtheorem{eg}{Example}[section]

You can use at most one optional argument with each\newtheorem command.
You can even number one theorem environment inside another: for example

\newtheorem{cor}{Corollary}[thm]

if you want the corollaries after Theorem 10 to be Corollary 10.1, Corollary 10.2, etc. Be careful not to create a circle
of environments numbered within each other.

–37–

reprinted from Baskerville Volume 5, Number 2

6.4 Unnumbered environments
There are several items, such as definitions, remarks and notation, that clearly should be theorem-like environments
except that they should not be numbered. It would be possible to set them all up and then separately adjust the counter
on each one so that it is not numbered. However, it is easier to take advantage of the number-in-the-same-sequence
option. Set up a single unnumbered counter with

\newcounter{unnumber}
\renewcommand{\theunnumber}{}

and then put the other unnumbered theorem environments in the same sequence with

\newtheorem{rem}[unnumber]{Remark}
\newtheorem{def}[unnumber]{Definition}

6.5 Other systems of numbering
Many Mathematicians want the possibility of having Theorem A, Theorem B etc. as well as Theorem 1 etc. This is no
problem. Use the commands given in [4, page 92] or [5, page 98] to alter the way a theorem environment is numbered.
Thus

\newtheorem{thma}{Theorem}
\renewcommand{\thethma}{\Alph{thma}}
\begin{thma} The subgroups ...
...
\begin{thma} The irreducible ...
\label{char}
...
The result of Theorem~\ref{char} \ldots

Theorem A The subgroups . . .

Theorem B The irreducible . . .

The result of Theorem B . . .

Other possibilities for numbering are

\alph{thma} Theorem b

\roman{thma} Theorem ii

\Roman{thma} Theorem II

6.6 Changing the fonts
Fonts are handled differently in LATEX 2.09, in NFSS, and in the new standard LATEX, LATEX 2ε. All the suggestions that
I give in this section work in both LATEX 2.09 and LATEX 2ε. They do not work at all if you run NFSS without LATEX 2ε.
If you are using LATEX 2ε, youmustuse the forms like\sc given here: the commands like\textsc will not do the
right thing, because theyaddsmall capitals (say) to the default fonts instead ofreplacingthe default fonts.

The \newtheorem command in LATEX is the most wonderful thing to happen to Mathematical writers in a long
time, because so many of our constructs fit it. However, one of the worst things to happen to Mathematical writers
is the hard-wiring of the fonts for the theorem heads and the theorem bodies. Ordinary LATEX simply does not give
you the flexibility to change these easily. Yet the defaults are not always appropriate, and different journals demand
different fonts for these purposes. I suspect that this hard-wiring is one reason that some Mathematicians have been
reluctant to use LATEX. What can the ordinary user do about this problem?

I shall give four answers, because different solutions are appropriate in different circumstances.
(i) Bare handsSometimes (for example, when sending an article toBaskerville) you cannot submit your favourite

style files along with your main file. So you need a ‘bare hands’ way of changing the fonts, without losing too much
genericity. Here’s how.

To make a theorem environmentprop whose theorem head is set in small capitals, do

\newtheorem{prop}{\sc Proposition}

For a small document, this will do. To be more generic, you could do

\newcommand{\headfont}{\sc}
\newtheorem{prop}{\headfont Proposition}

–38–

Maths in LATEX: Part 4, Numbered and Unnumbered Things

so that only one line has to be changed if you decide to change the font of all the theorem heads.
To make a theorem environmentqn whose theorem body font is set in roman, use a two-stage process. The exercises

in this sequence of tutorials are defined by
\newtheorem{preqn}{Exercise}
\newenvironment{qn}{\preqn\rm}%

{\endpreqn}

(The exercises in this particular tutorial are bad examples, because they all have italic instructions.)
(ii) Mittelbach’s style fileFrank Mittelbach wrote the style filetheorem.sty , which should be available from all

good CTAN hosts. It is described in [2, pages 251–255]. It enables you to change the fonts and the layout of theorem
environments. However, it does not do exactly what I need.

(iii) My style fileWhen I first started to use LATEX it was obvious to me that a flexible means of changing the fonts
for theorem heads and theorem bodies had to be provided. I hacked@begintheorem from latex.tex to produce
a style file which lets me give a single command to set the font for theorem heads, another to set the font for (most)
theorem bodies, and another to say that all subsequently declared theorem environments will have their bodies set in
‘ordinary’ type: not necessarily in roman, but inwhatever font the surrounding text is in. However, like many others,
I deplore the proliferation of personal style files because they inhibit portability of documents, so I haven’t made this
style file generally available.

(iv) American Mathematical SocietyThe old version ofamstex.sty (see [1]) gives the user the possibility of
declaring theorem environments in three classes—plain theorems, definitions and remarks. However, it does not give
the user any control over the fonts used in those environments. I do not know if the forthcoming packageamsthm.sty
will give any more freedom.

6.7 Proofs
We all need a proof environment, so everyone invents her own, some more successfully than others. I think that the
proof environment should be made with\newtheorem , so that all the benefits of spacing, of page-break penalties
and of consistent head fonts can be retained. Of course, proofs should be unnumbered and (usually) set in the same
font as the surrounding text. So I simply use the foregoing methods to create an environmentpf with nameProof
which is unnumbered and has its body set either in the surrounding text font or in roman.

What should you do about the end-of-proof symbol? Some people want it put in automatically. In principle this
could be done with something like

\newenvironment{proof}{\pf}%
{\eop\endpf}

where\eop is your favourite end-of-proof symbol, for example
\unskip\protect\nolinebreak\mbox{\quad\Box}

This is not really satisfactory if you have any proofs that end in displayed Maths (or any other sort of display). Tradi-
tionally the end-of-proof sign goes in the display, not on a new line; but if you have a display inside an environment
then LATEX finishes off the display and gets ready for a new line before it reads the instructions for the end of the
environment. So my advice is to have an\eop macro and put it in by hand at the end of every proof, either just inside
the final display (if this is the last thing in the proof) or just before the\end{pf} .

6.8 Questions and Exercises
A theorem environment is ideal for questions on exam papers and coursework sheets, and exercises in text books.
It is usually better thanenumerate because it retains the normal textwidth, paragraph indentation and paragraph
separation. If you want the questions to be headed simply ‘1’, ‘2’, etc. then do

\newtheorem{question}{}

If the questions have parts and subparts, it is sensible to useenumerate for them. In that case you probably
need to change the default numbering of theenumerate environments so that, say, parts are labelled ‘(a)’ etc. and
subparts ‘(ii)’ etc. The next section shows how to do this.

Exercises

Exercise 51 Create a short document with two sections. In the first section put one theorem, a lemma subtitled ‘Burn-
side’, another theorem, and a remark. The remark should be neither numbered nor in italic. In the second section put
another lemma, another theorem, a corollary numbered in the same sequence as the theorems, and finally a theorem
in a roman-numbered sequence. Include cross-references to all the numbered items.

–39–

reprinted from Baskerville Volume 5, Number 2

Exercise 52 Redo the previous question, in such a way that lemmas and equations are numbered within sections.

7 Other numbered things

7.1 Numbered lists
If you useenumerate within a theorem environment then you will probably have to change the way that the different
levels of enumerated list are numbered. This is controlled by commands containing the stringsenumi , enumii ,
enumiii andenumiv . Thus theNth level of nesting is controlled byenumN.

The counter forenumNis called simplyenumN. To alter whether the counter is displayed as an arabic numeral, a
letter etc., you change\theenumN (see [4, pages 91–92] or [5, pages 97–99].) To alter the printed labels which are
put on the items in the list, change\labelenumN to be a suitable text containing\theenumN .

I find that two levels of nesting are quite sufficient within exam questions and homework problems. My style files
for exams and homeworks contain the lines

\renewcommand{\theenumi}{\alph{enumi}}
\renewcommand{\labelenumi}{(\theenumi)}
\renewcommand{\theenumii}{\roman{enumii}}
\renewcommand{\labelenumii}{(\theenumii)}

In a book, you might need to put something similar in the start of anexercises environment.
If you are lazy then you might try to alter just\labelenumN . The list items will have the correct printed labels

but your printed cross-references will not match. The cross-reference generated by a\ref call to a\label in the
Nth level of nestedenumerate s has the form

\p@enumN\theenumN

where\p@enumNusually picks up the\theenumM from higher levels (M < N), and possibly some punctuation. If
you don’t like the settings of\p@enumNthat LATEX gives you by default, you will have to change them in a style file.

7.2 Footnotes
Mathematicians usually don’t use footnotes, because the footnote marks would be interpreted as superscripts or op-
erators. However, we do sometimes like to put information at the bottom of the first page of a document, under a
horizontal line: perhaps an address for correspondence, or a list of AMS subject categories. You can do this with a
\footnote early in the document, so long as you have first done

\renewcommand{\thefootnote}{}

It is best to put this command in a small group around the use of\footnote .

Exercises

Exercise 53 Modify the document in Exercise 51 so that one of the theorems has parts and subparts. The parts should
be labelled

[A], [B], . . .

and the subparts

1/, 2/,

Exercise 54 Modify the document in Exercise 53 so that the foot of the first page carries the text

Key words: construction of designs; neighbour balance; optimality; randomization; software.

References

[1] A MERICAN MATHEMATICAL SOCIETY: AMS -LATEX Version 1.0 User’s Guide, American Mathematical Society, Providence,
Rhode Island, (1990).

[2] GOOSSENS, M., MITTELBACH, F. & SAMARIN , A.: The LATEX Companion, Addison-Wesley, Reading, Mass., (1994).
[3] K NUTH, D. E.:The TEXbook, Addison-Wesley, Reading, Mass., (1984).
[4] L AMPORT, L.: LATEX: A Document Preparation System, first edition, Addison-Wesley, Reading, Mass., (1986).
[5] L AMPORT, L.: LATEX: A Document Preparation System, second edition, Addison-Wesley, Reading, Mass., (1994).
[6] SWANSON, E.:Mathematics into Type, revised edition, American Mathematical Society, Providence, Rhode Island, (1979).

–40–

XIII One by one the guests arrive

Kees van der Laan

cgl@rc.service.rug.nl

This note emerged from a request of Sebastian Rahtz triggered by my message which I passed along with my public
appraisal for the 100 (LA)TEX FAQs.

This plea, this shout, hopes to awake the notion that we are all better off if we write macrosoftwarein the lowest
common set of all TEX flavours. At least it might initiate a discussion because I’m realistic enough that not all involved
share my views :-))).

Of course I know that reality is more complicated, and that a right balance is the best we can opt for, so let us go
for that.

1 Why,

would a LATEX devotee ask? Do you have concrete arguments? Well, from my own experience I can say that there was
a time I needed to typeset number ranges. Only the LATEX style of Donald Arseneau was available. But, what I needed
was a few macros to cooperate with plain, so I had to write one of my own,1 which by the way emerged as a much,
much more compact suite. After all the need has faded away because I tackled the handling of bibliography references
more fundamentally. The point is that it would have been better if there had been a kernel independent from the higher
layer which I could have taken over. The interface towards the higher level, or let us say the user interface, should
better be built on top. The paradigm is this example is the awareness of CISO, as analogy of FIFO, meaning Collective
In and Smallest Out, which solves the problem.

That this approach is beneficial in software engineering in general is proven by the various numerical software
program libraries, which have the basic material written in the lowest language feasible, FORTRAN, allowing stability,
optimization of the code, and confidence in use. Similarly, I remember the PDE (partial differential equation) packages
which use common basic algorithms, but differ in the jargon at the user level. I hope that the macro/package/module
writers have a feeling for the savings of the costs which can be gained over time, by this attitude. As a volunteer
organization one could shrug it off and say I don’t care, costs are not relevant. Then there is still another nasty guy
lurking around the counter that the (All)TEX community like various sects will fall apart, will fragment. To continue
the tune

And no one knows where the night is going
And no one knows why the wine is flowing
O love, I need you, I need you, I need you

I need you now

Another example to the point is how to provide for headings? The answer is that I don’t care so much about heading
macros because the common part is so negligible, while it is highly intertwined with the user interface. But — there is
always a but — I for one am strongly in favour of starting from two-part macros, which should perform the essential
functionalities whatever you may wish, and build all the ornamentation — i.e., the user-interfaces, eventually with less
functionality — on top. This approach obeys theseparations of concernsprinciple, and pays off in maintenance, if not
that it spreads more easily.2 To give you an idea of how I did it basically inblue.tex :

\def\beginghead{<the required functionality>}
\def\endhead{<the required finishing off>}
%with as one-part on top
\def\head#{\bgroup\beginhead

\aftergroup\endhead
\afterassignment\ignorewhitespace

1Who cares? It is estimated that 80% or more of the software is continuously rewritten, that is a fact. My reply is that we can do much better,
and we should if we opt for the best.

2Forgive me this joke, with LATEX widespread.

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

\let\dummy= }
%or the tribute to manmac
\def\bluehead#1\par{\beginhead#1\endhead}

The last tribute lost the processing on-the-fly functionality, but most of the time I don’t need that, at the expense of
simpler markup. But the latter is a matter of taste.

If people like a LATEX-flavoured header, just go ahead and add it. The fundamental functionalities have been provided
already, just a user interface has to be provided as variant.

2 Conclusion

The point I’m trying to make is that we are all better off if complex fundamental parts are programmed in ‘plain’,
perhaps after all it has proven to be a fundamental point. To end Cohen’s song:

The guests are coming through
The open-hearted many
The broken-hearted few

–42–

XIV Something is happening, but you don’t know what it is

Peter J. Cameron

School of Mathematical Sciences

Queen Mary and Westfield College

Mile End Road

London E1 4NS

This is intended as a worm’s-eye view of what is happening to TEX in the mathematical community at present. It
seems to me that there are some problems.

I have earned my living as a mathematician for 24 years. For half that time, the tools of my trade included a portable
typewriter and large quantities of Tipp-Ex, and all formulae were written in by hand. For the next six years, I used
various word processors; no more Tipp-Ex, but still handwritten formulae. Then I discovered TEX, and took to it with
the inevitability of a love affair. Is it always so difficult for a love affair to last? TEX and I have started having problems,
and perhaps the fault isn’t all mine. Maybe we should have some counselling.

TEX fills two roles in the working life of a mathematician, and early on I fell into the trap of confusing them. On
one hand, it is for producing masterpieces of the typesetter’s art; this was such a delight! For this reason, early on I
rejected LATEX: I was unable to make a LATEX document look good; and while ordinary mortals can write or edit TEX
macros, only superheroes can mess with LATEX style files. In plain TEX, with the help of invented or adapted macros
and a variety of fonts, I made everything from books, through class exercise sheets, to character sheets for my son’s
role-playing games, all stamped with my own design (for better or worse).

The other aspect of TEX relevant to mathematics is its function as a communication standard. Several things con-
tributed to this, for most of which we have Knuth to thank. Most important is its free availability on all platforms, and
the fact that the input is ASCII text without control characters, so that it can be sent by email without damage (even
to and from the UK nowadays, although it wasn’t always so!). Gone are the days when international collaboration
involved exchange of letters taking weeks, with the inevitable crossing of information. I can now exchange drafts of
papers with co-authors almost instantaneously (though, of course, time differences mean that I usually have to wait a
day for a reply from Australia).

Another significant fact is that email and TEX provide a mechanism for communicating formulae in an email
letter. Between TEX-literate correspondents, such snippets of TEX are never compiled (except, arguably, in biological
computers).

Besides the two mentioned above, a third factor has contributed to establishing this standard. Knuth, as a mathemati-
cian, designed the plain macros to be as close as possible to the way that formulae are pronounced by mathematicians.
Thus,x \over y producesxy. (One of the few exceptions to this is that we have to say\bar x rather thanx \bar
to getx̄.)

My first encounter with TEX, before I knew what it was, came about when an editor sent me a referee’s report in
uncompiled form. The dollar signs were a bit mysterious, but if I ignored them, the rest made quite good sense!

Regrettably, many popular macro packages have lost sight of this point, and seem obsessed with the need for all
operators to be prefix. Mathematicians, brought up with the infix and postfix arithmetic operations, are free from this
artificial hang-up, and never refer toxy as \frac{x}{y} . (Well, maybe not quite — but this is certainly true for
formulae simple enough to be put into a letter.)

Now there is a clear conflict between these two roles of TEX. It was borne in on me when I wanted to send my
beautifully-crafted preprints to other people. At best, I could send along several macro files, and assume that my
correspondents could follow the instructions for naming and using them and cope with the organisational problem.
At worst, the recipient would lack a font I’d used, and would be unable to print the document at all. So, inevitably, I
was forced into keeping two copies of each file, a fancy one for myself, and a plain one for everyone else. This made
updating the files a nightmare, especially when one was at home and the other at work. The next stage was to abandon
the fancy files, and keep everything as plain as possible!

These problems, if understandable, were at least self-inflicted. But it seems to me that the academic/publishing
community is now falling into the same trap.

reprinted from Baskerville Volume 5, Number 2

reprinted from Baskerville Volume 5, Number 2

It is now very common for publishers to encourage electronic submission of manuscripts. Among the specialist
journals in my field, with one rogue exception which specifies WordPerfect (stop laughing at the back!), the system
of choice is LATEX, with a proprietary style file to reproduce the existing look of the journal. Some of these style files
are less than perfect. (One publisher, attempting a clever redefinition of\emptyset , ended up leaving this command
undefined. Another insists on printing the journal’s copyright message on my preprints.)

Often, these style files tempt the author with added features, from the trivial (an\email command to print the
author’s email address) to the valuable (aproof environment for the proofs of theorems). If you bite the apple, you
can no longer compile your paper in ordinary LATEX, and so you can no longer email it to your collaborators. Yet some
of the features are too good to miss, and the journal makes others compulsory. So, once again, I have to maintain two
copies of my files.

Further problems are caused by the proliferation of LATEX versions and font selection schemes. Rather than stick to
the lowest common denominator, some journals provide elaborate format-switching mechanisms whose instructions
are very difficult to decode.

Electronic journals pose still more problems. We are told that this is the way of the future, and that traditional
journals will quickly die out. Yet I am sure that many academics, (and not only in the Third World), are unable to
read or access these journals. We get busier and busier as time goes on, and installing Mosaic and all the necessary
supporting software on your computer is a non-trivial job. And on a more mundane level: an otherwise excellent
electronic journal in my field has, as virtually the only style specification, the use ofcmcsc8 for the headline. This
font is not in the emTEX distribution. Fortunately, the.tfm and.pk files for this font were available on our Unix
machines, so I was able to download them and correct the lack. How many beginning netsurfers would be deterred, by
choice or necessity, by just such a small irritation?

If publishers do force us into using discordant versions of TEX by such means, then the role of TEX as the standard
for mathematical communication will be threatened. If this is lost, one of the major advantages of TEX over other
systems will go with it. Can we save the situation? I do not believe that standards can be established by wishing for
them, even by formalising the wishing into a committee. The only thing that seems to work is the commercial success
of particular hardware or software. But what could we ask of LATEX3 (or whatever is to be the standard)? Just two pleas
come from the concerns I have raised:

• It must be possible to impose different styles with the absolute minimum of change to the input file. This means
that all publishers’ requirements must be anticipated and default versions included in the standard style. Sounds
totally impractical? But we know what happens if you don’t!
• Either all the plain TEX mathematical commands should be available, or the commands that are actually used

should conform as closely as possible to spoken mathematics.

–44–

XV Malcolm’s Gleanings

Malcolm Clark

1 Spivaking anyone?

Cybernauts will be familiar with LambdaMOO, one of the information superhighway’s more recherche laybys. For
those with both feet in reality, a MOO is an object oriented MUD, and a MUD used to be a multi-user dungeon, but
has achieved respectibility by becoming a dimension or discussion (depending on whose acronym cracker you use).
When it was a MUD it was just an on-line game for propellor heads (usually male, usually adolescent), without the
benefit of graphics. Just a text based dungeon and dragons game. The sort of thing your average TEX head would
enjoy. In its new incarnation it has become a useful conferencing tool (as well as a virtual world for role players).
Xerox PARC (the guys who brought you the first usable graphic user interface while the Steves, Jobs and Wozniak,
were still cadging chips from Mr Hewlett and Mr Packard) is the home of the LambdaMOO, where you can register
to have your own room which you organise as you wish and to which you may invite whomever, or maybe even
whatever, you choose. A plausible version of what this might become is contained in Neal Stephenson’s cyberpunk
novel ‘Snow Crash’. What has this to do with the world of TEX, apart from its similar single-mindedness? Just that
‘to spivak’ is a way of describing one sort of role-playing. More research needs to be done to establish the full
implication of this. A prize for the first entertaining (if inaccurate) definition: LambdaMOO may be found at the URL:
telnet://lambda.parc.xerox.com:8888 (that’s enough to separate the kids from the lambs).

2 Stability or statis

The latest round of ‘corrections’ to the TEX suite has just been released by Donald Knuth. It includes adjustments
to TEX, Metafont and the Computer Modern fonts. The bumper cheques (top amount this time, $327.68) went to the
legendary (if elusive) Chris Thompson and Bogusław Jackowski. This takes TEX to version 3.14159, and Metafont
to 2.718. The announcement was accompanied by the statement that the next and successive rounds would occur in
February “1998, 2002, 2007, etc!”. In line with all best laid plans, no sooner had the toner on my laser printer fused
than another bug was found and corrected. The numbers remain the same though.

3 TUGboat

TUGboathas arrived. At least, volume 15, number 3, the conference edition has made it to our shores (coincidentally
at the same time as it turned up in Santa Barbara). It’s a reasonably thick compendium, despite omitting a few of
the papers which were presented. The omissions are either because the articles were very similar to already published
material (like Rowley & Mittelbach, and Bigelow), or because it will appear in a future issue (like Hosek, Haralambous,
and Laugier & Haralambous), or, rather oddly and without explanation, withdrawl (Haralambous). It’s better and
more cohesive than I remember at the conference. The major innovation is the inclusion of several pages in colour,
appropriate at a meeting where so much attention was directed at the use of colour. In contrast to the edition of Cahiers
GUTenberg which used colour integrated with the text, all the colour examples are included in an Appendix. Many
of the new extensions to LATEX reflect or anticipate the widespread adoption of colour. This volume may be a timely
summary of many of the issues and consequences. But there is much else there.

4 A few last words

I continue to be surprised by the attention that this column attracts. In my view it is a filler which helps the editor to
pad out a few columns and the only balance it achieves is purely in those column terms. It is not to be taken seriously.

reprinted from Baskerville Volume 5, Number 2

	Editorial
	Portable documents meeting
	Bits and pieces

	Letters to the editor 1: Maths in LaTeX , Part 3
	Letters to the editor 2: Maths in LaTeX , Part 3
	Letters to the editor 3: textsc {Dante}
	Portable Documents: Why Use SGML?
	Introduction
	Documents
	Portability
	Who needs portable documents, and why?
	Examples of successful portability
	Achieving portability
	Why use SGML?
	An example

	The future

	Formatting SGML Manuscripts
	HTML & TeX: Making them sweat
	Markup
	The World Wide Web
	HTML Markup
	Implementation
	Presentation

	Publishing with HTML
	Printing from HTML
	Problems

	Development

	The Inside Story of Life at Wiley with SGML, LaTeX and Acrobat
	Introduction
	Setting the Scene
	Complementary not Competitive
	SGML in Practice
	Production Considerations
	Problems Encountered

	LaTeX in Practice
	Steps in the Process

	Acrobat at Arm's Length
	Conclusion

	Theory into Practice: working with SGML, PDF and LaTeX at Elsevier Science
	The Company
	The move into electronic publishing
	The concept of Computer Aided Publishing (CAP)
	Practicalities: How we do it
	TeX and LaTeX
	Practical Problems
	The Future

	SGML and LaTeX
	Further reading
	Questions and Answers
	Maths in LaTeX: Part 4, Numbered and Unnumbered Things
	Numbered and Unnumbered Displays
	Unnumbered Maths displays
	Unnumbered word displays
	Numbered Maths displays
	Numbered word displays
	Numbering equations within sections
	One-off numbering of equations
	Subsequences of equations

	Theorems and their friends
	Basics
	Named theorems
	Sequences of numbering
	Unnumbered environments
	Other systems of numbering
	Changing the fonts
	Proofs
	Questions and Exercises

	Other numbered things
	Numbered lists
	Footnotes

	One by one the guests arrive
	Why,
	Conclusion

	Something is happening, but you don't know what it is
	Malcolm's Gleanings
	Spivaking anyone?
	Stability or statis
	emph {TUGboat}
	A few last words

