
B a s k e r v i l l e
The Annals of the UK TEX Users’ Group Guest Editor: Kaveh Bazargan Vol. 7 No. 1

ISSN 1354–5930 September 1997

Articles may be submitted via electronic mail tobaskerville@tex.ac.uk , or on MSDOS-compatible discs, to
Sebastian Rahtz, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, to whom any
correspondence concerningBaskervilleshould also be addressed.

This reprint ofBaskervilleis set in Times Roman, with Computer Modern Typewriter for literal text; the source is
archived onCTAN in usergrps/uktug .

Back issues from the previous 12 months may be ordered from UKTUG for £2 each; earlier issues are archived on
CTAN in usergrps/uktug .

Please send UKTUG subscriptions, and book or software orders, to Peter Abbott, 1 Eymore Close, Selly
Oak, Birmingham B29 4LB. Fax/telephone: 0121 476 2159. Email enquiries about UKTUG touktug-
enquiries@tex.ac.uk .

Contents

1 Editorial . 2
I The Future of Document Formatting (Working Paper). 3

1 Abstract . 3
2 Introduction . 3
3 Requirements . 4

3.1 Editability . 4
3.2 Extensibility . 4
3.3 Generality . 6
3.4 Optimality . 6

4 Conclusion . 8
5 Acknowledgements . 8

II Standard DTDs and scientific publishing. 10
1 Abstract . 10
2 Introduction . 10
3 Scientific publishing . 10
4 Encoding of mathematical formulas .11

4.1 Characteristics of mathematical notation12
4.2 Who performs the markup of math?13
4.3 Feasibility of S-type notation .14
4.4 Some problems with existing languages14

5 Re-using mathematical formulas .15
6 Related problems .15
7 Conclusions . 16

III A LATEX Tour, part 3: mfnfss, psnfss and babel. 18
1 Introduction . 18
2 The MFNFSS Distribution . 18

2.1 Font Packages .18
2.2 T1 Encoded ‘Concrete’ Fonts .18

3 The PSNFSS Distribution .18
3.1 PSFONTS . 19
3.2 Standard PSNFSS Packages .20
3.3 Freely Available Type 1 Text Fonts21
3.4 Commercial Text Fonts .21

–1–

reprinted from Baskerville Volume 7, Number 1

3.5 Adobe Lucida . 22
3.6 Lucida Bright . 22
3.7 MathTime . 22
3.8 Documentation and Other Files .22
3.9 PSNFSSX . 23

4 The Babel Distribution . 23
4.1 Babel Kernel . 23
4.2 Language-Specific Files .23
4.3 Compatibility Files . 24
4.4 Installation Script and Font Descriptor Files25
4.5 Documentation . 25
4.6 Example File . 25

5 Coming Soon . 25
IV A tutorial on using MetaPost’sgraph package. 26

1 Introduction . 26
2 Getting started . 26
3 Variations in basic graphing .27

V The UK TEX Users’ Group. 34

1 Editorial

We had fun trying to output this issue together. Because of the very nature of Baskerville, being written by the TEXperts,
and pushing TEX to its limits, it is not the simplest publication to handle. Now we all like to do things in the most
elegant way possible but, having run a production environment for a few years, we have learned to use the quick and
dirty method when it works. I thought some notes on the production of this issue might be of interest.

The work was done using Textures on a Power Computing Macintosh clone. The initial problem came from (of
all places) fonts. Textures uses a system of font management different to other machines (in itself no bad thing). A
version of the Baskerville class file had to be chosen from the several that were offered/located (actually adiff was
performed on them and the most likely looking candiates were pinched into one big, mutated, class file—it worked, so
who are we to complain). Things went smoothly until Sebastian’s MetaPost article where the use of%*Font , dvips
specific, commands meant that the.eps files needed to be modified to run under Textures. The following lines where
added. (This is not a general solution and can be quite dangerous, but it was quick.)

/cmsy10 /CMSY10 def
/cmr10 /CMR10 def
/cmmi10 /CMMI10 def
/fshow {exch findfont exch scalefont setfont

show}bind def

What it does is to make the textcmr10 , etc active (so no phrases like ‘this figure uses cmr10’ are allowed) and
defines thefshow command. Unfortunately you must have access toall the fonts locally on your machine as they
aren’t embedded into the PostScript. Obviously we could have run MetaPost on the original source codes, by adding a
prologues := 1; command of course, but as both methods require us to change all the files and the latter requires
an extra processing step fromMETAPOST so the first method was deemed acceptable.

Jeff Kingston is the author of the batch-processing document formatterlout. His paper was written while he was
on sabbatical in theUK, and he was happy for it to be republished inBaskerville(after translation to LATEX, of course).
The paper is over a year old, but Jeff welcomes comments (other than those of the form “if you did this in LATEX, all
your problems would go away”. . .).

The paper on standardDTDs was first published inEPSIGNews 5 number 3, September 1992, pp 10–19. Permission
was obtained from the three authors to republish inBaskerville.

Despite the extreme age of this paper it contains much useful comment and observation of the problems of encod-
ing mathematical notations. Two appendices have been omitted: ‘Existing mathematical notations’ and ‘Comparison
betweenISO TR9573 andAAP Math DTDs’.

Good luck to the next editor!

–2–

I The Future of Document Formatting (Working Paper)

1 Abstract

Document formatting systems have reached a plateau. Although existing systems are being steadily enhanced, the
next major step forward will require a union of the best features of batch formatters, interactive document editors,
and page description languages. This paper draws on its author’s twelve years of experience designing, implementing,
and enhancing the Lout document formatting system to identify the remaining problems in document formatting and
explore some possible solutions.

2 Introduction

Document formatting is one of the most widespread applications of computers. Improvements in document formatting
software and the hardware on which it is based have revolutionized the production of documents and enlarged our
conception of what a document might be.

Any attempt at this point to define ‘document’ would run a risk of being overtaken by events; already documents
commonly include moving images, sound, and dynamic updating as their sources of information change in real time.
It is perhaps safe to say that a document is information arranged for presentation to a person; the information may be
called thecontent, and the arrangement itslayout. Document formatting is essentially about mapping content to layout,
although functions that do not exactly fit this definition, such as spelling and grammar checking, or even creation and
editing of content, are often found in document formatting systems.

Document formatting systems fall into two camps. In one camp are the interactive document editors, ranging from
word processing systems such as Microsoft Word [18] up to desktop publishing systems such as FrameMaker [2] and
Interleaf [9]. These offer an editable screen image of the document layout. In the other camp are the batch formatters,
such as troff [19], Scribe [21], TEX [15], and Lout [13], which process text files with embedded markup to produce
non-editable layout. In this paper the above names will stand for the entire software family; TEX includes LATEX [17],
FrameMaker includes FrameMaker+SGML, and so on. Somewhere in between are the hypertext [8] net browsers,
based on HTML, which are primitive batch formatters offering limited interactivity such as the ability to click on a
hyperlink or fill in a form.

All of these systems are being actively enhanced by their developers, with new versions appearing regularly. For
example, FrameMaker and Interleaf have responded to the World-Wide Web phenomenon by adding support for
SGML [7] and HTML. Nevertheless, viewed from a wider perspective, they all appear to have reached a plateau,
in the sense that each has fundamental limitations that are not likely to be overcome. For example, troff, TEX and Lout
are batch formattersand are not likely to become interactive; FrameMaker and Interleaf are not as extensible as the
batch formatters and, again, are not likely to become so.

One frequently hears arguments for or against these systems, but the truth is that none of them is ideal yet all have
something to offer to the future of document formatting. What is needed now is a synthesis of the best features of all
of these systems.

Papers which reflect on document formatting seem to be very rare. The survey paper by Furuta, Scofield and
Shaw [6] is still well worth reading; Kernighan [11] reflects on the troff family; this author has described the design
and implementation of Lout [12]. But for the most part one has to infer principles from the systems themselves, and
to look among the specialized applications such as music formatting [5], graph drawing [10, 23, 16], or non-European
languages for requirements.

This paper draws on its author’s twelve years of experience in designing, implementing, and enhancing the Lout
document formatting system, plus his more limited experience of the systems mentioned above, to identify a set of
requirements for a document formatting system that would be a significant advance on all current systems, and to
explore their interactions.

reprinted from Baskerville Volume 7, Number 1

reprinted from Baskerville Volume 7, Number 1

3 Requirements

This section identifies the most significant requirements for a document formatting system. Efficiency in space will
cease to be a requirement in the next few years. Efficiency in time is of course essential, as are other requirements that
apply to any large software system, such as robustness, openness, and an interface that permits users of varying levels
of expertise to work productively.

The other requirements are editability, extensibility, generality, and optimality. Each of these requirements is dis-
cussed in turn in the sections that follow, together with problems that it presents either alone or in conjunction with
previous requirements.

It is not possible to prove that this list of requirements is complete, but the author has carefully compared it against
the features of most of the document formatting systems listed earlier. The only major omission has been the conve-
nience features commonly found in interactive systems, such as spelling and grammar checkers, input and output in a
variety of data formats, version control, and so on. These are valuable features, but they have little to do with document
formatting in the core sense of mapping content to layout.

3.1 Editability
Editability, the ability to edit content while viewing layout, is the strong suit of word processing and desktop publishing
systems. Fairly or not fairly, many users will not accept batch formatting. Also, the batch formatting edit-format-view
cycle is too slow when the layout rule is ‘what pleases the eye,’ such as in diagrams, or when content must be altered
to achieve a good layout, for example in paragraphs containing long unbreakable inline equations.

Interactive interfaces also have an advantage when the logical structure does not follow a tree pattern. A good
example is the editing of graphs (the combinatorial kind). Users of an interactive system can click on any pair of
nodes to indicate that they are to be joined by an edge. In a batch system, because the structure is not tree-like, it is
necessary for the user to invent names for the nodes and use the names when creating edges, which is considerably
more error-prone. By contrast, equations do follow a tree pattern and so there is never any need to attach names to
subexpressions.

Critics of interactive systems typically complain about the lack of content structure in interactive editors, and also
about their weakness as editors compared with good text editors. Neither problem would seem to be inherent, and
in fact recent versions of high-end document editors (FrameMaker+SGML for example) are addressing the content
structure problem.

Openness to such auxiliary applications as free-text search and retrieval and creation of documents by computer
programs requires that an archive format based on marked-up text be included in any interactive system. It only takes a
little care to make such a format readable by humans. Thus an interactive system is automatically also a batch system.

3.2 Extensibility
Extensibility in a document formatting system means the easy addition of new features. It is the strong suit of batch
formatters. For example, this author’s Lout system has no built-in knowledge of equations, tables, or page layout (not
even the concept of a page is built-in); these are all added by means of packages of definitions written in the Lout
language, which is sufficiently high-level to make them fairly easy to produce.

Extensibility implies some initial kernel of primitive features upon which the extensions are built. These would
include horizontal and vertical stacking, rotation, and so on. The most interesting such feature is the mechanism for
getting floating figures and footnotes into their places: diversions and traps in troff, floating insertions in TEX, galleys
in Lout. There must also be ways of combining and packaging the primitives into features useful to the end user.

Although a system not built on such a kernel is conceivable, it seems scarcely possible to this author that such a
system could supply all the features demanded by end users. The list is so vast – equations, tables, graphs, chemical
molecules, music, and so on – that some kind of high-level kernel language seems essential to achieving them in any
reasonable time and with any consistency, just as high-level programming languages are essential to large software
projects.

Typography generates requirements for many features, such as hyphenation, spacing and kerning, ligatures, and
so on. A document formatting system must produce good typography, because end users cannot be expected to do it
themselves. Many of these features are dependent on the current language, and many English or European-oriented
systems have failed to be extensible to the typography of languages outside that sphere. A good source of features
needed in world-wide typography is Apple Computer’s QuickDraw GX [3], although their approach of implementing
the features in C is relatively non-extensible since it requires recompilation.

When an interactive system is extended with a new feature, it must be possible to continue editing in its vicinity.
Ultimately, the layout of a document is a function of its content, so we may identify features with functions. In

–4–

The Future of Document Formatting (Working Paper)

extreme cases, such as optimal layout, a function may take the entire document as its parameter; but usually it has
small, clearly delimited parameters as in

built_up_fraction(numerator,denominator)

There may also be implicit parameters inherited from the context, such as the current font size.
It is quite reasonable to insist that within any editing session the collection of features be immutable. Thus it is

not essential to be able to edit the definition of any function while viewing any layout. In some cases, such as simple
abbreviations, editing of definitions is quite simple and could easily be supported. But more complex functions, such
as optimal layout or graph layout, are defined by computer programs and so are not amenable to editing in this way.

In a similar vein, it is correct to insist that those parts of the layout originating within definitions be immutable.
For example, the bar in a built-up fraction should not be editable. This does not preclude the addition of parameters
to built_up_fraction to control the appearance of the bar if desired, but to allow the user to arbitrarily change the bar
would produce a layout whose origin as a built-up fraction must be lost.

Thus, editability of features really only means editability of their parameters.
The most favourable case occurs when the function displays a parameter in a form similar to that which it would

have taken if it had been entered outside the function. For example,built_up_fraction displays both its parameters,
changing their appearance only slightly (by squeezing vertical spacing within them, and possibly changing the font
size). The user can edit such a parameter as though it was not a parameter at all, and so (inductively) can edit parameters
of parameters and so on without limit. This is essentially how equation editors work, and the Lilac system [4] has
demonstrated it in an extensible framework, although using a kernel language too incomplete to support the full range
of features required by users. A function may display a parameter more than once, in which case editing one display
must change them all.

Preserving editability of displayed parameters is a difficult problem when the function is implemented externally
to the document editing system. For example, if an external graph layout program [16] is employed, the result cannot
be returned as a bitmap or PostScript file; rather a set of coordinate pairs or something similar is required so that the
document formatter can place the nodes itself and hence understand where they ended up.

It has been suggested that a non-editable result is acceptable in such cases if a click in the region it occupies signals
the opening of a separate editor that does undertand what is going on in that region. This is the interactive equivalent of
the preprocessor approach used by troff, and it has the same drawbacks of lack of consistency, duplication of features,
and loss of generality (since even if every editor may invoke every other editor, the communication channels between
them typically cannot convey such information as the current font, available space, and so on). An architecture based
on a single master editor with slave non-interactive formatting programs is preferable.

Parameters which are not displayed are a nightmare, and are responsible for much of what is ad-hoc in existing
interactive systems. Two main approaches are in use. The first is the ‘style sheet’ or ‘dialogue box’ approach, in which
the user who selects a feature with non-displayed parameters is presented with a box listing them and asked to supply
values: a font name, a location to place a figure, a style of numbering, or whatever. This is the most general method,
easily adapted for use in an extensible system. It works particularly well when the parameters have sensible default
values, for then use of the box is optional, and when they have only a small range of possible values, for then the
values may be displayed in a menu.

Second is the ‘inference’ method. Every parameter has some effect on layout, otherwise it would be useless. So the
user is offered a means of manipulating layout, and the parameter’s value is inferred from it. For example, most editors
permit an included graphic to be clipped by clicking on its boundary and moving the mouse; scaling and even rotation
may be set by such means. Drawing programs allow nodes to be dragged about in the drawing area. ‘Master pages’
or ‘template pages,’ which allow the user to specify entire page layouts involving many parameters simultaneously,
demonstrate the value of the inference method.

The great drawback of the inference method is that an inference interface has to be invented for every non-displayed
parameter, and this is difficult in an extensible system. However, it should at least be possible to implement an inference
interface for all suitable non-displayed parameters of kernel features, such as theboundaryparameter ofclip(), and in
cases such as

define user_level_feature(. . . ,boundary, . . .) =
. . .clip(. . . ,boundary, . . .) . . .

–5–

reprinted from Baskerville Volume 7, Number 1

to propagate this interface upwards from kernel features to user level features. Then every user level feature that offers
clipping as a parameter, for example, will do so in the same way.

3.3 Generality
By generality we will mean the absence of illogical restrictions on the use of features, either in the contexts in which
they may be used, or in the values that may be assigned to their parameters. (These are formally the same thing, but
the distinction is useful.)

Examples of illogical context restrictions are extremely common in document formatting systems. FrameMaker
permits objects to be rotated in certain contexts (when they are table entries, for example) but not others. In troff it is
very easy to include an equation within a table, but very much harder to include a table in an equation. Not all context
restrictions are illogical, of course: a chapter should not begin within a table, for example.

Lack of context generality takes a severe toll, because it means that implementation code, possibly highly sophis-
ticated and with a great deal to offer, is locked into a few limited contexts. For example, FrameMaker has a very
interesting equation editor, but there seems to be no hope that its code can be used for such tasks as editing tree
diagrams or diagrams of chemical molecules, despite the technical similarities among these tasks.

Examples of illogical domain restrictions are particularly common among geometrical functions. For example,
LATEX will produce lines only at certain fixed angles, and most systems only really understand rectangular shapes.
The PostScript page description language [1] is far ahead of everything else in geometrical generality: in PostScript,
arbitrary curves (even disconnected ones) made of lines, arcs, and Bezier curves may be drawn and filled, and arbitrary
combinations of rotation, scaling and translation may be applied to arbitrarily complex fragments of documents lying
within one page.

The abandonment of rectangles in favour of arbitrary shapes would have widespread beneficial effects if done in
full generality. Text could fill arbitrary shapes and run around arbitrary graphics. Fonts could be defined (as they
are in PostScript) as collections of arbitrary shapes, permitting kerning of arbitrary pairs of glyphs, not just glyphs
of equal font and font size as at present, thus solving the subscript kerning problem. Line spacing could reflect the
true appearance of lines, not be crudely based on the highest ascender and lowest descender. Optimizations based on
bounding boxes and caching should be able to solve the efficiency problems.

3.4 Optimality
By optimality is meant the ability to find the best possible layout for the given content. An optimal layout is not
necessarily a good layout, because some documents have no good layout. Optimal layout thus cannot remove the
burden of rewriting content to achieve good layout, but in practice it does greatly reduce that burden, and this is why
it is has been included.

The idea that layout could be optimal seems to be due to Knuth and Plass [14], who presented an algorithm for the
optimal breaking of a paragraph into lines which is used in Knuth’s TEX system. Research work was done on more
general optimality as well [20], although this author is unsure how much of this work was incorporated into TEX.

Suitably generalized, their paragraph breaking algorithm is as follows. The first step is to deduce from the content
a sequence of atomic formatting steps. For example, the content

The cat sat on the mat

might have sequence

create_empty_paragraph

add_word_to_paragraph(The)
add_word_to_paragraph(cat)
. . .

Every prefix of this sequence should define a legal document in its own right; the whole sequence defines the document
we wish to format. The question as to what constitutes an atomic operation is not of fundamental importance; one could
choose to add one letter at a time, or an entire paragraph.

Define abadnessfunction from layouts to integers. Small values indicate good layouts, large values indicate poor
ones. There are no restrictions on how this function is defined, except the practical one of being computable in a
reasonable time.

Now there will be several ways in which each atomic step may be performed. For example,
add_word_to_paragraphcould add its word to the end of the current line, or it could start a new line, or it could
even start a new page or column. This leads to a tree structure:

–6–

The Future of Document Formatting (Working Paper)

The The
cat

The cat

The| cat

�
�
�
��

-

@
@
@
@R

Each node is a layout of a partial document, each edge is one atomic operation.
The next atomic operation is applied to each leaf node, creating more partial documents, and so on until the sequence

ends and the leaf nodes represent all layouts of the document of interest. The leaf node of minimum badness is the
optimal layout.

This model can incorporate diverging operation sequences caused by layout dependencies. For example, suppose
the wordabacushas an index entry attached to it, and that along one path in the tree this word appears on page 99,
while along another it appears on page 100. Then, in the sequence of operations defining the index, we will find

. . .

add_word_to_paragraph(abacus)
add_word_to_paragraph(99)
. . .

along one path, and
. . .

add_word_to_paragraph(abacus)
add_word_to_paragraph(100)
. . .

along the other. However, forward references create cyclic dependencies which cannot be handled in this way. For
them, it seems to be necessary to add operations which change the value of words that have already been laid out, and
to propagate the resulting changes until they die out. In rare cases this method will cycle forever, but in practice it is
probably not difficult to avoid this problem using tricks such as refusing to allow a revision to reduce the number of
lines allocated to a paragraph.

The algorithm as expressed has exponential time complexity. In practice, however, the number of different layouts
of a document that are close enough to optimal to deserve examination is likely to be quite small. The challenge, then,
is to find ways to prune the layout tree severely while retaining enough of it to discover, for example, that setting a
sequence of paragraphs tight or loose will avoid a bad page break further on. This is an area needing detailed research;
we can only glance at a few obvious possibilities here.

If the badness function is monotone increasing along every operation sequence, then a bad node can only have
worse successors, and this justifies pruning its entire subtree. Monotonicity is not guaranteed (for example, adding one
word to a paragraph which has a widow word will reduce its badness) but it is probable that tricks such as ignoring
widow words in incomplete paragraphs can bring us near enough to monotonicity to justify pruning bad nodes.

One immediate application is to prune nodes whose layouts are obviously terrible, such as nodes containing clearly
premature line endings or page endings. Indeed, it should be possible to avoid even generating such nodes.

When it can be established that two nodes are equivalent, in the sense that they lay out the same subsequence and
their layouts occupy the same space, their future careers must be identical and the worst of the two may be pruned.
The tree structure becomes a graph, and the optimal layout algorithm may be viewed as a shortest path algorithm, as
described by Knuth [15].

Establishing the equivalence of two nodes may not be easy. There certainly is not time for complex comparisons
of all pairs of layouts of a given subsequence. Knuth and Plass’s algorithm recognises that two nodes are equivalent
when they lay out the same subsequence and the most recent choice on the path to each was to start a new line. This
same idea may be used to equivalence all paths into one at the new-page operation preceding a new chapter.

Another useful idea is to group operations together, find optimal layouts for the group separately, then introduce an
atomic operation at a higher level which represents the entire group. Grouping the operations that define one paragraph
in this way is very beneficial, for example. In isolation, optimal pragraph breaking explores many options, but in the

–7–

reprinted from Baskerville Volume 7, Number 1

end it is likely to return only at most two reasonable distinct results, ofn andn+1 lines respectively for somen,
and these become the only choices for the atomicadd_paragraphoperation that represents the whole group at the
higher level. Furthermore, these two results may be cached and used without recalculation on every path containing
that particularadd_paragraphoperation whenever the margins have the same width.

With care, suppressing tiny variations introduced by ascenders and descenders on letters, the layout tree might be
induced to contain only as many paths as the difference in the total number of lines between the loosest and tightest
settings of the paragraphs inserted so far, and over the course of one chapter this might be a manageable number. For
safety, a fixed upper limit could be placed on the number of nodes kept, producing a beam search [22] which would
definitely bound the time complexity to a fixed multiple of the cost of non-optimal layout, while sacrificing guaranteed
optimality.

There do not seem to be any extra problems in incorporating optimality into an extensible system. Users would
certainly welcome options to user-level features such as ‘insert this figure either following the current line, or at the
top of the next page, whichever looks best.’ Whether an editable system can offer optimal layout without exceeding
response time bounds is a matter for further research. There should be time to maintain optimality of the current
paragraph at least, and if the current chapter is set within constant-width margins, it should be no more time-consuming
to maintain optimal layout in a twenty page chapter than it is in a twenty line paragraph, provided the two alternative
paragraph breaks of each non-current paragraph of the chapter are cached. If the cost does prove too great, optimality
could be relegated to a button that the user can press just before going for coffee.

4 Conclusion

This paper has demonstrated that a next-generation document formatting system, incorporating the best features of
current systems in full generality, is neither logically inconsistent nor likely to be infeasibily slow.

The major design problem is the identification of a suitable kernel of primitive features. Given the massive super-
structure that this kernel will support, its design quality must be of the highest. This design was not attempted in this
paper, but the author believes that the kernel of the Lout document formatting system would make a good starting
point, although it is too incomplete, insufficiently general, too large, and occasionally too imprecisely defined to serve
as the kernel of a next-generation system as it stands.

The major implementation problem is to find optimizations that preserve generality yet achieve the required re-
sponse time. This paper has pointed out optimizations that seem quite likely to be adequate on hardware that will be
widely available in a few years.

It is also to be hoped that next-generation systems will finally lay to rest the language issues that bedevil systems
created within an English or European language framework. Given sufficiently general primitives, this should be an
easy matter.

5 Acknowledgements

The author gratefully acknowledges comments on the first draft of this paper received from Mike Dowling, Ted Hard-
ing, Robert Marsa, and Basile Starynkevitch.

References

[1] Adobe Systems, Inc.PostScript Language Reference Manual, Second Edition. Addison-Wesley, 1990.
[2] Adobe Systems, Inc.Using FrameMaker+SGML. Adobe Systems, Inc., 1995.
[3] Apple Computer, Inc.Quickdraw GX. 1996. Available ashttp://support.info.apple.com/gx/gx.html

[4] Kenneth P. Brooks. Lilac: a two-view document editor.IEEE Computer, pages 7–19, 1991.
[5] Eric Foxley. Music — a language for typesetting music scores.Software—Practice and Experience, 17:485–502, 1987.
[6] Richard Furuta, Jeffrey Scofield, and Alan Shaw. Document formatting systems: survey, concepts, and issues.Computing

Surveys, 14:417–472, 1982.
[7] Charles F. Goldfarb.The SGML Handbook. Oxford University Press, 1990. ISBN 0-19-853737-9.
[8] Charles F. Goldfarb. Hytime: a standard for structured hypermedia interchange.IEEE Computer, 24:81–84, 1991.
[9] Interleaf, Inc. Interleaf 6 for Motif: next generation document creation, composition and assembly. 1996. Available as

http://www.interleaf.com/i6motifds.html

[10] Brian W. Kernighan. Pic — a language for typesetting graphics.Software–Practice and Experience, 12:1–21, 1982.
[11] Brian W. Kernighan. The unix system document preparation tools: a retrospective.AT&T Technical Journal, 68:5–20, 1989.

–8–

http://support.info.apple.com/gx/gx.html
http://www.interleaf.com/i6motifds.html

Standard DTDs and scientific publishing

[12] Jeffrey H. Kingston. The design and implementation of the lout document formatting language.Software–Practice and
Experience, 23:1001–1041, 1993.

[13] Jeffrey H. Kingston.The Lout Document Formatting System (Version 3). 1995. Available asftp://ftp.cs.usyd.edu.
au/jeff/lout/

[14] D. E. Knuth and M. E. Plass. Breaking paragraphs into lines.Software–Practice and Experience, 11:1119–1184, 1981.
[15] Donald E. Knuth.The TEXBook. Addison-Wesley, 1984.
[16] Balachander Krishnamurthy, editor.Practical Reusable UNIX Software. John Wiley, 1995.
[17] Leslie Lamport.LATEX User’s Guide and Reference Manual. Addison-Wesley, 1986.
[18] Microsoft, Inc.Microsoft Word. Microsoft, Inc., 1996. Available ashttp://www.microsoft.com/msword/

[19] Joseph F. Ossanna. “nroff/troff” user’s manual. Technical Report 54, Bell Laboratories, Murray Hill, NJ 07974, 1976.
[20] Michael F. Plass.Optimal pagination techniques for automatic typesetting systems. PhD thesis, Stanford, CA, 1981.
[21] Brian K. Reid. A high-level approach to computer document production. InProceedings of the 7th Symposium on the

Principles of Programming Languages (POPL), Las Vegas NV, pages 24–31, 1980.
[22] P. H. Winston.Artificial Intelligence. Addison-Wesley, third edition edition, 1992.
[23] Christopher J. Van Wyk.A language for typesetting graphics. PhD thesis, Stanford, CA, 1980.

–9–

ftp://ftp.cs.usyd.edu.au/jeff/lout/
ftp://ftp.cs.usyd.edu.au/jeff/lout/
http://www.microsoft.com/msword/

II Standard DTDs and scientific publishing

N. A. F. M. Poppelier (n.poppelier@elsevier.nl),

E. van Herwijnen (eric@vanherwijnen.org), and

C.A. Rowley (C.A.Rowley@open.ac.uk)

1 Abstract

This paper has two parts. In the first part we argue that scientific publishing needsone standardDTD for each class
of documents that is published. For example one for all research papers and one for all books. In the second part
we apply this reasoning to mathematical formulas, and we outline some design requirements for a document type
definition for mathematical formulas. In the appendices we discuss and compare existing document type definitions
for mathematical formulas.

2 Introduction

In the preface to [1] Charles Goldfarb wrote that the Standard Generalized Markup Language can be described as
many things, and thatSGML is all that – and more. In the introduction to [1] Yuri Rubinsky wrote:

ISO 8870 never describesSGML as a meta-language, but everything about its system of declarations and nota-
tions implies that a developer has the tools to build exactly what is required to indicate the internal structure of
any type of information in a common tool independent manner.

Indeed, a strong point ofSGML is that it can be regarded as a meta-language, a tool with which one can define the syntax
of many languages, very much similar to context-free grammars. InSGML terminology these ‘languages’ are called
document type definitions, calledDTD for short.DTDs can he written for any type of information, research papers,
books and music. ADTD can be used for many purposes, of which two important ones are storage and exchange of
information coded according to thisDTD.

The premise of this paper is that the exchange of information, if it is based onSGML, needs a single commonDTD,
agreed upon by all parties involved, for each class of documents that is exchanged

Suppose two parties,A andB, exchange information in the form of one class of documents. and that they each have
a DTD, D(A) andD(B), with D(A) not identical toD(B). If A sends a document toB thenA can include the document
type definitionD(A). for that document (instance) at the beginning of the document. This enablesB to use anSGML
parser to check the validity of the document he received. However, there is nothing moreB can do with the document:
theDTD D(A) contains no information about the meaning of the coding scheme thatD(A) defines, and a mapping of
the document fromD(A) to D(B) is a procedure that cannot be automated. The problem becomes even more difficult
when a third party,C, is introduced, who accepts material from bothA andB. How isC going to handle material with
two different coding schemes?

This is where we encounter one of the weaknesses ofSGML as it is being used currently, namely that it enables
every party involved in this process to define and use a differentDTD.

3 Scientific publishing

In the rest of this paper we concentrate on the exchange of information that occurs in scientific publishing, in par-
ticular on the exchange of papers that contain mathematical formulas and are published in research journals. Recent
developments in this area formed the main reason for writing this paper. A few standards for encoding of mathe-
matical formulas have already emerged, of which a well-known one is theAAP Standard or Electronic Manuscript
Standard [2]. ADTD for mathematical formulas accompanies this standard, but it is not part of it. Another standard
for mathematical formulas is the one adopted by CALS [3], and others are under development [4], [5].

The handling of mathematical formulas in scientific publishing is part of the bigger whole of information exchange
within a (the) scientific community, with the publisher as intermediary, as is shown below:

reprinted from Baskerville Volume 7, Number 1

Standard DTDs and scientific publishing

'
&

$
%

C �� ��P
�
�
�
���� ��GA

A
A
AK

The authors of research papers are the providers,P. The publishers are the gatherers of information,G. They accept
information from many providers, gather this in the form of a journal issue, and distribute this. In this process, the
publisher provides a quality check via the system of peer reviewing, makes notation consistent, and in some cases
improves the prose. The information is distributed to a group of consumers,C, with the setC a superset of the setP.
In this process, two sorts of information can be exchanged:
• material that is structured in the sense of being encoded according to, and checked against, some formal structural

specification such as aDTD;
• material that is not structured.

At present most of the material exchanged in the process of scientific publishing is of the unstructured type. We expect
that this will remain the situation in the near future. As soon as authors get the possibility of using more sophisticated
tools, we expect that publishers will receive increasing numbers of papers of the structured type.

Several scientific publishers, among whom Elsevier Science Publishers, have adoptedSGML as the future main tool
for the process of publishing scientific articles [6], and several other publishers have made, or are expected to make,
the same choice. The European Laboratory for Particle Physics (CERN), a large community of information providers,
are usingSGML to automate the loading of bibliographic information in their library’s database [7]. For both authors
and publishers it would be advantageous to agree on oneDTD for the encoding of research papers. There are several
reasons for this:
• Most authors do not submit all their articles to one and the same publisher every time me. At present they are

confronted with ‘Instructions to Authors’ that differ significantly from publisher to publisher.
• A recent trend is that authors prepare their papers with text-processing software on some computer. This enables

them to send the paper in electronic form (electronic manuscript or ‘compuscript’) to the publisher. Publishers are
confronted with a variety of text-processing software on a variety of computer systems [8], [9]. Moreover, every
field of science appears to have its own ‘Top Ten’ of most used text processing packages.
• Bibliographic information about all research papers in all (or most) scientific journals is stored in bibliographic

databases. In an ideal world, authors would still be able to use their favourite text-processing system, which would
generateSGML ‘behind the screens’, so to speak. All publishers would accept one standardDTD, and all text-
processing systems would be able to generate documents prepared according to thisDTD, and all bibliographic
databases would be able to store this material.

An example of activities towards achieving this ideal situation: the European Working Group onSGML (EWS)
and the European Physical Society (EPS) have taken the Electronic Manuscript Standard and are trying to develop
it into a completeDTD, which should be acceptable to information providers, information gatherers and information
consumers. The Electronic Manuscript Standard is now a Draft International Standard,ISO/DIS 12083. TheEWSand
EPShope that the final standard will include their work.

4 Encoding of mathematical formulas

In Annex A of ISO 8879 [10] we find the following:
Generalized markup is based on two novel postulates:

• Markup should describe a document’s structure and other attributes rather than specify processing to be
performed on it, as descriptive markup need be done only once and will suffice for all future processing.
• Markup should be rigorous so that the techniques available for processing rigorously defined objects like

programs and databases can be used for processing documents as well.
There is no reason why this should not be valid for mathematical formulas. We need to delimit the kind of mathe-

matical formulas we are trying to describe if we want an unambiguous structure. The field of mathematics is so vast,
that it may be impossible to design a singleDTD that covers every kind of mathematical formula. If we concentrate
on those sciences which use mathematics as a tool, for example physics, we see that the mathematics used in many
physics papers can be described as “advanced calculus” This definition can be made more precise by referring to some

–11–

reprinted from Baskerville Volume 7, Number 1

standard textbooks containing these types of formulas, e.g.Handbook of Mathematical Functions[11] and theTable
of integrals, series and products[12].

If we aim for rigorous encoding of mathematical formulas (the second postulate), we must develop a system of
descriptive markup of mathematical formulas that enables us to:
• convert the formulas between different word processors;
• store the formulas in and extract them from a database;
• allow programs to input or output formulas in descriptive markup.

An example of the first application would be the conversion of mathematical formulas coded in LATEX to, say, Word1

via SGML. The benefits of usingSGML as an intermediate language for conversion are described in [13]. Note, for
example, that the number of programs required for pairwise conversion betweenn languages is proportional ton2−n
without an intermediate language, but to 2n with an intermediate language.

An example of the second application would be encoding and storing the complete contents of the above mentioned
Handbook of Mathematical Functions[11] andTable of integrals, series and products[12] in a database, so that this
information can be accessed on-line by, say, mathematicians and physicists. Many articles have mathematical formulas
in their titles, so any program that extracts bibliographic data should be able to handle mathematics as well.

An example of the third application would be the extraction and subsequent use in a computer program, written in
an ordinary programming language or, for example, in Mathematica.2

At this point we come back to the ideal world for scientific publishing we sketched earlier. In this world, publishers
would use one standardDTD for scientific papers, which enables them to prepare a primary publication – in paper and
(or) in some electronic form - and to store the information in databases for various secondary purposes.

The question now is: what should aDTD for mathematical formulas look like, if it is going to be used for these
purposes?

There are two choices for aDTD for mathematics:
• P-type: theDTD reflects the Presentation or visual structure; examples of this type are discussed in the appendices.
• S-type: theDTD reflects the Semantics or logical structure; at present noDTDs of this type exist.

The quotation from Annex A ofISO8879 [10] indicates the preference of the creator(s) ofSGML: markup of a formula
should be of S-type, it should describe the logical structure of the formula, rather than the way it is represented on a
certain medium, say the page of a traditional (non-electronic) book.

Let us suppose, for the sake of the argument, that an information gatherer, a publisher, chooses aDTD of S-type.
This raises two further questions:
1. Is descriptive markup of mathematical material possible?
2. If it is possible, who can use it and for which purposes?
The second question needs some explanation. As discussed in section 3Scientific publishingsection.17, in the process
of scientific publishing two sorts of information can be exchanged. mathematical material that is structured according
to a formal structural specification, and material that is not structured. This means that there are two possible scenarios.

Scenario 1: an author submits a paper in the form of a manuscript (paper), i.e. with unstructured formulas, or a
compuscript with mathematical formulas in P-type notation (TEX, WordPerfect, . . .).

Scenario 2: an author submits a paper with mathematical formulas in S-type notation. In scenario 1 it is the task
of the publisher to convert from paper or P-type notation to S-type notation. Before we discuss the feasibility of this
conversion, we will first look at some characteristics of mathematical notation.

4.1 Characteristics of mathematical notation
Mathematical notation is designed to create the correct ideas in the mind of the reader. It isdeliberatelyambiguous
and incomplete: indeed, it is almost meaningless to all other readers. Or, more technically: the intrinsic information
content of any mathematical formula is very low. A formula gets its meaning, i.e. its information content, only when
used to communicate between two minds which share a large collection of concepts and assumptions, together with
an agreed language for communicating the associated ideas.

The ambiguity encountered in mathematical notation can be of two types [14]
1. A generic notation uses the same symbols to represent similar but different functions, for example ‘+’ or ‘×’. In

the case of addition this is not really a problem, but multiplication is a problem since, multiplication of numbers is
commutative, whereas matrix multiplication is non-commutative!

1Word is a registered trademark of MicroSoft.
2Mathematica is a registered trademark of Wolfram Research.

–12–

Standard DTDs and scientific publishing

2. A more fundamental ambiguity is posed by the same notation being used in different fields in different ways. For
example:f ′ stands for the first derivative off in calculus, but can mean ‘any other entity different fromf ’ in other
areas.

More examples of ambiguity are:

• Doesx̄ represent a mean, a conjugation or a negation?
• Is i an integer variable, e.g. the index of a matrix, or is it

√
−1?

• The other way around: is
√
−1 denoted byi or by j?3

• What is the function of the 2 in SU2 log2x, x2, T2
2 ?4

• Is |X| the absolute value of a real (complex) numberX or the polyhedron of a simplicial complexX [15]?

The inverse problem, which is equally common, arises when different typographical constructs have the same mathe-
matical meaning. For example, the meanings of both the following two lines would be coded identically

3 + 4(mod5)
3 +5 4

and this would lead to great difficulty if an author wanted to write:

We shall often write, for example, 3+ 4(mod5) in the shorter form 3+5 4, or even as simply 3+ 4 when this
will not lead to confusion.

Of course, natural languages are similarly ambiguous and incomplete, but no one we know is suggesting that in an
SGML document each word should be coded such that it reflects the full dictionary definition of the meaning which
that particular use of the word is intended to have!

4.2 Who performs the markup of math?

How does one convert P-type mathematical material, which an author has produced, to S-type notation, which the
publisher uses? In [1], (p.9) Goldfarb gives a three-step model for document processing:

1. recognition of part of a document (adding a generic identifier for the appropriate element);
2. mapping (associating a processing function with each element);
3. processing (e.g. translating elements into word processor commands).

In the publishing of scientific papers and books steps 2.Who performs the markup of math?Item.30 and 3.Who per-
forms the markup of math?Item.31 are the responsibility of the publisher. Traditionally, step 1.Who performs the
markup of math?Item.29 was also their responsibility: the technical editor adds markup signs in the margin of the
manuscript, depending on the text and the visual representation that the house style dictates. It is, however, unlikely
that a technical editor is capable of identifying the precise function of every part of a mathematical formula, for several
reasons, most of which were discussed in the previous subsection, namely that mathematical notation:

• is not unambiguous,
• is not completely standardized,
• is not a closed system.

Even if the technical editor were capable of identifying every part of a formula, this would be too time- consuming –
and therefore too costly. However, under certain conditions [16], automatic translation from visual structure to logical
structure of mathematical material is simplified greatly.

This, and what we discussed in section 4.1Characteristics of mathematical notationsubsection.23, leads us to con-
clude the following. A publisher has no choice but to use a P-typeDTD for mathematical material that is submitted in
unstructured form or in P-type notation. Even if S-type markup of a mathematical formula would be possible, conver-
sion from P-type to S-type would be difficult or even impossible. Conclusion: the tags for S-type markup should not
be added by the information gatherer, but by the information providers, i.e. the authors, who should be able to identify
each part of their formulas.

3There are examples of authors actually writing something like[Li ,L j] = i
2Lk, where the firsti is an index, and the secondi stands for

√
−1.

4In SU2 it is the number of dimensions of the Lie group; in log2 x it is the base of the logarithm; ifx is a vector, the2 in x2 is an index: the2 in x2

could be a power, but ifT is a tensor, the2 in T2
2 is a contrainvariant tensor index.

–13–

reprinted from Baskerville Volume 7, Number 1

4.3 Feasibility of S-type notation
In our second scenario, authors would submit papers with mathematical formulas in S-type notation. This would
enable the publisher to ‘down translate’5 to any mathematics typesetting language (P-type notation). However, the
same reasoning as in section 3.1 leads us to the following conjecture:

Conjecture. It is impossible to create an S-typeDTD for all of mathematics.
Representing the “full meaning” of a mathematical formula, if such a notion exists, will almost certainly lead to

attempts to pack more and more unnecessary information into the representation until it becomes useless for any
purpose. This is rather like Russell and Whitehead reducing “simple arithmetic” to logic and taking several pages of
symbols to represent the “true meaning of 2+2 = 4”.

Even if it were possible to define an S-typeDTD for a certain branch of mathematics, this still gives problems.
Supposing an S-typeDTD contains an element for a “derivative” of a function. Since the S-typeDTD will not contain
any presentational attributes, a decision will have to be made to represent the derivative off (x) on paper asf ′(x) or
d f (x)
dx . There are, however, times (such as in this article) that both representations are required for the same semantic

object, and that the author will need other notation in addition to that defined by the S-typeDTD.
A likely reason for the belief that an S-typeDTD is possible, is that many people in the worlds of document

processing or computer science are convinced that each symbol has at most a few possible uses and that mathematical
notation is as straightforward to analyse as, for example, a piece of code for a somewhat complicated programming
language. The reality is that mathematical notation is more akin to natural language: it is ambiguous and incomplete,
as we pointed out earlier.

4.4 Some problems with existing languages
To show that it is not obvious to capture mathematical syntax in aDTD, let alone its semantics, consider the example
of a limit

lim
x→a

f (x)

The syntactic structure of a limit is:

• The limit operator
• The part containing the variable and its limit value
• The expression of which the limit is to be taken

The first part could:

• always be “lim”, in which case it is just a part of the presentation of the formula and it should be left out.
• be one of a finite list of alternatives, indicating the type of limit(liminf, sup, max, etc.). In this case it should be an

attribute.
• be any expression.
• be any text.

We think the second possibility comes closest to the syntax of the limit construct. Th second and third parts can be any
mathematical expression.

Now let’s look at the way this formula is coded with theDTDs from ISO TR 9573, AAP math and Euromath
respectively. Using the mathematicsDTD from ISO TR9573 there are three possibilities:

• lim _{x → a} f(x)
• <plex><operator>lim</operator><from>x ↓ a</from> <of>f(x)</of></plex>
• <mfn name=lim><sub pos=mid>x →

a</ll><opd>f(x)</opd></lim>

whereas with the EuromathDTD we would have:
<lim.cst><l.part.c limitop=lim><range>
<relation>x\→ a </relation></range>
</l.part.c><r.part.c><textual>f(x)</textual>

We see that theAAP and Euromath expressions are closest to the limit syntax. The best solution fromISO TR9573
involves a more general “plex” construct, which can be used for integrals, sums, products, set unions, limits and others.
When the plex construct contains the actual lower and upper bounds it may even give semantic information.

Some mathematicians, however, are not satisfied with this solution [17]. The plex operation is probably a notation
for an iterated application of a binary operation (e.g. sums and products), while limits are of a different nature. In many

5‘Down’ because information is lost in the process; we borrowed the terminology of translating ‘up’ and ‘down’ from Exoterica OmniMark.

–14–

Standard DTDs and scientific publishing

cases only the from part will be used, and there the whole range of the bound variable will be indicated, as an interval
or a more general set. How does one go about extracting the bound variable?

This supports our conjecture from the previous section, namely that it is very hard to capture the semantics for all
mathematics. it also suggests that some redundancy is required to select whichever notation is most appropriate in a
certain context.

5 Re-using mathematical formulas

There are two important uses for a generically coded mathematical formula. The first one is in a mathematical manip-
ulation – or computer algebra – system (MMS), such as Mathematica [18] or Maple [19]. Computer programs for the
numerical evaluation of formulas, for example written in FORTRAN or Modula-2, can also be regarded as mathematical
manipulation programs.

The second form of re-usage is in a mathematical typesetting system, for formatting the formula on paper or on
screen; examples of this are TEX [20] and eqn/troff [21], [22].

For computer algebra systems the notation for the formula should be such that a particular type of manipulation on
a particular system is possible, given a ‘background’ of concepts and assumptions that enables the system to interpret
the input as a mathematical statement.

The coding of a formula that is adequate for document formatting, for example the TEX notationf^{(2)}(x) , is
very unlikely to contain much of the information required for a manipulation system to make use of it. However, for a
limited held of discourse it is feasible to use the same coding for both types of system [16].

Some examples: the square of sinx is typographically represented as sin2x, but a system like Mathematics or Maple
would probably prefer something like(sinx)2 as input. Typesetting the inverse of sinx as sin−1x, however, could be
confusing: does it mean 1/(sinx) or arcsinx?

An MMS would probably require the second derivative of a functionf with respect to its argumentx to be coded as

(D,x)((D,x) f (x))) but on paper this would be represented asf ′′(x), or f (2)(x), or
d

2 f (x)
dx2 .

On the output side of aMMS there are other problems since some of the coding necessary for typographically
acceptable output cannot be automatically derived by the system from the coding used by theMMS.

The Euromath view [17] is that a common interface should be designed together with the manufacturer of aMMS.
Perhaps anMMS-typeDTD will be required.

6 Related problems

Another problem is, of course, that mathematics is by its nature extensible, so there will always be new types of
manipulations to be done. Notations are changed or new notations are invented almost every day, figuratively speaking.
Normally these new subjects will use existing typographic representations, but the computer algebra system will
not know what formatting to use! Occasionally a new typographic convention will be needed. And although there
is agreement on the notation for most mathematical concepts, authors of books on mathematics tend to introduce
alternative notations, for instance when they feel this is necessary for didactic reasons. Mathematical notation is not
standardized, and it is open – anyone can use it, and add to it, in any way they wish.

If we consider a givenDTD at any time, we have to ask ourselves: can an author add elements when the need for
this arises? Theoretically the answer is ‘Yes, he can’ [23], (p.71), although it is not straightforward to include the new
elements in the content models of existing elements.

Are such modification by the author desirable? ADTD which is locally modified by an author will quickly give rise
to the situation described in the introduction to this paper, and this should therefore probably be discouraged. Others,
however, have also noticed a need for private elements, as described inEPSIGNews 3, no. 4; one of the challenging
aspects of usingSGML being encountered by the Text Encoding Initiative is that the guidelines need to be extensible
by researchers. They need to be able to extend theDTD in a disciplined way.

This problem, however, may not be a serious one. The collection of style elements is almost a closed set, since the
number of fonts, symbols and ways to combine them is limited. In fact, most notation is not syntactically new, since
the limited number of constructs works well as a notation. The multitude of notations is obtained by combinations
of fonts, symbols and positions (left or right subscript, left or right superscript, atop, below, . . .), and by giving one
notation more than one meaning. This again seems to support our view that only a P-typeDTD can be constructed for
all of mathematics.

An SGML DTD, of whatever type, also doesn’t solve the problems of new atomic or composite symbols, which

–15–

reprinted from Baskerville Volume 7, Number 1

occur frequently in mathematics. As with new elements, an author can add entities for these new symbols. There is
no method to add the name of a new symbol, whether atomic or composite, to an existing set of entity definitions for
symbols, other than to contact the owner of the set and wait for an update.

Although there is now a standard method to describe that symbol’s glyph (shape) [24], it is not practical for an
author to include it. A compromise solution seems to be to extend an existing set, such as the one fromISO [25], as
much as possible, and try to standardize its use.

7 Conclusions

We have argued as follows:

• That a logicalDTD in the sense of describing the structure of the mathematical meaning is as impossible for maths
as it is for natural language, and also it is useless for formatting since the same mathematical structure can be
visually represented in many different ways. The correct one for any given occurrence of that structure cannot be
determined automatically, but must be specified by the author.
• That what needs to be encoded for formatting purposes, is information that enables a particular set of detailed rules

for maths typesetting to be applied. This could he described as a ‘generic-visual encoding’ or ‘encoding the logic
of the visual structure’. To establish exactly what these code?, should be will require an expert analysis (probably
involving expertise from mathematicians, particularly editors, and from typographers aware of the traditions of
mathematical typesetting).
• That this is different to what needs to be encoded for use in mathematical manipulation software. Since neither of

these encodings can be deduced automatically from the other, a useful database will need to store both. Perhaps a
separateDTD will be required to enable this communication.

Possible solutions are

• A DTD based on a hybrid of visual structure and logical structure
• Two DTDs, one for visual structure and one for logical structure, that are linked in some fashion
• Two concurrentDTDs, one for visual structure and one for logical structure.

The simplest solution is probably to have a basic visual structure which is described as anSGML entity, supple-
mented with a (redundant) logical structure, described by a secondSGML entity. This solution avoids any special
SGML features and gives the user all flexibility for mixing and matching as required. We believe that similar reasoning
can be applied to tables and chemical formulas, where the problem of separation form from content is just as complex,
or even more.

References

[1] Charles Goldfarb.The SGML Handbook. Oxford University Press, Oxford, 1990.
[2] Standard for electronic manuscript preparation and markup version 2.0. Technical Report Z39.59-1988, ANSI/NISO, 1987.
[3] Techniques for using SGML. Technical Report 9573, ISO, 1988.
[4] American Chemical Society. ACS journal DTD.
[5] Björn von Sydow. On themath type in Euromath.
[6] N. A. F. M. Poppelier. SGML and TEX in scientific publishing. TUGboat, 12:105–109, 1991.
[7] E. van Herwijnen, N. A. F. M. Poppelier, and J.C. Sens. Using the electronic manuscript standard for document conversion.

EPSIG News, 1(14), 1992.
[8] E. van Herwijnen. The use of text interchange standards for submitting physics articles to journals.Comp. Phys. Comm.,

57:244–250, 1989.
[9] E. van Herwijnen and J.C. Sens. Streamlining publishing procedures.Europhysics News, pages 171–174, November 1989.

[10] Standard generalized markup language (SGML). Technical Report 8879, ISO, l986.
[11] M. Abramovitz and I. Stegun.Handbook of mathematical functions. Dover, New York, 1972.
[12] I.S. Gradshteyn and I.M. Ryzhik.Tables of integrals, series, and products. Academic Press, New York, 1980.
[13] S.A. Mamrak, C.S. O’Connell, and J. Barnes. Technical documentation for the integrated chameleon architecture. Technical

report, March 1992.
[14] Neil M. Soiffer. The design of a user interface for computer algebra systems. PhD thesis, Computer Science Division (EECS),

University of California, Berkeley, 1991. Report UCB/USD 91/626.
[15] M. Nakahara.Geometry, Topology and Physics. Adam Hilger, Bristol, 1990.
[16] Dennis S. Arnon and Sandra A. Mamra. On the logical structure of mathematical notation. TUGboat, 12:479–484, 1991.

–16–

A LATEX Tour, part 3: mfnfss, psnfss and babel

[17] Björn von Sydow. private communication to EvH.
[18] Stephen Wolfram.Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, 1991.
[19] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, and Stephen M. Watt.Maple User’s Guide. WATCOM Publications

Ltd., Waterloo, 1985.
[20] Donald E. Knuth.The TEXbook. Addison-Wesley, Reading, 1984.
[21] Joseph E Osanna. Nroff/troff. InUNIX Programmer’s Manual (2b). Bell Laboratories, 1978.
[22] Brian W. Kernighan and Linda Cherry. Typesetting mathematics. InUNIX Programmer’s Manual (2b). Bell Laboratories,

1978.
[23] E. van Herwijnen.Practical SGML. Kluwer Academic Publishers, Dordrecht, 1990.
[24] Font information interchange. Technical Report 9541, ISO, 1991.
[25] Information processing – SGML support facilities – techniques for using SGML – part 13. Technical Report 9573, ISO, 1991.

Proposed Draft Technical Report.

–17–

III A L ATEX Tour, part 3: mfnfss, psnfss and babel

David Carlisle

david@dcarlisle.demon.co.uk

1 Introduction

This third installment of my tour covers three more distributions that are supported via the standard LATEX bug report
mechanism described in Part 1.

Themfnfss distribution provides LATEX support for some popular Metafont produced fonts, that do not otherwise
have any LATEX interface.

Thepsnfss distribution consists of LATEX packages giving access to POSTSCRIPT fonts.
The third distribution in this part of the tour isbabel, which provides LATEX with multi-lingual capabilities.

2 The MFNFSS Distribution

Themfnfss distribution is something of a ‘collecting point’ for files in the distribution that have not got anywhere else
to go.

2.1 Font Packages
These packages provide LATEX interfaces to some publicly available fonts. They donot provide the fonts themselves,
which are available from thefonts tree in the standardCTAN archives.

pandora The ‘Pandora’ family of fonts designed by Nazneen N. Billawala is an alternative to the standard ‘Com-
puter Modern’ fonts of Knuth. The family consists of a full range of text fonts, including sans-serif and slanted.

oldgerm The old German fonts designed by Yannis Haralambous. There are three styles of text font, Schwabacher,
Fraktur and Gothic. (The terms ‘Fraktur’ and ‘Gothic’ tend to be used interchangeably by English speaking math-
ematicians such as the present author, but the fonts in this collection have clearly distinguishable styles.)
There is also a font of ‘initials’, highly ornate uppercase letters, suitable for use as the first letter of a section. If
you wish to use this in ‘drop caps’ style you may also want to use one of the contributed packages available on
CTAN such asdrop, or dropping, that automate the setting of a suitable paragraph shape and inserting the initial
letter at the correct size.6

2.2 T1 Encoded ‘Concrete’ Fonts
Note: The following two files require the old release 1.1 of the dc fonts. Walter Schmidt very recently (March 1997)
released a test version of a set of ‘Concrete’ fonts based on the new ec font base. The LATEX support for these new fonts
is available frommacros/latex/contrib/supported/ccfonts . Once this release is stable, the following
files will probably be removed from themfnfss distribution.

dccr.mf Metafont source file used by the output files fromdccrstd.tex to generate Concrete Roman fonts in
T1 encoding.

dccrstd.tex TEX file used in the generation of Concrete Roman fonts in T1 encoding. It will produce a number
of .mf files corresponding to Concrete Roman fonts in different sizes. By modifying the table inside this file
further Metafont driver files can be generated. The.fd files for the Concrete Roman fonts can be produced with
cmextra.ins which is part of the LATEX base distribution.

3 The PSNFSS Distribution

With the release of LATEX 2ε, LATEX gained inbuilt support for the use of alternative font families in documents, and in
particular for the use of scalable font formats such as Type 1 (POSTSCRIPT) or TrueType.

The collection of packages, coordinated by Sebastian Rahtz, known aspsnfss offers convenient interfaces to most
of the more common font sets.

6Thefd files provided here load the originalyinit font. TheCTAN archives also contain ‘yinitas ’, a modified version of this font.

reprinted from Baskerville Volume 7, Number 1

A LATEX Tour, part 3: mfnfss, psnfss and babel

Most of the files here relate to font files renamed to a consistent naming scheme, promoted and maintained by Karl
Berry. This encodes the font vendor, and details of the font such as its weight, style and encoding into a compact name
that usually fits in the eight letter filenames used by some common filesystems. More information about the font nam-
ing scheme can be found onCTAN in info/fontname . It should be noted however that the packages themselves,
such as thetimes package, donot depend on any particular font naming convention. LATEX isolates packages from the
details of the external font files by the use of ‘fd ’ (Font Descriptor) files which map the LATEX ‘NFSS’ model of fonts
to the external font metric files.

In principle, there is no real need for packages to load text fonts into LATEX. For example, once the font metrics and
font descriptor files for Times Roman (which isptm in the Karl Berry Naming Scheme) are installed, then one could in
principle switch to Times Roman in a LATEX document by simply specifying\fontfamily{ptm}\selectfont .
Normally one would instead want to assign the new font to one of the ‘default’ LATEX families, Roman, as used by
\rmfamily , Sans Serif (\sffamily) and Typewriter or Monospace (\ttfamily).

The support for POSTSCRIPT fonts is split into two. TheCTAN fonts/psfonts area contains material that is
mainly automatically generated from the Adobe font metric files that are distributed with all Type 1 fonts. This includes
the font metrics themselves, the Font Descriptor files, the ‘map’ files used to make fonts known to the dvips driver,
and some basic packages to declare single fonts to LATEX. This is supplemented inmacros/latex/packages/
psnfss by the ‘hand written’ packages of thepsnfss collection that load popularcombinationsof font families, or
deal with mathematics.

This section refers at various points to POSTSCRIPT or Type 1 fonts, but in fact the TEX support for these fonts
applies equally well to True Type, or other scalable formats. As long as TEX has access to the font metrics, the font
format does not matter (to TEX; it matters to the driver you use to print theDVI file).

3.1 PSFONTS
TheCTAN psfonts area primarily contains the font metric and LATEX font descriptor files, organised by font vendor, as
outlined below. The basic format of the file structure is the same for each font family, so only the top level directories
are given here, except for the Adobe Times family, which is further expanded as an example.

Font Vendors
The font subdirectories offonts/psfonts are:

adobe Fonts sold by Adobe, or built into POSTSCRIPT devices.
bh Fonts designed by Bigelow and Holmes, these are mainly sold through Y&Y.
bitstrea Bitstream fonts.
monotype Monotype fonts.
textures Textures Fonts for the Blue Sky Research Macintosh TEX implementation.
urw Fonts distributed by URW.
xadobe Adobe ‘expert’ font sets.
xmonotype Monotype ‘expert’ font sets.

Each of the vendor directories contains subdirectories corresponding to the font families supported by thepsfonts
distribution. (Using the tools provided one can generate TEX support files for most other text fonts, the selection here
is really just a set of examples.)

The subdirectories of theadobe directory are:

agaramon Adobe’s rendition of a Garamond serif Roman family. (Commercial.)
avantgar Avant Garde sans serif (built into most POSTSCRIPT devices).
baskervi Baskerville, a commercially available serifed Roman family. (If you are reading this inBaskervillethen

it is similar to the text you see, which is Monotype Baskerville).
bembo Bembo, a commercially available serifed Roman family.
bookman Bookman (built into most POSTSCRIPT devices).
centaur Centaur, a commercially available serifed Roman family.
courier Courier (built into all POSTSCRIPT devices).
garamond Garamond 3. Another Garamond serif Roman family. (Commercial.)
gillsans Gill Sans, a commercially available sans serif family.
helvetic Helvetica (built into all POSTSCRIPT devices).
nbaskerv ITC New Baskerville, another variant on the Baskerville theme. (Commercial.)
ncntrsbk New Century Schoolbook (built into most POSTSCRIPT devices).
optima Optima, a commercially available sans serif family.

–19–

reprinted from Baskerville Volume 7, Number 1

palatino Palatino serifed Roman family (built into most POSTSCRIPT devices).
symbol Symbol (built into all POSTSCRIPT devices).
times Times Roman (built into all POSTSCRIPT devices).
univers Univers, a commercially available sans serif family.
utopia Utopia, a commercially available serifed Roman family.
zapfchan ITC Zapf Chancery. A script font built into most POSTSCRIPT devices.
zapfding ITC Zapf Dingbats. A symbol font built into most POSTSCRIPT devices.

All the directories corresponding to a font family look essentially the same, each with the following subdirectories.

dvips Contains the ‘map’ file for the dvips driver program. This file can be appended topsfonts.map or used
via a configuration file to tell dvips where to find the specified fonts. A suitable configuration file is included in the
directory.
Other drivers will need similar information, but perhaps in a different format.

tex This directory contains the font descriptor files which must be placed in the input path for LATEX, so that LATEX
has available the information about the available fonts. For some font families this directory would also contain
a LATEX package that assigns the fonts to one of the standard LATEX font families, such as\sffamily . Some
packages, such astimes, are not distributed here as they would clash with the packages distributed as part of
psnfss, as described below.

tfm The font metrics, in ‘tfm’ format. These files contain all the information about letter sizes, ligatures, and kerning
that TEX needs to typeset text.
There are several files, as each font in the original family is made available in several encodings, the two main
ones being the ‘Classic’ TEX encoding used by Computer Modern. This is known as OT1 in LATEX, and as ‘7t’ in
the Karl Berry font naming scheme used here. Similarly the files with names ending in ‘8t’ relate to fonts encoded
to the eight bit ‘Cork’ encoding, known as T1 in LATEX.

vf The virtual fonts. Most (but not all) drivers handle the re-encoding of the original fonts to the encodings that TEX
expects by means of the virtual font mechanism. Some special fonts, such as Zapf Dingbats are not re-encoded,
and so do not have avf directory.

There is one very important thing to note about the above list.There are no fonts!Almost all of the fonts/
psfonts area ofCTAN is concerned with providing mechanisms for using fonts that you have obtainedelsewhere.
The fonts may be built in to your printer, or may be purchased separately. There are a few freely available Type 1 fonts.
In such cases there will be an additional directory,type1 , which contains the font files (normally in ‘pfb’ format).

StandardPOSTSCRIPT Fonts
In addition to the above directories, thepsfonts area contains two zip files. If you need the files and have not got unzip
(or pkunzip or winzip or. . .) then you can get a copy of unzip from theCTAN support area.

lw35nfss This zip archive expands to the subset of thepsfonts/adobe tree that corresponds to the ‘Standard
35’ POSTSCRIPT fonts as used in Adobe Laserwriter printers. If you are only interested in using fonts built into
your printer, and not in using downloaded fonts, then just get this file rather than the large collection of metrics in
psfonts/adobe .

lw35pk This zip archive contains bitmap fonts for the ‘Standard POSTSCRIPT fonts’ in the usualPK format under-
stood by most dvi drivers. This enables documents using Type 1 fonts to be previewed with dvi previewers that
can not use outline font formats. (For example xdvi or the emtex drivers).

Tools and Extra Packages
There are a few remaining directories inpsfonts.

ts1 The LATEX textcomp package and related utilities for accessing fonts in the ‘text companion’ encoding known
as TS1 in LATEX. These include the TC fonts that are distributed with the EC fonts, and suitably re-encoded fonts
from the standard Type 1 font sets. This encoding contains many non alphabetic symbols that should match the
current text font (rather than the math font). It includes currency symbols, superior digits, dagger signs, etc.

mathcomp A contributed package for using the text companion fonts in math mode.
tools The source for the scripts and utilities used for generating all these files.

3.2 Standard PSNFSS Packages
By contrast to the packages and font descriptor files in thepsfonts distribution, thepsnfss distribution contains ‘hand
written’ files. These are either used to set up popularcombinationsof the ‘standard’ fonts, or load alternative font sets
for mathematics. Due to the nature of mathematics fonts, these latter packages are typically much more complicated

–20–

A LATEX Tour, part 3: mfnfss, psnfss and babel

internally than the one or two line packages that load text fonts. For the user, however, this complexity should not be
apparent.

The first set of packages (all generated from the source filepsfonts.dtx) load combinations of the Basic Adobe
POSTSCRIPT font set into LATEX.
times As one might guess, this declares Times Roman as\rmfamily . For mainly historical reasons, this package

also declares Helvetica as\sffamily and Courier as\ttfamily , so effectively ensuring that all text (but not
mathematics) is set in the basic POSTSCRIPT font set.
This is a convenience for the user who wants to replace all the text fonts by references to the basic Adobe fonts. It
is an advantage to do this if you want to produce device independent and small POSTSCRIPT documents for dis-
tribution. The disadvantage is that Times Roman, Helvetica and Courier, despite being the ‘standard POSTSCRIPT

combination’ look particularly horrible if placed next to each other at the same nominal size, as done by this pack-
age. Helvetica has a much larger ‘x-height’ (the height of the lower case letters) than Times Roman, so if sans serif
and Roman text are mixed in-line, then the sans serif looks much too big. (This is not so much of a problem if the
sans serif is only used for headings.) Courier is just too ‘wide’ when placed alongside Times Roman, which is a
particularly compact font.
To partially compensate for these problems, thepslatex package (written by me, but currently distributed as
a contributed package, not part of the core LATEX distribution) is an alternative to thetimes package. It loads
Helvetica scaled by 90% and loads Courier by way of a virtual font that condenses it by scaling the horizontal
direction (only) by 85%.pslatex also contains a copy of themathptm package (see below) so installs a Times-
Italic based font set for use in mathematics.

palatino Declares Palatino as\rmfamily , and Helvetica and Courier as\sffamily and\ttfamily .
helvet Declares Helvetica as\sffamily . (Does not change the other families.)
avant Declares Avant Garde as\sffamily . (Does not change the other families.)
newcent Declares New Century Schoolbook as\rmfamily , Avant Garde as\sffamily and Courier as

\ttfamily .
bookman Declares Bookman Roman as\rmfamily , Avant Garde as\sffamily and Courier as\ttfamily .
chancery Declares Zapf Chancery as\rmfamily .

The above packages only affecttext fonts, not mathematics.psfonts.dtx contains one special package, written
by Alan Jeffrey, which does affect the math setup.
mathptm This package uses a set of virtual files that use various built in or freely available fonts to make a set of

fonts suitable for replacing the standard Computer Modern Math fonts. In the current release, bold fonts (and so the
LATEX \boldmath command) are not supported. Thepslatex package referred to above contains an essentially
verbatim copy ofmathptm.
One may usemathptm as an example of the coding needed to make virtual fonts for mathematics based on other
text italic fonts. How successful this will be depends to a certain extent how visually compatible are the symbols
that are gathered from the various ‘real’ fonts that are used by the virtual math fonts. There are often good reasons
for making such fonts (the main one being that documents using freely available fonts may be more easily placed
on the Web in POSTSCRIPT form), however the result is never likely to be as good as using fonts that have
symbols that aredesignedto be visually compatible. For mathematics use within TEX, that currently restricts use
to Computer Modern, or the commercial MathTime or Lucida Bright font sets described below.

Thepsfonts.dtx source file contains one other package:
pifont This declares the Zapf Dingbats font which contains an assorted mixture of symbols, and also defines new

user level commands to access these symbols. See the package documentation, orThe LATEX Companionfor details.

3.3 Freely Available Type 1 Text Fonts
The next set of packages are contributed by Peter Dyballa. In fact these are just one-line packages loading the appro-
priate font. Most of the code is in thefd files which are generated from the same source file.
charter Defines\rmfamily to use Bitstream Charter.
nimbus Declares URW Nimbus Roman-Regular and URW Nimbus Sans-Regular as\rmfamily and

\sffamily . These are essentially free clones of Times Roman and Helvetica.
utopia Defines\rmfamily to use Adobe Utopia-Regular.

3.4 Commercial Text Fonts
The following packages are generated from the source fileadobe.dtx . They are a rather random selection from the
large catalogue of fonts sold by Adobe.

–21–

reprinted from Baskerville Volume 7, Number 1

garamond Garamond as\rmfamily , Optima as\sffamily and Courier as\ttfamily .
basker Baskerville as\rmfamily .
mtimes Monotype7 Times as\rmfamily .
bembo Bembo as\rmfamily , Optima as\sffamily and the ever popular Courier as\ttfamily .

3.5 Adobe Lucida
The following two packages relate to the original Lucida font set, designed by Bigelow and Holmes and sold by Adobe.
They are generated from thealucida.dtx source file.

lucid Declares Lucida Roman and Lucida Sans as the Roman and sans serif families, and Adobe Courier again as
the monospaced font.

lucmath Lucida has a matching set of mathematics fonts suitable for TEX use. This package makes the required
definitions to make these known to LATEX.

3.6 Lucida Bright
A newer and more extensive Lucida family, also designed by Bigelow and Holmes but in this case sold by Y&Y, is
known as ‘Lucida Bright’ and ‘Lucida New Math’. The LATEX support described here was written by Sebastian Rahtz
and myself.

lucidabr.dtx This package (replacing the earlierlucidbrb and lucidbry packages) changes the LATEX defaults
for both text and mathematics to use the Lucida Bright and Lucida New Math font collections. It has numerous
options to control different aspects of the package and to control which of the fonts to use. (Lucida Bright contains
several font families, including ‘fax’ and ‘casual’ etc, as well as variant forms of the math italic alphabet.)
The LATEX package and the font descriptor files for the math fonts are generated from this source file. The font
descriptor files for the Lucida text fonts in the standard LATEX encodings are available from thepsfonts area (in
thebh) directory, after Bigelow and Holmes, the creators of these fonts.
The TEX support and font metrics are freely available, but the fonts themselves must be purchased separately.

lucidabr.ins LATEX installation file for Lucida Bright using the standardised ‘Karl Berry’ font names.
lucidabr.yy Alternative installation file. Use this instead oflucidabr.ins if you plan to install the fonts with

their original font names, as sold by Y&Y. (In this case you donot need thefd files from thepsfonts area.)
lucidabr.txt Introduction and installation guide for this package.

3.7 MathTime
The MathTime fonts are produced by Michael Spivak ‘TEXplorators’. They are sold by Y&Y. The LATEX support was
written by Frank Mittelbach and myself.

mathtime.dtx The mathtime package is mainly concerned with mathematics setup, although it selects Times,
Helvetica and Courier as the text fonts if they have not already been set by another package. The MathTime
mathematics fonts are specially designed to match Times Roman, but blend quite well with other text fonts that
are of a similar weight. Computer Modern mathematics tends to look very ‘light’ if used with font families other
than Computer Modern. The package has several options to control the font choices made.

mtfonts.fdd The source for the font descriptor files for MathTime mathematics fonts.
mathtime.ins Installation file. Note that this file may be edited in a couple of places depending on whether or not

you have the extended ‘MathTime Plus’ font set which includes bold math support.
mathtime.txt Introduction and installation guide for this package.

3.8 Documentation and Other Files
readme.txt General introduction.
psnfss2e.tex User level documentation on the use of these packages.
test0.tex Testing accents and other encoding specific commands are working correctly using POSTSCRIPT fonts.
test1.tex Test document that uses most of the ‘Standard 35’ fonts.
pitest.tex Test of thepifont package.
mathtest.tex Test of themathptm package.
makefile Unix ‘make’ utility to automate installation of the packages.
allpspk Unix script that makes a test document using a specified font family and then uses dvips and its associated

scripts to generate ‘pk’ versions of the fonts.
makepk Unix script that calls allpspk on some common fonts.

7Not sure why this is generated fromadobesource file.

–22–

A LATEX Tour, part 3: mfnfss, psnfss and babel

3.9 PSNFSSX
Recently thepsnfss collection has aquired a close cousin,psnfssx, distributed as a contributed package from
macros/latex/contrib/supported/psnfssx . This contains some lesser used or nonstandard packages,
related to POSTSCRIPT support. Of particular interest might be thely1 files (contributed by myself) in that directory
which provide the LATEX support for the ‘texnansi’ encoding promoted by Y&Y by way of anLY1 option to the
fontinst package.

This psnfssx collection also contains some obsolete versions of packages formerly inpsnfss; this material is
provided for historical interest only. Use at own risk!

4 The Babel Distribution

The babel package is distributed fromlatex/packages/babel and is supported via the LATEX bug reporting
address, but has origins predating the current LATEX release. As well as supporting LATEX it contains support for plain
TEX (and formats such as AMSTEX or eplain that are based on plain). Primarilybabel is the work of Johannes Braams,
with contributions for specific language files by numerous people.

Babel consists of a ‘kernel’ that extends LATEX with a mechanism for switching between specified languages.
Part of this kernel (related to hyphenation) must be loaded when the LATEX format is made to get the full benefit of
hyphenation tables for multiple languages. For each language, or related group of languages, supported bybabel there
exists a language-specific code file. This will offer translations of the fixed text strings used in the standard LATEX
classes, such as ‘Table of Contents’, ‘Figure’, etc., and may also offer language-specific ‘shorthands’ that make typing
common constructs easier (for example thegerman option provides the construct ‘"ff ’ to produce ‘ff’ that would
hyphenate to ‘ff-f’ if it fell at the end of a line). The language file may also modify the typesetting to support the
normal conventions of that language. For example thefrench option modifies the spacing around punctuation marks
in text.

4.1 Babel Kernel
babel.sty The main interface tobabel. The user specifies all languages to be used in a document as options to

this package, the last option specified is the default language for the document. So for example
\usepackage[french,german]{babel}

would enable the use of French and German conventions within the document, with the default language being
German.

hyphen.cfg The standard LATEX interface to hyphenation. When the LATEX format is being made, this file is input
if it exists, to setup the required hyphenation patterns. In thebase LATEX distribution there is no such file, and
so a default action is taken which loads the original TEX patterns for American English. Thebabel distribution
provides this configuration file (generated frombabel.dtx) which defines some core functionality, and then
readslanguage.dat to specify which hyphenation files to load.

language.dat This file must be edited to specify which language hyphenation files to load, and the name of the
external file which contains the hyphenation table for each such language (and optionally a second external file,
typically containing hypenation exceptions). Note that hyphenation filesmustbe specified here, and so loaded
when the format is made. This is a restriction of the underlying TEX system. Documents using other languages
not specified here may still be processed, andbabel will translate any fixed text strings, but it will not be able to
correctly hyphenate that language. A default hyphenation will be used (most likely English) which may or may
not be suitable depending how far the language differs from English.

switch.def This file is also generated from the samebabel.dtx source. Ifbabel is used as a package but was
not used when the format was made, then the core functionality normally provided byhyphen.cfg will not be
present. The package will detect this, and so input this file to provide the necessary definitions.

4.2 Language-Specific Files
The implementation of the language-specific code for each language withinbabel is contained in files with extension
‘ .ldf ’ (language definition files). These are not directly input by the user, but specified as options to the babel
package. Normally the option name is the same as the file name, except where noted below. Some similar languages
or dialects are supported by the same external file, and some options are available in more than one name; such aliases
are noted in parentheses in the list below.

Most languages also have a file with extension.sty ; however this is just offered for compatibility with older
versions of Babel and of LATEX, or for use with plain TEX based formats. In normal LATEX usage only the.ldf file is
used.

–23–

reprinted from Baskerville Volume 7, Number 1

basque Support for the Basque language.8

breton Support for the Breton language.
catalan Support for the Catalan language.
croatian Support for the Croatian language.
czech Support for the Czech language.
danish Support for the Danish language.
dutch Thedutch andafrikaans options.
english Theamerican (USenglish) andbritish (UKenglish) options. The optionenglish refers to either British

or American English, depending on the local installation.
esperant Theesperanto option.
estonian Support for the Estonian language.
finnish Support for the Finnish language.
frenchb Support for the French language (the corresponding options arefrench (frenchb) or francais. If the french

option is used thenfrench.ldf will be used (from the GUTenburgfrench package) if it is available.
galician Support for the Galician language.
germanb Theaustrian andgerman (germanb) options.
kannada Support for the Indian language, Kannada.8

irish Support for the Irish Gaelic language.
italian Support for the Italian language.
lsorbian The lowersorbian option.
magyar Themagyar (hungarian) options.
norsk Support for the Norwegian languages with optionsnorsk, nynorsk.
polish Support for the Polish language.
portuges Thebrazil (brazilian) andportuges (portuguese) options.
romanian Support for the Romanian language.
sanskrit Support for the Sanskrit language, transliterated to latin script.8

scottish Support for the Scottish Gaelic language.
slovak Support for the Slovakian language.
slovene Support for the Slovenian language.
spanish Support for the Spanish language.
swedish Support for the Swedish language.
turkish Support for the Turkish language.
usorbian Theuppersorbian option.
welsh Support for the Welsh language

Babel version 3.6 sees the welcome (re)introduction of support for non-latin scripts. It is probably fair to say that this
support is still more experimental than the support for latin scripts. One problem, not directly underbabel ‘control’,
is that the TEX encodings for Greek and Cyrillic (corresponding to T1 for European Latin scripts) have not yet been
finalised or agreed. Currentlybabel uses two ‘locally defined’ encodings, LWN and LGR.

greek Thegreek option, which utilises the ‘kd’ Greek fonts.
russianb Therussian option, which utilises the ‘LH’ fonts.
ukranian Support for the Ukranian language.8

Two separate packages are currently in preparation which will be distributed, together with suitable fonts and hypena-
tion tables, fromCTAN. These will extendbabel with options for the Ethiopian and Ukrainian languages.

4.3 Compatibility Files
The distribution contains the following two source files which generate files which enable the use ofbabel with
formats based on plain TEX (and also the old LATEX 2.09 release).

bbcompat The source for compatibility mode files. Most languages are provided with a ‘package’ with extension
.sty . This just inputs the corresponding language definition file and should never be needed using the normal
LATEX interface.

bbplain The source for theplain.def file allowing the use ofbabel with plain TEX.

8Not in the current release, planned forbabel 3.7.

–24–

A tutorial on using MetaPost’sgraph package

4.4 Installation Script and Font Descriptor Files
babel.ins Unpacks thebabel distribution from the documented source files
cyrillic.fdd Font descriptor files for Cyrillic fonts in ‘LCY’ encoding.
greek.fdd Font descriptor files for Greek fonts in ‘LGR’ encoding.

4.5 Documentation
ASCII Text Files
00readme.txt The distribution guide.
install.txt How to install Babel.
install.mac How to install Babel with OZTEX.
CyrillicFonts.txt Further notes on the Cyrillic installation.
GreekFonts.txt Further notes on the Greek installation.

TEX Documents
tb1202 The source of the original article that appeared inTUGboat, Volume 12 (1991), No. 2.
tb1401 The source of an update article that appeared in inTUGboat, Volume 14 (1993), No. 1.
tb1604 The source of an update article that never appeared inTUGboat, but was presented at EuroTEX 1995, Arn-

hem.

4.6 Example File
language.skeleton An example file that can be used to build new language definition files from scratch.

5 Coming Soon

Part 4 of this tour will describe the files of theamsfonts andamslatex distributions of packages produced by the
American Mathematical society.

–25–

IV A tutorial on using MetaPost’s graph package

Sebastian Rahtz

7 Stratfield Road

Oxford OX2 7BG

UK

s.rahtz@elsevier.co.uk

1 Introduction

MetaPost is a sibling program toMETAFONT, which replaces the bitmap output of the latter with PostScript and
is designed more as a general-purpose drawing language than a font creation package. Although it has been around
for five years or so (it has been Don Knuth’s tool of choice for drawing for some time), it has only recently started
becoming generally available for most users. With the release of Web2c version 7.0, MetaPost is integrated into the
standard Unix and Windows 32 TEX distribution, and it is also part of the CMacTeX and OzTeX packages for the
Macintosh.

Although many people find general-purpose drawing languages quite forbidding and counter-intuitive, creating nice
graphs from simple data files is a common task, and the purpose of this short tutorial9 about MetaPost is to describe
its graphing support. The high-level library of MetaPost macros to draw graphs was written by MetaPost’s author,
John Hobby, to provide a sophisticated interface comparable tograp (see Bentleyand Kernighan, 1984). It is hoped
that by giving examples of its use, more people can be encouraged to try it and (who knows?) start to explore more of
MetaPost for other sorts of drawing.

MetaPost is well documented in Hobby (1992), and the graph package is described in Hobby (1993); both these
documents normally form part of a MetaPost distribution.

2 Getting started

To start, a quick recipe for writing a MetaPost input file. Unlike TEX, there are no backslashes or curly braces,
and commands normally end with semicolons; at the start of your file, you need to load thegraph package with
an input command, and the file is completed withend; . In between you can have one or more drawings inside
beginfig . . .endfig; , wherebeginfig has a parameter (in round brackets) of a number which will be the suffix
of the output PostScript file. A graph comes insidedraw begingraph . . .endgraph; , wherebegingraph has
a parameter of two dimensions which set the width and height of the graph. MetaPost takes care of scaling all the
drawing to fit in this area. Thus a complete MetaPost file might look like this:
input graph
beginfig(1)
draw begingraph(2.5in,1.75in);
gdraw "yearm.dat";
endgraph;
endfig;
end;

If we save this astest.mp , and run it with the commandmpost test.mp , the output (under Unix) looks some-
thing like this:
darkstart:~/# mpost test.mp
This is MetaPost, Version 0.632 (Web2c 7.0)
(test.mp (/cdrom/share/texmf/metapost/base/graph.mp
(/cdrom/share/texmf/metapost/base/marith.mp
(/cdrom/share/texmf/metapost/base/string.mp))
(/cdrom/share/texmf/metapost/base/format.mp

9This material is taken from chapter 3 ofThe LATEX Graphics Companion, by Michel Goossens, Sebastian Rahtz and Frank Mittelbach, published
by Addison-Wesley in March 1997. Reprinted by permission of Addison-Wesley.

reprinted from Baskerville Volume 7, Number 1

A tutorial on using MetaPost’sgraph package

(/cdrom/share/texmf/metapost/base/string.mp)
(/root/tds/metapost/latexpp/texnum.mp))) [1])
1 output file written: test.1
Transcript written on test.log.

Labels or captions in a MetaPost drawing are often passed to TEX to process behind the scenes, as we shall see
presently, and the result is a PostScript file we can include in our TEX in the ordinary way. It is assumed that the reader
can find out how to do this.

Rather than showing the trivial result of that test, let us consider a slightly more sophisticated real graph (using data
from the Protestant Cemetery, Rome—see Rahtz (1988)) which looks like this (henceforth we only show the MetaPost
code betweenbegingraph andendgraph):

draw begingraph(2.5in,1.75in);
gdraw "yearm.dat" dashed evenly;
gdraw "yearw.dat";
glabel.lft

(btex (solid) Women etex, 1960,30);
glabel.lft

(btex (dashed) Men etex ,1870,30);
glabel.bot

(btex Number of burials per year
($n \approx 4300$) etex,OUT);

endgraph;

0-2-1

This shows some of the main features of thegraph package for plotting data from external data files and labeling. The
commandgdraw (which can be used several times in succession) is followed by a file name; it reads data values (two
per line, giving anx andy coordinate) from that file, and plots the resulting line. The effect can be varied with various
modifiers — here we useddashed evenly . The commandglabel , to place some captioning text, has a prefix
(separated by .) which indicates where on the graph it is to go (lft = ‘left’, bot = ‘bottom’ etc). It is followed by
an expression inside round brackets of text, anx coordinate, and ay coordinate. The special coordinate pair ofOUT
means it will be placed neatly outside the graph area. You can supply literal text in quotes, or have it processed by TEX
by bracketing it withbtex . . .etex (no quotes around the text in this case).

Thegraph package can take care of:

• automatic scaling of data;
• automatic generation and labeling of tick marks or grid lines;
• multiple coordinate systems in the same picture;
• linear and logarithmic scales;
• plotting with arbitrary symbols;
• handling multiple columns in the same data file, with user-specified procedures.

3 Variations in basic graphing

If gdraw is followed by aplot command, a symbol can be drawn at each coordinate instead of a continuous line; the
symbols is technically a MetaPost “picture”, i.e. in practice some text which can be typeset by TEX, as the following
variation shows:

draw begingraph(2.5in,1.75in);
gdraw "yearm.dat"

plot btex \bullet etex;
gdraw "yearw.dat"

plot btex \circ etex;
glabel.bot

(btex Burials etex,OUT);
glabel.lft

(btex Number etex rotated 90,OUT);
endgraph;

0-3-1

For this graph we also rotated the label for they axis by 90◦ using a modifier tobtex . . .etex .

–27–

reprinted from Baskerville Volume 7, Number 1

Frames, ticks, grids and scales
By default, graphs have a frame on all sides, no grid, and tick marks on the bottom and left. The frame can be altered
with theframe command, which has a set of optional suffixes. Grid lines and ticks are controlled withautogrid :

autogrid (x specification,y specification)

The specifications can have the valuesgrid , itick or otick , which produce grid lines, inner ticks, or outer ticks;
they can be suffixed with.top or .bot for thex axis and.lft and.rt for they axis, as the following example
shows:
draw begingraph(2.5in,1.75in);
gfill "yearw.dat" withcolor red;
autogrid(grid.bot,itick.rt)

withcolor .5white;
frame.llft;
endgraph;

0-3-2
To overridegraph’s choice of where to put tick marks and how to write labels, you can add explicit ticks withitick
or otick and grid lines withgrid . These have the same suffixes asautogrid and are followed by a MetaPost
picture variable containing a label or aformat command, and a coordinate.format is used to control how numbers
are printed:

format (specification,number)

Thespecificationconsists of an optional initial string, a percent sign, an optional number indicating precision (default
3), a conversion letter (e, f or g) and an optional final string. The conversion letter determines whether or not scientific
notation is used;%gwill use decimal format for most numbers. How the scientific notation used byformat is typeset
depends on a MetaPost macro calledinit_numbers (see manual); since this uses thebtex . . .etex system, you
may need to look at it carefully if you are concerned about precisely which fonts are used.

The next graph shows both types of explicit labeling; we have to remember to turn off the normal marks at the
end!
draw begingraph(2.5in,1.75in);
gfill "yearw.dat" withcolor red;
for y=10,20,30:

itick.lft(format("%g",y),y);
endfor
otick.top("19th century",1850);
otick.top("20th century",1950);
frame.llft;
autogrid(,);
endgraph;

0-3-3
The labeling can also be changed bysetcoords

setcoords (x style,y style)

The parameters forx andy can be set tolog , -log , linear , or -linear .
While the program’s scaling of data to fit the graph usually gives the right results, it can be overridden with

setrange :

setrange (min,max)

You need to supply the minimum and maximum coordinates. The special constantorigin is a useful shorthand for
(0,0). To leave any value to be figured out by MetaPost, specifywhatever . If you specify no range at all, MetaPost
works it out from the data values and adds a small border.

Reading data files
Although thegdraw andgfill commands often suffice, we can get more control over the data read from a file by
usinggdata :

–28–

A tutorial on using MetaPost’sgraph package

gdata (filename, variable, commands)

Thecommandsare executed for every line of data infilename, with the values for each column available as,e.g. c1,
c2 . . .cn for the variable namec. filenameis aMETA string, so simple names should be enclosed in quotes (file names
can also be computed fromMETA variables.) Using some more data from the Protestant Cemetery in which each line
consists of a person’s age at death, we can show the distribution of mortality by age by accumulating data in an array
and using that to create a path:
draw begingraph(2.5in,1.5in);
numeric p[]; path r;
for j := 0 upto 100: p[j]:=0; endfor
gdata ("ages.dat",y, age:=(scantokens y1);

p[age]:=p[age] + 1;);
r:=(0,0)

for j := 1 upto 100: --(j,p[j]) endfor;
gdraw r;
frame.llft;
endgraph;

0-3-4
The only complications are the need to initialize the array and the conversion of the string representation read from
the data file into a numeric value withscantokens .

Whengdata reads data files, it stops when it reaches a blank line or end of file; if you startgdata again with the
same file name, it carries on reading another set of data. This allows you to put all your data sets in one file, but use
it with care. One problem is that data files remain open if there is a blank line at the end, since MetaPost thinks some
more data might follow; if you have many small data files, this situation can cause a MetaPost error—check the end of
your files.

This display in the example above is not very readable; it might be better to accumulate data per decade of death
from the file. As this gets a little more complicated, we abstract the job into a MetaPost macro called by thegdata
command:
draw begingraph(2.5in,1.75in);
setrange(origin,(100,100));
numeric p[]; path r;
for j := 0 step 10 until 100:

p[j]:=0; endfor
def check(expr age) =

if age < 100:
xage:=round(age/10) * 10;
p[xage]:=p[xage] + 1; fi

enddef;
gdata ("ages.dat",y,

check((scantokens y1)););
r:=(0,0) for j := 0 step 10 until 100:

--(j,p[j]) endfor --(100,0);
gfill r -- cycle withcolor blue;
frame.llft;
endgraph;

0-3-5
It is often useful to accumulate points on a path for each line read from the data file; the macroaugment is

provided for this. Given a suffix of a variable name of type “path” and a parameter of a coordinate,augment creates
the path if it does not exist or adds the point to an existing path. We use this to show the gravestone data again, this
time processed to provide separate figures of deaths per decade for women (column 2) and men (column 3):

1800 3 6
1810 9 15
1820 26 64
1830 31 88
...

For each decade, we keep track of the last point reached and augment separate paths for male and female; these are
then shaded in different colors to show how the male and female patterns vary over time. We need to know the last

–29–

reprinted from Baskerville Volume 7, Number 1

decade in order to establish a sensible corner for the filled shape. The female pattern appears as a dotted line on top of
the male shading.
path m,w,last;
draw begingraph(3in,2in);
setrange((1800,0),(whatever,whatever));
gdata ("decade.dat",y,

last:=((scantokens y1),0);
augment.w(y1,y2);
augment.m(y1,y3););

gfill (1800,0)--w--last--cycle
withcolor red;

gfill (1800,0)--m--last--cycle
withcolor green;

pickup pencircle scaled 3pt;
gdraw w dashed withdots;
pickup pencircle scaled .75pt;
glabel.bot (btex Number of burials per decade

($n \approx 4300$) etex,OUT);
endgraph
rotated 90;

0-3-6
The example demonstrates that the graph macros return aMETA picture that can then be transformed (in this case
rotated).

Different graph types
With a little effort,graph can draw bar charts; to demonstrate this, we copy a chart from Goossens et al. (1994), p. 287,
that was made with the LATEX bar package. Our technique is to make a single path out of all the bars and fill the result
at the end:
path s; numeric x,y;
draw begingraph(2.5in,1.75in);
gdata ("students.dat",c,

x:=(scantokens c1) * 12;
y:=(scantokens c2);
augment.s((x-5,0)--
(x-5,y)-- (x+5,y)--
(x+5,0));
if y < 0: glabel.top(c2,(x,0)); fi
if y > 0: glabel.bot(c2,(x,0)); fi

);
gfill s--cycle withcolor .5white;
frame.llft;
endgraph;

0-3-7
We explicitly work out the corners of each bar and allow for their width by multiplying thex values by 12; the bars
themselves span 5 units on either side of the data point, so there is a gap of 2 units between each one.

A similar technique is used in the next chart which shows the number of pages in chapters ofThe LATEX Graphics
Companion; this time we draw each bar separately, so that they can be shaded according to the values. The work is
delegated to a macro, which also prints a rotated label for each bar. Because explicitx labels are supplied, labeling of
thex axis is suppressed.
path m; numeric n,width;
width:=20; defaultscale:=0.6; n:=0;
def bar(expr name,value) =

gfill(n,0)--(n,value)--
(n+width,value)--(n+width,0)--cycle
withcolor (value/100,value/100,value/100);
picture p;
p = name infont defaultfont

scaled defaultscale rotated 90;
glabel.rt

–30–

A tutorial on using MetaPost’sgraph package

(image(unfill bbox p; draw p),(n,10));
n:=n+width;

enddef;
draw begingraph(2.5in,1.75in);
setrange((0,0),(11*width,100));
autogrid(,otick.lft);
gdata("chap.dat",c,bar(c1,(scantokens c2)););
endgraph;

0-3-8

The string value read from the first data column is put into a MetaPost picture variable by using the low-level command
infont . This lets us usebbox technique to give the extent of the text, which is made white withunfill . image
is a useful macro that yields the picture resulting from a sequence of drawing commands; we use that as a label. The
data for this graph starts as follows:

graphics 28
stdgraph 26
xypic 28
mf 26
...

We can also present our earlier “decade” data as a dual bar chart, with male and female figures side by side. To do
this we maintain two separate paths, fill one and leave the other as an outline:

path m[],w[];
def wcheck(expr decade,value) =

augment.w1(decade,0);
augment.w1(decade,value);
augment.w1(decade+5,value);
augment.w1(decade+5,0);

enddef;
def mcheck(expr decade,value) =

augment.m1(decade+5,0);
augment.m1(decade+5,value);
augment.m1(decade+10,value);
augment.m1(decade+10,0);

enddef;
draw begingraph(3.75in,2in);
gdata ("decade.dat",y,

wcheck((scantokens y1),(scantokens y2));
mcheck((scantokens y1),(scantokens y3)););

gfill m1--cycle;
gdraw w1;
glabel.bot (btex Number of burials per decade

($n \approx 4300$) etex,OUT);
frame.llft;
endgraph rotated 90;

0-3-9

With care, we can even draw pie charts using similar ideas. The following example reads data about gravestones in
the Protestant Cemetery in the following form:

Romanian 1 0.02796420582
Czech 2 0.05592841163
.....
Italian 391 10.93400447
German 508 14.20581655
unknown 599 16.75055928
English 1462 40.8836689

Here the second column is the number of gravestones per nationality and, to make the code less complicated, the
third column is the percentage of the total. For each pie wedge, we use thebuildcycle macro to find the smallest
enclosed shape from the union of a whole circle and two lines extending from the center at the starting and closing
angle of the segment. The fill color of the wedge is derived from the percentage.

–31–

reprinted from Baskerville Volume 7, Number 1

numeric r,last; path c,w;
r:=5; c:=fullcircle scaled 2r;
last:=0.0;
def wedge (expr lang,value,perc) =

numeric current,n,half,xoff,yoff;
picture p;
n:=perc*3.6;
current:=last+n; half:=last+(n/2);
w:=buildcycle((0,0)--(2r,0) rotated last,

c, (2r,0)--(0,0) rotated current);
gfill w withcolor

(0.8-(perc/100),0.8-(perc/100),0.8-(perc/100));
gdraw w;
if perc > 5:
p = lang infont defaultfont

scaled defaultscale;
glabel(image(unfill bbox p; draw p),

3/4r*dir(half));
fi;
last:=current;

enddef;
draw begingraph(3in,3in);
defaultscale:=0.7;
gdata ("langs.dat",c,

wedge(c1, (scantokens c2),
(scantokens c3)););

autogrid(,); frame withcolor white;
endgraph;

0-3-10

The placement of the labels in the pie bears a little examination; they are placed in the center of each wedge, three
quarters of way along the radius.

Another type of graph has a linearx scale and uses they axis simply to compare sets of data. The following graph
uses our cemetery data to show the first and last occurrences of each type of gravestone. The code is straightforward
except that we draw the lines with a different sized pen (with square ends) and revert to a thin line to draw the scale
and frame (only on the bottom, since they axis is not linear).

draw begingraph(2.5in,2.5in);
n:=10;
defaultscale:=0.7;
pickup pensquare scaled 3pt;
setrange((1700,0),(whatever,whatever));
gdata("stones.dat", s,
gdraw ((scantokens s2),n)--

((scantokens s3),n);
glabel.lft(s1,(scantokens s2)-3,n);
n:=n+16;);
pickup pensquare scaled .5pt;
frame.bot;
autogrid(otick.bot,);
endgraph;

0-3-11

The data, ranked in order of first occurence, starts like this:

Chest 1738 1966
Head 1765 1986
Column 1766 1960
Plaque-on-base 1775 1986
Pedestal 1786 1967
Plaque-in-ground 1794 1985

–32–

The UK TEX Users’ Group

Our last example is more unusual. We want to plot data from a survey grid and shade each grid square according to
its data value; in the data file the first two columns are the coordinates of the lower left corner of the grid square, the
third column is the absolute data value, and the fourth column is a percentage version:

2 1 102 85
2 2 10 98
2 3 110 84
2 4 112 83
2 5 114 83
...

The text is printed in white or black depending on the percentage.
def sq(expr x,y,num,perc) =

gfill(x,y)--(x+10,y)--
(x+10,y+10)--(x,y+10)--cycle

withcolor (perc/100,perc/100,perc/100);
glabel(num,(x+5,y+5))

if perc < 50: withcolor white fi;
enddef;
defaultscale:=0.7;
draw begingraph(70mm,80mm);
setrange((20,10),(110,110));
autogrid(,);
gdata ("pot.dat",c,

sq((scantokens c1)*10,
(scantokens c2)*10,
c3, (scantokens c4)););

endgraph;

0-3-12

References

[1] Bentley, J. and Kernighan, B. 1984.GRAP — a language for typesetting graphs. Computing Science Technical Report 114,
AT&T Bell Laboratories, Murray Hill, NJ.

[2] Goossens, M., Mittelbach, F. and Samarin, A. 1994.The LATEX companion. Reading, MA: Addison-Wesley.
[3] Hobby, J. D. 1992.A user’s manual for MetaPost. Computing Science Technical Report 162, AT&T Bell Laboratories.
[4] Hobby, J. D. 1993.Drawing graphs with MetaPost. Computing Science Technical Report 164, AT&T Bell Laboratories.
[5] Rahtz, S. 1987. The Protestant Cemetery, Rome: a study undertaken under the auspices of the Unione Internazionale degli

Istituti di Archeologia, Storia e Storia dell’Arte in Roma.Opuscula Romana, 16, 149–167.

–33–

V The UK TEX Users’ Group

edited by Peter Abbott

uktug-enquiries@tex.ac.uk

The 1996–97 UKTUG committee

R. Fairbairns Chair

P. Abbott Treasurer and

Membership Secretary

D. P. Carlisle Committee Secretary

M. Clark Meetings Secretary
K. Bazargan; S. P. Q. Rahtz; M. D. Wooding.

Book Discounts for UKTUG members

We have arrangements with Addison-Wesley for their well-known TEX-related publications, and with International
Thomson Publishing to supply any of the very excellent O’Reilly & Associates Inc. series of books to members.

The agreed list of books, together with the discounted (at least 20%) price, is distributed occasionally with
Baskerville, but is always available from the Treasurer, Peter Abbott.

Please add £1.50 for the first book and 50p for each book after the first on the same order, for despatch to a single
address

We are only allowed to offer this service tocurrent members of the UK TEX Users’ Group and/or members ofTUG.
Please send your order and cheque (inUK £) to Peter Abbott (address inBaskervillemasthead). Make cheques payable
to ‘UKTUG’ please. All books will be routed through UKTUG.In all casesplease notify Peter Abbott by email, phone,
fax or letter when books are delivered. This means that provided the book(s) are in stock, it will normally take at least
a week from receipt of order to delivery of the book(s).

Obtaining TEX

From the network – CTAN
TheUK TEX Archive onftp.tex.ac.uk is part of theCTAN (Comprehensive TEX Archive Network) collaborating
network of archives on the Internet organised by the TEX Users Group.

TheCTAN archives run an enhancedftp server which supports dynamic compression, uncompression, and archive
creation options. Fetch the top-level fileREADME.archive-features for information. The server also supports
site-defined commands to assist you. Please readREADME.site-commands for a brief overview.

Please report any problems withCTAN archives via email toctan@urz.Uni-Heidelberg.de .
The main directories which make upCTAN are listed below; readers are referred to Graham Williams’TEX and

LATEX Cataloguewhich is available fromCTAN ashelp/Catalogue/catalogue.html
biblio bibliography-related files, such as BIBTEX.
digests back issues of TEX-related periodicals
dviware contains the variousdvi -to-whatever filters and drivers
fonts fonts, both sources and pre-compiled
graphics utilities and macros related to graphics
help overviews of the archive and the TEX system
info files and tutorials which document various aspects of TEX
indexing utilities and related files for indexing
language material for typesetting non-English documents
macros macros packages for TEX and style files
support programs which can be used in support of TEX

reprinted from Baskerville Volume 7, Number 1

	Editorial
	The Future of Document Formatting (Working Paper)
	Abstract
	Introduction
	Requirements
	Editability
	Extensibility
	Generality
	Optimality

	Conclusion
	Acknowledgements
	Standard DTDs and scientific publishing
	Abstract
	Introduction
	Scientific publishing
	Encoding of mathematical formulas
	Characteristics of mathematical notation
	Who performs the markup of math?
	Feasibility of S-type notation
	Some problems with existing languages

	Re-using mathematical formulas
	Related problems
	Conclusions
	A LaTeX Tour, part 3: mfnfss, psnfss and babel
	Introduction
	The MFNFSS Distribution
	Font Packages
	T1 Encoded `Concrete' Fonts

	The PSNFSS Distribution
	PSFONTS
	Standard PSNFSS Packages
	Freely Available Type 1 Text Fonts
	Commercial Text Fonts
	Adobe Lucida
	Lucida Bright
	MathTime
	Documentation and Other Files
	PSNFSSX

	The Babel Distribution
	Babel Kernel
	Language-Specific Files
	Compatibility Files
	Installation Script and Font Descriptor Files
	Documentation
	Example File

	Coming Soon
	A tutorial on using MetaPost's graph package
	Introduction
	Getting started
	Variations in basic graphing
	The UK TeX Users' Group

