
Linux IPv6 HOWTO

Peter Bieringer

 pb (at) bieringer.de

Revision History

Revision Release 0.31 2002−09−29 Revised by: PB

See revision history for more

Revision Release 0.30 2002−09−27 Revised by: PB

See revision history for more

Revision Release 0.29 2002−09−18 Revised by: PB

See revision history for more

The goal of the Linux IPv6 HOWTO is to answer both basic and advanced questions about IPv6 on the Linux
operating system. This HOWTO will provide the reader with enough information to install, configure, and use
IPv6 applications on Linux machines.

Table of Contents
Chapter 1. General..1

1.1. Copyright, license and others..1
1.1.1. Copyright...1
1.1.2. License...1
1.1.3. About the author..1

1.2. Category..2
1.3. Version, History and To−Do..2

1.3.1. Version..2
1.3.2. History...2
1.3.3. To−Do...2

1.4. Translations...2
1.4.1. To German...2
1.4.2. To other languages..2

1.5. Technical...3
1.5.1. Original source of this HOWTO...3
1.5.2. On−line references to the HTML version of this HOWTO (linking/anchors)........................3

1.6. Preface...4
1.6.1. How many versions of a Linux & IPv6 related HOWTO are floating around?......................4

1.7. Used terms..4
1.7.1. Network related...4
1.7.2. Document related..5

1.8. Requirements for using this HOWTO..5
1.8.1. Personal prerequisites..5
1.8.2. Linux operating system compatible hardware...6

Chapter 2. Basics...7
2.1. What is IPv6?..7
2.2. History of IPv6 in Linux...7

2.2.1. Beginning..7
2.2.2. In between...7
2.2.3. Current...8
2.2.4. Future...8

2.3. How do IPv6 addresses look like?..8
2.4. FAQ (Basics)..9

2.4.1. Why is the name IPv6 and not IPv5 as successor for IPv4?...9
2.4.2. IPv6 addresses: why such a high number of bits?...9
2.4.3. IPv6 addresses: why so small a number of bits on a new design?..9

Chapter 3. Address types...11
3.1. Addresses without a special prefix...11

3.1.1. Localhost address..11
3.1.2. Unspecified address...11
3.1.3. IPv6 address with embedded IPv4 address...12

3.2. Network part, also known as prefix..12
3.2.1. Link local address type..12
3.2.2. Site local address type...13
3.2.3. Global address type "(Aggregatable) global unicast"...13
3.2.4. Multicast addresses..14

Linux IPv6 HOWTO

i

Table of Contents
Chapter 3. Address types

3.2.5. Anycast addresses...15
3.3. Address types (host part)..16

3.3.1. Automatically computed (also known as stateless)...16
3.3.2. Manually set..17

3.4. Prefix lengths for routing..17
3.4.1. Prefix lengths (also known as "netmasks")...17
3.4.2. Matching a route..18

Chapter 4. IPv6−ready system check..19
4.1. IPv6−ready kernel...19

4.1.1. Check for IPv6 support in the current running kernel...19
4.1.2. Try to load IPv6 module..19
4.1.3. Compile kernel with IPv6 capabilities..20
4.1.4. IPv6−ready network devices...20

4.2. IPv6−ready network configuration tools..21
4.2.1. net−tools package..21
4.2.2. iproute package..21

4.3. IPv6−ready test/debug programs..22
4.3.1. IPv6 ping...22
4.3.2. IPv6 traceroute6..23
4.3.3. IPv6 tracepath6..23
4.3.4. IPv6 tcpdump..23

4.4. IPv6−ready programs..24
4.5. IPv6−ready client programs (selection)..24

4.5.1. Checking DNS for resolving IPv6 addresses..25
4.5.2. IPv6−ready telnet clients...25
4.5.3. IPv6−ready ssh clients...25
4.5.4. IPv6−ready web browsers...26

4.6. IPv6−ready server programs...26
4.7. FAQ (IPv6−ready system check)..26

4.7.1. Using tools...26

Chapter 5. Configuring interfaces...28
5.1. Different network devices...28

5.1.1. Physically bounded..28
5.1.2. Virtually bounded..28

5.2. Bringing interfaces up/down...29
5.2.1. Using "ip"..29
5.2.2. Using "ifconfig"..29

Chapter 6. Configuring IPv6 addresses..30
6.1. Displaying existing IPv6 addresses..30

6.1.1. Using "ip"..30
6.1.2. Using "ifconfig"..30

6.2. Add an IPv6 address...31
6.2.1. Using "ip"..31
6.2.2. Using "ifconfig"..31

Linux IPv6 HOWTO

ii

Table of Contents
Chapter 6. Configuring IPv6 addresses

6.3. Removing an IPv6 address..31
6.3.1. Using "ip"..31
6.3.2. Using "ifconfig"..31

Chapter 7. Configuring normal IPv6 routes..33
7.1. Displaying existing IPv6 routes..33

7.1.1. Using "ip"..33
7.1.2. Using "route"...33

7.2. Add an IPv6 route through a gateway...33
7.2.1. Using "ip"..34
7.2.2. Using "route"...34

7.3. Removing an IPv6 route through a gateway...34
7.3.1. Using "ip"..34
7.3.2. Using "route"...34

7.4. Add an IPv6 route through an interface..35
7.4.1. Using "ip"..35
7.4.2. Using "route"...35

7.5. Removing an IPv6 route through an interface..35
7.5.1. Using "ip"..35
7.5.2. Using "route"...35

7.6. FAQ for IPv6 routes..36
7.6.1. Support of an IPv6 default route...36

Chapter 8. Neighbor Discovery...37
8.1. Displaying neighbors using "ip"...37
8.2. Manipulating neighbors table using "ip"..37

8.2.1. Manually add an entry...37
8.2.2. Manually delete an entry...37
8.2.3. More advanced settings...37

Chapter 9. Configuring IPv6−in−IPv4 tunnels..39
9.1. Types of tunnels..39

9.1.1. Static point−to−point tunneling: 6bone...39
9.1.2. Automatically tunneling..39
9.1.3. 6to4−Tunneling...39

9.2. Displaying existing tunnels...40
9.2.1. Using "ip"..40
9.2.2. Using "route"...40

9.3. Setup of point−to−point tunnel...41
9.3.1. Add point−to−point tunnels..41
9.3.2. Removing point−to−point tunnels...42
9.3.3. Numbered point−to−point tunnels..43

9.4. Setup of 6to4 tunnels..43
9.4.1. Add a 6to4 tunnel..43
9.4.2. Remove a 6to4 tunnel..44

Linux IPv6 HOWTO

iii

Table of Contents
Chapter 10. Configuring IPv4−in−IPv6 tunnels..46

Chapter 11. Kernel settings in /proc−filesystem..47
11.1. How to access the /proc−filesystem..47

11.1.1. Using "cat" and "echo"..47
11.1.2. Using "sysctl"..47
11.1.3. Values found in /proc−filesystems..48

11.2. Entries in /proc/sys/net/ipv6/..48
11.2.1. conf/default/*...48
11.2.2. conf/all/*..48
11.2.3. conf/interface/*..49
11.2.4. neigh/default/*...51
11.2.5. neigh/interface/*..52
11.2.6. route/*..54

11.3. IPv6−related entries in /proc/sys/net/ipv4/...55
11.3.1. ip_*..55
11.3.2. tcp_*..55
11.3.3. icmp_*...55
11.3.4. others...55

11.4. IPv6−related entries in /proc/net/..56
11.4.1. if_inet6...56
11.4.2. ipv6_route..56
11.4.3. sockstat6..57
11.4.4. tcp6..57
11.4.5. udp6...57
11.4.6. igmp6...57
11.4.7. raw6...57
11.4.8. ip6_flowlabel...57
11.4.9. rt6_stats...57
11.4.10. snmp6..57
11.4.11. ip6_tables_names..58

Chapter 12. Netlink−Interface to kernel...59

Chapter 13. Network debugging..60
13.1. Server socket binding..60

13.1.1. Using "netstat" for server socket binding check...60
13.2. Examples for tcpdump packet dumps...61

13.2.1. Router discovery..61
13.2.2. Neighbor discovery...62

Chapter 14. Support for persistent IPv6 configuration in Linux distributions..63
14.1. Red Hat Linux and "clones"...63

14.1.1. Test for IPv6 support of network configuration scripts..63
14.1.2. Short hint for enabling IPv6 on current RHL 7.1, 7.2, 7.3, ..64

14.2. SuSE Linux...64
14.2.1. Further information...64

14.3. Debian Linux..64

Linux IPv6 HOWTO

iv

Table of Contents
Chapter 14. Support for persistent IPv6 configuration in Linux distributions

14.3.1. Further information...64

Chapter 15. Auto−configuration and mobility...65
15.1. Stateless auto−configuration...65
15.2. Stateful auto−configuration using Router Advertisement Daemon (radvd).................................65
15.3. Dynamic Host Configuration Protocol v6 (DHCPv6)..65
15.4. Mobility..65

Chapter 16. Firewalling..66
16.1. Firewalling using netfilter6...66

16.1.1. More information..66
16.2. Preparation..66

16.2.1. Get sources..66
16.2.2. Extract sources..66
16.2.3. Apply latest iptables/IPv6−related patches to kernel source...67
16.2.4. Configure, build and install new kernel..67
16.2.5. Rebuild and install binaries of iptables...68

16.3. Usage...69
16.3.1. Check for support..69
16.3.2. Learn how to use ip6tables..69
16.3.3. Demonstration example...71

Chapter 17. Security...74
17.1. Node security..74
17.2. Access limitations...74
17.3. IPv6 security auditing...74

17.3.1. Legal issues...74
17.3.2. Security auditing using IPv6−enabled netcat..74
17.3.3. Security auditing using IPv6−enabled nmap...74
17.3.4. Security auditing using IPv6−enabled strobe..75
17.3.5. Audit results..75

Chapter 18. Encryption and Authentication..76
18.1. Support in kernel...76

18.1.1. Support in vanilla Linux kernel...76
18.1.2. Support in USAGI kernel..76

18.2. Usage...76

Chapter 19. Quality of Service (QoS)..77

Chapter 20. Hints for IPv6−enabled daemons...78
20.1. Berkeley Internet Name Daemon BIND (named)..78

20.1.1. Listening on IPv6 addresses..78
20.1.2. IPv6 enabled Access Control Lists (ACL)..79
20.1.3. Sending queries with dedicated IPv6 address...79
20.1.4. Per zone defined dedicated IPv6 addresses...79
20.1.5. Serving IPv6 related DNS data...80

Linux IPv6 HOWTO

v

Table of Contents
Chapter 20. Hints for IPv6−enabled daemons

20.1.6. Checking IPv6−enabled connect..80
20.2. Internet super daemon (xinetd)...81
20.3. Webserver Apache2 (httpd2)..82

20.3.1. Listening on IPv6 addresses..82
20.4. Router Advertisement Daemon (radvd)..82

20.4.1. Configuring radvd...83
20.4.2. Debugging...84

20.5. tcp_wrapper...84
20.5.1. Filtering capabilities..84
20.5.2. Which program uses tcp_wrapper...84
20.5.3. Usage...85
20.5.4. Logging...85

Chapter 21. Programming (using API)...87

Chapter 22. Interoperability ..88

Chapter 23. Further information and URLs..89
23.1. Paper printed books, articles, online reviews (mixed)..89

23.1.1. German language...89
23.1.2. Articles, Books, Online Reviews (mixed)...89
23.1.3. Others..89

23.2. Online information..89
23.2.1. Join the IPv6 backbone..89
23.2.2. Latest news..90
23.2.3. Protocol references..91
23.2.4. Statistics...91
23.2.5. More information..91
23.2.6. By countries...92
23.2.7. By operating systems...93
23.2.8. Application lists...94

23.3. Online test tools..94
23.4. Maillists..94

Chapter 24. Revision history / Credits / The End..96
24.1. Revision history..96

24.1.1. Releases 0.x...96
24.2. Credits...98

24.2.1. Major credits..98
24.2.2. Other credits..98

24.3. The End...98

Linux IPv6 HOWTO

vi

Chapter 1. General

1.1. Copyright, license and others

1.1.1. Copyright

Written and Copyright (C) 2001−2002 by Peter Bieringer

1.1.2. License

This Linux IPv6 HOWTO is published under GNU GPL version 2:

The Linux IPv6 HOWTO, a guide how to configure and use IPv6 on Linux systems.

Copyright (C) 2001−2002 Peter Bieringer

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111−1307, USA.

1.1.3. About the author

1.1.3.1. Internet/IPv6 history of the author

1993: I got in contact with the Internet using console based e−mail and news client (e.g. look for
"e91abier" on groups.google.com, that's me).

•

1996: I got a request for designing a course on IPv6, including a workshop with the Linux operating
system.

•

1997: Started writing a guide on how to install, configure and use IPv6 on Linux systems, called IPv6
& Linux − HowTo (see IPv6 & Linux − HowTo/History for more information).

•

2001: Started writing this new Linux IPv6 HOWTO.•

1.1.3.2. Contact

The author can be contacted via e−mail at <pb at bieringer dot de> and also via his homepage.

He's currently living in Munich [northern part of Schwabing] / Bavaria / Germany (south) / Europe (middle) /
Earth (surface/mainland).

Chapter 1. General 1

http://groups.google.com/
http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-0.html#history
http://www.bieringer.de/pb/

1.2. Category

This HOWTO should be listed in category "Networking/Protocols".

1.3. Version, History and To−Do

1.3.1. Version

The current version is shown above.

1.3.2. History

1.3.2.1. Major history

2001−11−30: Starting to design new HOWTO.

2002−01−02: A lot of content completed, first public release of chapter 1 (version 0.10).

2002−01−14: More completed, some reviews, public release of the whole document (version 0.14).

2002−08−16: Polish translation is in progress

1.3.2.2. Full history

See revision history at the end of this document.

1.3.3. To−Do

Fill in missing content•
Finishing grammar checking•

1.4. Translations

Translations always have to contain the URL, version number and copyright of the original document (but
yours, too).

1.4.1. To German

A German translation is planned by me (German is my native language), but it won't happen until the
document's change frequency is less than once per month, and I get enough free time to do it. If you have
more free time than me, please feel free to take over the translation!

1.4.2. To other languages

Normally, please wait until the document's change frequency is less than once per month. Since version 0.27
it looks like that most of the content is written.

Linux IPv6 HOWTO

Chapter 1. General 2

1.4.2.1. Polish translation

Since 2002−08−16 a Polish translation was started and is still in progress by Lukasz Jokiel <Lukasz dot Jokiel
at klonex dot com dot pl>. Taken source: CVS−version 1.29 of LyX file, which was source for howto version
0.27.

1.5. Technical

1.5.1. Original source of this HOWTO

This HOWTO is currently written with LyX version 1.2.0 on a Red Hat Linux 7.3 system with template
SGML (DocBook book). It's available on TLDP−CVS / users / Peter−Bieringer for contribution.

1.5.1.1. Code line wrapping

Code line wrapping is done using selfmade utility "lyxcodelinewrapper.pl", you can get it from CVS for your
own usage: TLDP−CVS / users / Peter−Bieringer

1.5.1.2. SGML generation

SGML is generated using export function in LyX.

Also some fixes are have to be made to create proper SGML code (see also here for the Perl programs
TLDP−CVS / users / Peter−Bieringer):

Export of LyX table does not create proper "colspan" tags − tool for fixing: "sgmllyxtabletagfix.pl"
(fixed since LyX 1.2.0)

•

LyX sometimes uses special left/right entities for quotes instead the normal one, which will still exist
in generated HTML. Some browsers don't parse this very well (known: Opera 6 TP 2 or Konqueror) −
tool for fixing: "sgmllyxquotefix.pl"

•

1.5.2. On−line references to the HTML version of this HOWTO
(linking/anchors)

1.5.2.1. Master index page

Generally, a reference to the master index page is recommended.

1.5.2.2. Dedicated pages

Because the HTML pages are generated out of the SGML file, the HTML filenames turn out to be quite
random. However, some pages are tagged in LyX, resulting in static names. These tags are useful for
references and shouldn't be changed in the future.

If you think that I have forgotten a tag, please let me know, and I will add it.

Linux IPv6 HOWTO

Chapter 1. General 3

http://cvsview.tldp.org/index.cgi/LDP/users/Peter-Bieringer/
http://cvsview.tldp.org/index.cgi/LDP/users/
http://cvsview.tldp.org/index.cgi/LDP/users/Peter-Bieringer/

1.6. Preface

Some things first:

1.6.1. How many versions of a Linux & IPv6 related HOWTO are floating
around?

Including this, there are three (3) HOWTO documents available. Apologies, if that is too many ;−)

1.6.1.1. Linux IPv6 FAQ/HOWTO (outdated)

The first IPv6 related document was written by Eric Osborne and called Linux IPv6 FAQ/HOWTO (please
use it only for historical issues). Latest version was 3.2.1 released 14. July 1997.

Please help: if someone knows the date of birth of this HOWTO, please send me an e−mail (information will
be needed in "history").

1.6.1.2. IPv6 & Linux − HowTo (maintained)

There exists a second version called IPv6 & Linux − HowTo written by me (Peter Bieringer) in pure HTML.
It was born April 1997 and the first English version was published in June 1997. I will continue to maintain it,
but it will slowly fade in favour of the Linux IPv6 HOWTO you are currently reading.

1.6.1.3. Linux IPv6 HOWTO (this document)

Because the IPv6 & Linux − HowTo is written in pure HTML it's not really compatible with the The Linux
Documentation Project (TLDP). I (Peter Bieringer) got a request in late November 2001 to rewrite the IPv6 &
Linux − HowTo in SGML. However, because of the discontinuation of that HOWTO (Future of IPv6 & Linux
− HowTo), and as IPv6 is becoming more and more standard, I decided to write a new document covering
basic and advanced issues which will remain important over the next few years. Dynamic content will be still
found further on in the second HOWTO (IPv6 & Linux − HowTo).

1.7. Used terms

1.7.1. Network related

Link
A link is a layer 2 network packet transport medium, examples are Ethernet, Token Ring, PPP, SLIP,
ATM, ISDN, Frame Relay,...

Node
A node is a host or a router.

Host
Generally a single homed host on a link. Normally it has only one active network interface, e.g.
Ethernet or (not and) PPP.

Dual homed host
A dual homed host is a node with two network (physical or virtual) interfaces on two different links,
but does not forward any packets between the interfaces.

Router

Linux IPv6 HOWTO

Chapter 1. General 4

http://www.linuxhq.com/IPv6/
http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/
http://www.tldp.org/
http://www.tldp.org/
http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-0.html#history
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-0.html#history
http://www.bieringer.de/linux/IPv6/

A router is a node with two or more network (physical or virtual) interfaces, capable of forwarding
packets between the interfaces.

Tunnel
A tunnel is typically a point−to−point connection over which packets are exchanged which carry the
data of another protocol, e.g. an IPv6−in−IPv4 tunnel.

NIC
Network Interface Card

1.7.2. Document related

1.7.2.1. Long code line wrapping signal char

The special character "¬" is used for signaling that this code line is wrapped for better viewing in PDF and PS
files.

1.7.2.2. Placeholders

In generic examples you will sometimes find the following:

<myipaddress>

For real use on your system command line or in scripts this has to be replaced with relevant content (removing
the < and > of course), the result would be e.g.

1.2.3.4

1.7.2.3. Commands in the shell

Commands executable as non−root user begin with $, e.g.

$ whoami

Commands executable as root user begin with #, e.g.

whoami

1.8. Requirements for using this HOWTO

1.8.1. Personal prerequisites

1.8.1.1. Experience with Unix tools

You should be familiar with the major Unix tools e.g. grep, awk, find, ... , and know about their most
commonly used command−line options.

Linux IPv6 HOWTO

Chapter 1. General 5

1.8.1.2. Experience with networking theory

You should know about layers, protocols, addresses, cables, plugs, etc. If you are new to this field, here is one
good starting point for you: linuxports/howto/intro_to_networking

1.8.1.3. Experience with IPv4 configuration

You should definitely have some experience in IPv4 configuration, otherwise it will be hard for you to
understand what is really going on.

1.8.1.4. Experience with the Domain Name System (DNS)

Also you should understand what the Domain Name System (DNS) is, what it provides and how to use it.

1.8.1.5. Experience with network debugging strategies

You should at least understand how to use tcpdump and what it can show you. Otherwise, network debugging
will very difficult for you.

1.8.2. Linux operating system compatible hardware

Surely you wish to experiment with real hardware, and not only read this HOWTO to fall asleep here and
there. :)

Linux IPv6 HOWTO

Chapter 1. General 6

http://www.linuxports.com/howto/intro_to_networking/

Chapter 2. Basics

2.1. What is IPv6?

IPv6 is a new layer 3 transport protocol (see linuxports/howto/intro_to_networking/ISO − OSI Model) which
will supersede IPv4 (also known as IP). IPv4 was designed long time ago (RFC 760 from January 1980) and
since its inception, there have been many requests for more addresses and enhanced capabilities. Major
changes in IPv6 are the redesign of the header, including the increase of address size from 32 bits to 128 bits.
Because layer 3 is responsible for end−to−end packet transport using packet routing based on addresses, it
must include the new IPv6 addresses (source and destination), like IPv4.

For more information about the IPv6 history take a look at older IPv6 related RFCs listed e.g. at SWITCH
IPv6 Pilot / References.

2.2. History of IPv6 in Linux

To−do: better time−line, more content...

2.2.1. Beginning

The first IPv6 related network code was added to the Linux kernel 2.1.8 in November 1996 by Pedro Roque.
It was based on the BSD API:

diff −u −−recursive −−new−file v2.1.7/linux/include/linux/in6.h
¬ linux/include/linux/in6.h
−−− v2.1.7/linux/include/linux/in6.h Thu Jan 1 02:00:00 1970
+++ linux/include/linux/in6.h Sun Nov 3 11:04:42 1996
@@ −0,0 +1,99 @@
+/*
+ * Types and definitions for AF_INET6
+ * Linux INET6 implementation
+ * + * Authors:
+ * Pedro Roque <******>
+ *
+ * Source:
+ * IPv6 Program Interfaces for BSD Systems
+ * <draft−ietf−ipngwg−bsd−api−05.txt>

The shown lines were copied from patch−2.1.8 (e−mail address was blanked on copy&paste).

2.2.2. In between

Because of lack of manpower, the IPv6 implementation in the kernel was unable to follow the discussed drafts
or newly released RFCs. In October 2000, a project was started in Japan, called USAGI, whose aim was to
implement all missing, or outdated IPv6 support in Linux. It tracks the current IPv6 implementation in
FreeBSD made by the KAME project. From time to time they create snapshots against current vanilla Linux
kernel sources.

Chapter 2. Basics 7

http://www.linuxports.com/howto/intro_to_networking/c4412.htm#PAGE103HTML
http://rfc.net/rfc760.html
http://www.switch.ch/lan/ipv6/references.html
http://www.switch.ch/lan/ipv6/references.html
http://www.linux-ipv6.org/
http://www.kame.net/

2.2.3. Current

Unfortunately, the USAGI patch is so big, that current Linux networking maintainers are unable to include it
in the production source of the Linux kernel 2.4.x series. Therefore the 2.4.x series is missing some (many)
extensions and also does not confirm to all current drafts and RFCs. This can cause some interoperability
problems with other operating systems.

2.2.4. Future

USAGI is now making use of the new Linux kernel development series 2.5.x to insert all of their current
extensions into this development release. Hopefully the 2.6.x kernel series will contain a true and up−to−date
IPv6 implementation.

2.3. How do IPv6 addresses look like?

As previously mentioned, IPv6 addresses are 128 bits long. This number of bits generates very high decimal
numbers with up to 39 digits:

2^128−1: 340282366920938463463374607431768211455

Such numbers are not really addresses that can be memorized. Also the IPv6 address schema is bitwise
orientated (just like IPv4, but that's not often recognized). Therefore a better notation of such big numbers is
hexadecimal. In hexadecimal, 4 bits (also known as "nibble") are represented by a digit or character from 0−9
and a−f (10−15). This format reduces the length of the IPv6 address to 32 characters.

2^128−1: 0xffffffffffffffffffffffffffffffff

This representation is still not very convenient (possible mix−up or loss of single hexadecimal digits), so the
designers of IPv6 chose a hexadecimal format with a colon as separator after each block of 16 bits. In
addition, the leading "0x" (a signifier for hexadecimal values used in programming languages) is removed:

2^128−1: ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

A usable address (see address types later) is e.g.:

3ffe:ffff:0100:f101:0210:a4ff:fee3:9566

For simplifications, leading zeros of each 16 bit block can be omitted:

3ffe:ffff:0100:f101:0210:a4ff:fee3:9566 −>
¬ 3ffe:ffff:100:f101:210:a4ff:fee3:9566

One sequence of 16 bit blocks containing only zeroes can be replaced with "::". But not more than one at a
time, otherwise it is no longer a unique representation.

3ffe:ffff:100:f101:0:0:0:1 −> 3ffe:ffff:100:f101::1

The biggest reduction is seen by the IPv6 localhost address:

Linux IPv6 HOWTO

Chapter 2. Basics 8

http://www.linux-ipv6.org/
http://www.linux-ipv6.org/

0000:0000:0000:0000:0000:0000:0000:0001 −> ::1

There is also a so−called compact (base85 coded) representation defined RFC 1924 / A Compact
Representation of IPv6 Addresses (written 1996), never seen in the wild, but here is an example:

ipv6calc −−addr_to_base85 3ffe:ffff:0100:f101:0210:a4ff:fee3:9566
Itu&−ZQ82s>J%s99FJXT

Info: ipv6calc is an IPv6 address format calculator and converter program and can be found
here: ipv6calc

2.4. FAQ (Basics)

2.4.1. Why is the name IPv6 and not IPv5 as successor for IPv4?

On any IP header, the first 4 bits are reserved for protocol version. So theoretically a protocol number between
0 and 15 is possible:

4: is already used for IPv4•
5: is reserved for the Stream Protocol (STP, RFC 1819) (which never really made it to the public)•

The next free number was 6. Hence IPv6 was born!

2.4.2. IPv6 addresses: why such a high number of bits?

During the design of IPv4, people thought that 32 bits were enough for the world. Looking back into the past,
32 bits were enough until now and will perhaps be enough for another few years. However, 32 bits are not
enough to provide each network device with a global address in the future. Think about mobile phones, cars
(including electronic devices on its CAN−bus), toasters, refrigerators, light switches, and so on...

So designers have chosen 128 bits, 4 times more in length and 2^96 greater in size than in IPv4 today.

The usable size is smaller than it may appear however. This is because in the currently defined address
schema, 64 bits are used for interface identifiers. The other 64 bits are used for routing. Assuming the current
strict levels of aggregation (/48, /35, ...), it is still possible to "run out" of space, but hopefully not in the near
future.

2.4.3. IPv6 addresses: why so small a number of bits on a new design?

While, there are (possibly) some people on the Internet who are thinking about IPv8 and IPv16, their design is
far away from acceptance and implementation. In the meantime 128 bits was the best choice regarding header
overhead and data transport. Consider the minimum Maximum Transfer Unit (MTU) in IPv4 (576 octets) and
in IPv6 (1280 octets), the header length in IPv4 is 20 octets (minimum, can increase to 60 octets with IPv4
options) and in IPv6 is 48 octets (fixed). This is 3.4 % of MTU in IPv4 and 3.8 % of MTU in IPv6. This
means the header overhead is almost equal. More bits for addresses would require bigger headers and
therefore more overhead. Also, consider the maximum MTU on normal links (like Ethernet today): it's 1500
octets (in special cases: 9k octets using Jumbo frames). Ultimately, it wouldn't be a proper design if 10 % or
20 % of transported data in a Layer−3 packet were used for addresses and not for payload.

Linux IPv6 HOWTO

Chapter 2. Basics 9

http://rfc.net/rfc1924.html
http://rfc.net/rfc1924.html
http://www.bieringer.de/linux/IPv6/ipv6calc/
http://rfc.net/rfc1819.html

Linux IPv6 HOWTO

Chapter 2. Basics 10

Chapter 3. Address types
Like IPv4, IPv6 addresses can be split into network and host parts using subnet masks.

IPv4 has shown that sometimes it would be nice, if more than one IP address can be assigned to an interface,
each for a different purpose (aliases, multi−cast). To remain extensible in the future, IPv6 is going further and
allows more than one IPv6 address to be assigned to an interface. There is currently no limit defined by an
RFC, only in the implementation of the IPv6 stack (to prevent DoS attacks).

Using this large number of bits for addresses, IPv6 defines address types based on some leading bits, which
are hopefully never going to be broken in the future (unlike IPv4 today and the history of class A, B, and C).

Also the number of bits are separated into a network part (upper 64 bits) and a host part (lower 64 bits), to
facilitate auto−configuration. BTW: a good URL for displaying a given IPv6 address in detail is the Advanced
Network Management Laboratory / IPv6 Address Oracle.

3.1. Addresses without a special prefix

3.1.1. Localhost address

This is a special address for the loopback interface, similiar to IPv4 with its "127.0.0.1". With IPv6, the
localhost address is:

0000:0000:0000:0000:0000:0000:0000:0001

or compressed:

::1

Packets with this address as source or destination should never leave the sending host.

3.1.2. Unspecified address

This is a special address like "any" or "0.0.0.0" in IPv4 . For IPv6 it's:

0000:0000:0000:0000:0000:0000:0000:0000

or:

::

These addresses are mostly used/seen in socket binding (to any IPv6 address) or routing tables.

Note: the unspecified address cannot be used as destination address.

Chapter 3. Address types 11

http://steinbeck.ucs.indiana.edu:47401/
http://steinbeck.ucs.indiana.edu:47401/

3.1.3. IPv6 address with embedded IPv4 address

There are two addresses which contain an IPv4 address.

3.1.3.1. IPv4−mapped IPv6 address

IPv4−only IPv6−compatible addresses are sometimes used/shown for sockets created by an IPv6−enabled
daemon, but only binding to an IPv4 address.

These addresses are defined with a special prefix of length 96 (a.b.c.d is the IPv4 address):

0:0:0:0:0:ffff:a.b.c.d/96

or in compressed format

::ffff:a.b.c.d/96

For example, the IPv4 address 1.2.3.4 looks like this:

::ffff:1.2.3.4

3.1.3.2. IPv4−compatible IPv6 address

Also for sockets, in this case it is for a dual purpose and looks like:

0:0:0:0:0:0:a.b.c.d/96

or in compressed format

::a.b.c.d/96

These addresses are also used by automatic tunneling, which is being replaced by 6to4 tunneling.

3.2. Network part, also known as prefix

Designers defined some address types and left a lot of scope for future definitions as currently unknown
requirements arise. RFC 2373 [July 1998] / IP Version 6 Addressing Architecture defines the current
addressing scheme but there is already a new draft available: draft−ietf−ipngwg−addr−arch−*.txt.

Now lets take a look at the different types of prefixes (and therefore address types):

3.2.1. Link local address type

These are special addresses which will only be valid on a link of an interface. Using this address as destination
the packet would never pass through a router. It's used for link communications such as:

anyone else here on this link?•
anyone here with a special address (e.g. looking for a router)?•

Linux IPv6 HOWTO

Chapter 3. Address types 12

http://rfc.net/rfc2373.html
ftp://ftp.ietf.org/internet-drafts/

They begin with (where "x" is any hex character, normally "0")

fe8x: <− currently the only one in use.
fe9x:
feax:
febx:

An address with this prefix is found on each IPv6−enabled interface after stateless auto−configuration (which
is normally always the case).

Note: only fe80 is currently in use.

3.2.2. Site local address type

These are addresses similar to the RFC 1918 / Address Allocation for Private Internets in IPv4 today, with the
added advantage that everyone who use this address type has the capability to use the given 16 bits for a
maximum number of 65536 subnets. Comparable with the 10.0.0.0/8 in IPv4 today.

Another advantage: because it's possible to assign more than one address to an interface with IPv6, you can
also assign such a site local address in addition to a global one.

It begins with:

fecx: <− most commonly used.
fedx:
feex:
fefx:

(where "x" is any hex character, normally "0")

3.2.3. Global address type "(Aggregatable) global unicast"

Today, there is one global address type defined (the first design, called "provider based," was thrown away
some years ago RFC 1884 / IP Version 6 Addressing Architecture [obsolete], you will find some remains in
older Linux kernel sources).

It begins with (x are hex characters)

2xxx:
3xxx:

Note: the prefix "aggregatable" is thrown away in current drafts. There are some further subtypes defined, see
below:

3.2.3.1. 6bone test addresses

These were the first global addresses which were defined and in use. They all start with

3ffe:

Example:

Linux IPv6 HOWTO

Chapter 3. Address types 13

http://rfc.net/rfc1918.html
http://rfc.net/rfc1884.html

3ffe:ffff:100:f102::1

A special 6bone test address which will be never be globally unique begins with

3ffe:ffff:

and is mostly shown in examples, because if real addresses are shown, its possible for someone to do a copy
& paste to their configuration files. Thus inadvertently causing duplicates on a globally unique address. This
would cause serious problems for the original host (e.g. getting answer packets for request that were never
sent). You can still apply for one of these prefixes, see here How to join 6bone. Also some tunnel brokers still
distribute 6bone test address prefixes.

3.2.3.2. 6to4 addresses

These addresses, designed for a special tunneling mechanism [RFC 3056 / Connection of IPv6 Domains via
IPv4 Clouds and RFC 2893 / Transition Mechanisms for IPv6 Hosts and Routers], encode a given IPv4
address and a possible subnet and begin with

2002:

For example, representing 192.168.1.1/5:

2002:c0a8:0101:5::1

A small shell command line can help you generating such address out of a given IPv4 one:

ipv4="1.2.3.4"; sla="5"; printf "2002:%02x%02x:%02x%02x:%04x::1" `echo $ipv4 | tr "." " "` $sla

See also tunneling using 6to4 and information about 6to4 relay routers.

3.2.3.3. Assigned by provider for hierarchical routing

These addresses are delegated to Internet service providers (ISP) and begin with

2001:

Prefixes to major (backbone owning) ISPs are delegated by local registries and currently they assign to them a
prefix with length 35.

Major ISPs normally delegate to minor ISPs a prefix with length 48.

3.2.4. Multicast addresses

Multicast addresses are used for related services.

They alway start with (xx is the scope value)

ffxy:

They are split into scopes and types:

Linux IPv6 HOWTO

Chapter 3. Address types 14

http://www.6bone.net/6bone_hookup.html
http://rfc.net/rfc3056.html
http://rfc.net/rfc3056.html
http://rfc.net/rfc2893.html

3.2.4.1. Multicast scopes

Multicast scope is a parameter to specify the maximum distance a multicast packet can travel from the
sending entity.

Currently, the following regions (scopes) are defined:

ffx1: node−local, packets never leave the node.•
ffx2: link−local, packets are never forwarded by routers, so they never leave the specified link.•
ffx5: site−local, packets never leave the site.•
ffx8: organization−local, packets never leave the organization (not so easy to implement, must be
covered by routing protocol).

•

ffxe: global scope.•
others are reserved•

3.2.4.2. Multicast types

There are many types already defined/reserved (see RFC 2373 / IP Version 6 Addressing Architecture for
details). Some examples are:

All Nodes Address: ID = 1h, addresses all hosts on the local node (ff01:0:0:0:0:0:0:1) or the
connected link (ff02:0:0:0:0:0:0:1).

•

All Routers Address: ID = 2h, addresses all routers on the local node (ff01:0:0:0:0:0:0:2), on the
connected link (ff02:0:0:0:0:0:0:2), or on the local site (ff05:0:0:0:0:0:0:2)

•

3.2.4.3. Solicited node link−local multicast address

Special multicast address used as destination address in neighborhood discovery, because unlike in IPv4, ARP
no longer exists in IPv6.

An example of this address looks like

ff02::1:ff00:1234

Used prefix shows that this is a link−local multicast address. The suffix is generated from the destination
address. In this example, a packet should be sent to address "fe80::1234", but the network stack doesn't know
the current layer 2 MAC address. It replaces the upper 104 bits with "ff02:0:0:0:0:1:ff00::/104" and leaves the
lower 24 bits untouched. This address is now used `on−link' to find the corresponding node which has to send
a reply containing its layer 2 MAC address.

3.2.5. Anycast addresses

Anycast addresses are special addresses and are used to cover things like nearest DNS server, nearest DHCP
server, or similar dynamic groups. Addresses are taken out of the unicast address space (aggregatable global
or site−local at the moment). The anycast mechanism (client view) will be handled by dynamic routing
protocols.

Note: Anycast addresses cannot be used as source addresses, they are only used as destination addresses.

Linux IPv6 HOWTO

Chapter 3. Address types 15

http://rfc.net/rfc2373.html

3.2.5.1. Subnet−router anycast address

A simple example for an anycast addresses is the subnet−router anycast address. Assuming that a node has the
following global assigned IPv6 address:

3ffe:ffff:100:f101:210:a4ff:fee3:9566/64 <− Node's address

The subnet−router anycast address will be created blanking the suffix (least significant 64 bits) completely:

3ffe:ffff:100:f101::/64 <− subnet−router anycast address

3.3. Address types (host part)

For auto−configuration and mobility issues, it was decided to use the lower 64 bits as host part of the address
in most of the current address types. Therefore each single subnet can hold a large amount of addresses.

This host part can be inspected differently:

3.3.1. Automatically computed (also known as stateless)

With auto−configuration, the host part of the address is computed by converting the MAC address of an
interface (if available), with the EUI−64 method, to a unique IPv6 address. If no MAC address is available
(happens e.g. on virtual devices), something else (like the IPv4 addresses or the MAC address of a physical
interface) is used instead.

Consider again the first example

3ffe:ffff:100:f101:210:a4ff:fee3:9566

here,

210:a4ff:fee3:9566

is the host part and computed from the NIC's MAC address

00:10:A4:E3:95:66

using the IEEE−Tutorial EUI−64 design for EUI−48 identifiers.

3.3.1.1. Privacy problem with automatically computed and solution

Because the "automatically computed" host part is globally unique (except when a vendor of a NIC uses the
same MAC address on more than one NIC), client tracking is possible on the host when not using a proxy of
any kind.

This is a known problem, and a solution was defined: privacy extension, defined in RFC 3041 / Privacy
Extensions for Stateless Address Autoconfiguration in IPv6 (there is also already a newer draft available:
draft−ietf−ipngwg−temp−addresses−*.txt). Using a random and a static value a new suffix is generated from
time to time. Note: this is only reasonable for outgoing client connections and isn't really useful for

Linux IPv6 HOWTO

Chapter 3. Address types 16

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://rfc.net/rfc3041.html
http://rfc.net/rfc3041.html
ftp://ftp.ietf.org/internet-drafts/

well−known servers.

3.3.2. Manually set

For servers it's probably easier to remember simpler addresses, this can also be accommodated. It is possible
to assign an additional IPv6 address to an interface, e.g.

3ffe:ffff:100:f101::1

For manual suffixes like "::1" shown in the above example it's required that the 6th most significant bit is set
to 0 (the universal/local bit of the automatically generated identifier). Also some other (otherwise unchosen)
bit combinations are reserved for anycast addresses, too.

3.4. Prefix lengths for routing

In the early design phase it was planned to use a fully hierarchical routing approach to reduce the size of the
routing tables maximally. The reasoning behind this approach were the number of current IPv4 routing entries
in core routers (> 104 thousand in May 2001), reducing the need of memory in hardware routers (ASIC
driven) to hold the routing table and increase speed (fewer entries hopefully result in faster lookups).

Todays view is that routing will be mostly hierarchically designed for networks with only one service
provider. With more than one ISP connections, this is not possible, and subject to an issue named
multi−homing.

3.4.1. Prefix lengths (also known as "netmasks")

Similar to IPv4, the routable network path for routing to take place. Because standard netmask notation for
128 bits doesn't look nice, designers employed the IPv4 Classless Inter Domain Routing (CIDR, RFC 1519 /
Classless Inter−Domain Routing) scheme, which specifies the number of bits of the IP address to be used for
routing. It is also called the "slash" notation.

An example:

3ffe:ffff:100:1:2:3:4:5/48

This notation will be expanded:

Network:•

3ffe:ffff:0100:0000:0000:0000:0000:0000

Net−mask:•

ffff:ffff:ffff:0000:0000:0000:0000:0000

Linux IPv6 HOWTO

Chapter 3. Address types 17

http://rfc.net/rfc1519.html
http://rfc.net/rfc1519.html

3.4.2. Matching a route

Under normal circumstances (no QoS) a lookup in a routing table results in the route with the most significant
number of address bits means the route with the biggest prefix length matches first.

For example if a routing table shows following entries (list is not complete):

3ffe:ffff:100::/48 :: U 1 0 0 sit1
2000::/3 ::192.88.99.1 UG 1 0 0 tun6to4

Shown destination addresses of IPv6 packets will be routed through shown device

3ffe:ffff:100:1:2:3:4:5/48 −> routed through device sit1
3ffe:ffff:200:1:2:3:4:5/48 −> routed through device tun6to4

Linux IPv6 HOWTO

Chapter 3. Address types 18

Chapter 4. IPv6−ready system check
Before you can start using IPv6 on a Linux host, you have to test, whether your system is IPv6−ready. You
may have to do some work to enable it first.

4.1. IPv6−ready kernel

Modern Linux distributions already contain IPv6−ready kernels, the IPv6 capability is generally compiled as a
module, but it's possible that this module is not loaded automatically on startup.

See IPv6+Linux−Status−Distribution page for most up−to−date information.

Note: you shouldn't anymore use kernel series 2.2.x, because it's not IPv6−up−to−date anymore.

4.1.1. Check for IPv6 support in the current running kernel

To check, whether your current running kernel supports IPv6, take a look into your /proc−file−system.
Following entry must exists:

/proc/net/if_inet6

A short automatical test looks like:

test −f /proc/net/if_inet6 && echo "Running kernel is IPv6 ready"

If this fails, it is quite likely, that the IPv6 module is not loaded.

4.1.2. Try to load IPv6 module

You can try to load the IPv6 module executing

modprobe ipv6

If this is successful, this module should be listed, testable with following auto−magically line:

lsmod |grep −w 'ipv6' && echo "IPv6 module successfully loaded"

And the check shown above should now run successfully.

Note: unloading the module is currently not supported and can result, under some circumstances, in a kernel
crash.

4.1.2.1. Automatically loading of module

Its possible to automatically load the IPv6 module on demand. You only have to add following line in the
configuration file of the kernel module loader (normally /etc/modules.conf or /etc/conf.modules):

alias net−pf−10 ipv6 # automatically load IPv6 module on demand

Chapter 4. IPv6−ready system check 19

http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-distributions.html

It's also possible to disable automatically loading of the IPv6 module using following line

alias net−pf−10 off # disable automatically load of IPv6 module on demand

4.1.3. Compile kernel with IPv6 capabilities

If both above shown results were negative and your kernel has no IP6 support, than you have the following
options:

Update your distribution to a current one which supports IPv6 out−of−the−box (recommended for
newbies), see here again: IPv6+Linux−Status−Distribution

•

Compile a new vanilla kernel (easy, if you know which options you needed)•
Recompile kernel sources given by your Linux distribution (sometimes not so easy)•
Compile a kernel with USAGI extensions•

If you decide to compile a kernel, you should have previous experience in kernel compiling and read the
Linux Kernel HOWTO.

A mostly up−to−time comparison between vanilla and USAGI extended kernels is available on
IPv6+Linux−Status−Kernel.

4.1.3.1. Compiling a vanilla kernel

More detailed hints about compiling an IPv6−enabled kernel can be found e.g. on IPv6−HOWTO−2#kernel.

Note: you should use whenever possible kernel series 2.4.x or above, because the IPv6 support in series 2.2.x
is not so in current state and needs some patches for ICMPv6 and 6to4 support (can be found on kernel series
2.2.x IPv6 patches).

4.1.3.2. Compiling a kernel with USAGI extensions

Same as for vanilla kernel, only recommend for advanced users, which are already familiar with IPv6 and
kernel compilation. See also USAGI project / FAQ.

4.1.4. IPv6−ready network devices

Not all existing network devices have already (or ever) the capability to transport IPv6 packets. A current
status can be found at IPv6+Linux−status−kernel.html#transport.

A major issue is that because of the network layer structure of kernel implementation an IPv6 packet isn't
really recognized by it's IP header number (6 instead of 4). It's recognized by the protocol number of the
Layer 2 transport protocol. Therefore any transport protocol which doesn't use such protocol number cannot
dispatch IPv6 packets. Note: the packet is still transported over the link, but on receivers side, the dispatching
won't work (you can see this e.g. using tcpdump).

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 20

http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-distributions.html
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-kernel.html
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-2.html#kernel
ftp://ftp.bieringer.de/pub/linux/IPv6/kernel
ftp://ftp.bieringer.de/pub/linux/IPv6/kernel
http://www.linux-ipv6.org/faq.html
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-kernel.html#transport

4.1.4.1. Currently known never "IPv6 capable links"

Serial Line IP (SLIP, RFC 1055), should be better called now to SLIPv4, device named: slX•
Parallel Line IP (PLIP), same like SLIP, device names: plipX•
ISDN with encapsulation rawip, device names: isdnX•

4.1.4.2. Currently known "not supported IPv6 capable links"

ISDN with encapsulation syncppp, device names: ipppX (design issue of the ipppd, will be merged
into more general PPP layer in kernel series 2.5.x)

•

4.2. IPv6−ready network configuration tools

You wont get very far, if you are running an IPv6−ready kernel, but have no tools to configure IPv6. There
are several packages in existence which can configure IPv6.

4.2.1. net−tools package

The net−tool package includes some tools like ifconfig and route, which helps you to configure IPv6 on an
interface. Look at the output of ifconfig −? or route −?, if something is shown like IPv6 or inet6, then the tool
is IPv6−ready.

Auto−magically check:

/sbin/ifconfig −? 2>& 1|grep −qw 'inet6' && echo "utility 'ifconfig' is
¬ IPv6−ready"

Same check can be done for route:

/sbin/route −? 2>& 1|grep −qw 'inet6' && echo "utility 'route' is IPv6−ready"

4.2.2. iproute package

Alexey N. Kuznetsov (current a maintainer of the Linux networking code) created a tool−set which configures
networks through the netlink device. Using this tool−set you have more functionality than net−tools provides,
but its not very well documented and isn't for the faint of heart.

/sbin/ip 2>&1 |grep −qw 'inet6' && echo "utility 'ip' is IPv6−ready"

If the program /sbin/ip isn't found, then I strongly recommend you install the iproute package.

You can get it from your Linux distribution (if contained)•
You can download the tar−ball and recompile it: Original FTP source and mirror (missing)•
You've able to look for a proper RPM package at RPMfind/iproute (sometimes rebuilding of a
SRPMS package is recommended)

•

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 21

http://rfc.net/rfc1055.html
ftp://ftp.inr.ac.ru/ip-routing/
http://rpmfind.net/linux/rpm2html/search.php?query=iproute

4.3. IPv6−ready test/debug programs

After you have prepared your system for IPv6, you now want to use IPv6 for network communications. First
you should learn how to examine IPv6 packets with a sniffer program. This is strongly recommended because
for debugging/troubleshooting issues this can aide in providing a diagnosis very quickly.

4.3.1. IPv6 ping

This program is normally included in package iputils. It is designed for simple transport tests sending ICMPv6
echo−request packets and wait for ICMPv6 echo−reply packets.

Usage

ping6 <hostwithipv6address>
ping6 <ipv6address>
ping6 [−I <device>] <link−local−ipv6address>

Example

ping6 −c 1 ::1
PING ::1(::1) from ::1 : 56 data bytes
64 bytes from ::1: icmp_seq=0 hops=64 time=292 usec
−−− ::1 ping statistics −−−
1 packets transmitted, 1 packets received, 0% packet loss
round−trip min/avg/max/mdev = 0.292/0.292/0.292/0.000 ms

Hint: ping6 needs raw access to socket and therefore root permissions. So if non−root users cannot use ping6
then there are two possible problems:

ping6 is not in users path (probably, because ping6 is generally stored in /usr/sbin −> add path (not
really recommended)

1.

ping6 doesn't execute properly, generally because of missing root permissions −> chmod u+s
/usr/sbin/ping6

2.

4.3.1.1. Specifying interface for IPv6 ping

Using link−local addresses for an IPv6 ping, the kernel does not know through which (physically or virtual)
device it must send the packet − each device has a link−local address. A try will result in following error
message:

ping6 fe80::212:34ff:fe12:3456
connect: Invalid argument

In this case you have to specify the interface additionally like shown here:

ping6 −I eth0 −c 1 fe80::2e0:18ff:fe90:9205
PING fe80::212:23ff:fe12:3456(fe80::212:23ff:fe12:3456) from
¬ fe80::212:34ff:fe12:3478 eth0: 56 data bytes
64 bytes from fe80::212:23ff:fe12:3456: icmp_seq=0 hops=64 time=445 usec
−−− fe80::2e0:18ff:fe90:9205 ping statistics −−−
1 packets transmitted, 1 packets received, 0% packet loss round−trip
¬ min/avg/max/mdev = 0.445/0.445/0.445/0.000 ms

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 22

4.3.1.2. Ping6 to multicast addresses

An interesting mechanism to detect IPv6−active hosts on a link is to ping6 to the link−local all−node
multicast address:

ping6 −I eth0 ff02::1 PING ff02::1(ff02::1) from fe80:::2ab:cdff:feef:0123 eth0: 56 data bytes
64 bytes from ::1: icmp_seq=1 ttl=64 time=0.104 ms
64 bytes from fe80::212:34ff:fe12:3450: icmp_seq=1 ttl=64 time=0.549 ms (DUP!)

Unlike in IPv4, where replies to a ping on the broadcast address can be disabled, in IPv6 currently this
behavior cannot be disable except by local IPv6 firewalling.

4.3.2. IPv6 traceroute6

This program is normally included in package iputils. It's a program similar to IPv4 traceroute. But unlike
modern IPv4 versions, the IPv6 one still doesn't understand to traceroute using ICMP echo−request packets
(which is more accepted by firewalls around than UDP packets to high ports). Below you will see an example:

traceroute6 www.6bone.net
traceroute to 6bone.net (3ffe:b00:c18:1::10) from 3ffe:ffff:0000:f101::2, 30
¬ hops max, 16 byte packets
 1 localipv6gateway (3ffe:ffff:0000:f101::1) 1.354 ms 1.566 ms 0.407 ms
 2 swi6T1−T0.ipv6.switch.ch (3ffe:2000:0:400::1) 90.431 ms 91.956 ms 92.377 ms
 3 3ffe:2000:0:1::132 (3ffe:2000:0:1::132) 118.945 ms 107.982 ms 114.557 ms
 4 3ffe:c00:8023:2b::2 (3ffe:c00:8023:2b::2) 968.468 ms 993.392 ms 973.441 ms
 5 3ffe:2e00:e:c::3 (3ffe:2e00:e:c::3) 507.784 ms 505.549 ms 508.928 ms
 6 www.6bone.net (3ffe:b00:c18:1::10) 1265.85 ms * 1304.74 ms

4.3.3. IPv6 tracepath6

This program is normally included in package iputils. It's a program like traceroute6 and traces the path to a
given destination discovering the MTU along this path. Below you will see an example:

tracepath6 www.6bone.net
 1?: [LOCALHOST] pmtu 1480
 1: 3ffe:401::2c0:33ff:fe02:14 150.705ms
 2: 3ffe:b00:c18::5 267.864ms
 3: 3ffe:b00:c18::5 asymm 2 266.145ms pmtu 1280
 3: 3ffe:3900:5::2 asymm 4 346.632ms
 4: 3ffe:28ff:ffff:4::3 asymm 5 365.965ms
 5: 3ffe:1cff:0:ee::2 asymm 4 534.704ms
 6: 3ffe:3800::1:1 asymm 4 578.126ms !N
Resume: pmtu 1280

4.3.4. IPv6 tcpdump

On Linux, tcpdump is the major tool for packet capturing. Below you find some examples. IPv6 support is
normally built−in in current releases of version 3.6.

tcpdump uses expressions for filtering packets to minimize the noise:

icmp6: filters native ICMPv6 traffic•

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 23

ip6: filters native IPv6 traffic (including ICMPv6)•
proto ipv6: filters tunneled IPv6−in−IPv4 traffic•
not port ssh: to suppress displaying SSH packets for running tcpdump in a remote SSH session•

Also some command line options are very useful to catch and print more information in a packet, mostly
interesting for digging into ICMPv6 packets:

"−s 512": increase the snap length during capturing of a packet to 512 bytes•
"−vv": really verbose output•
"−n": don't resolve addresses to names, useful if reverse DNS resolving isn't working proper•

4.3.4.1. IPv6 ping to 3ffe:ffff:100:f101::1 native over a local link

tcpdump −t −n −i eth0 −s 512 −vv ip6 or proto ipv6
tcpdump: listening on eth0
3ffe:ffff:100:f101:2e0:18ff:fe90:9205 > 3ffe:ffff:100:f101::1: icmp6: echo
¬ request (len 64, hlim 64)
3ffe:ffff:100:f101::1 > 3ffe:ffff:100:f101:2e0:18ff:fe90:9205: icmp6: echo
¬ reply (len 64, hlim 64)

4.3.4.2. IPv6 ping to 3ffe:ffff:100::1 routed through an IPv6−in−IPv4−tunnel

1.2.3.4 and 5.6.7.8 are tunnel endpoints (all addresses are examples)

tcpdump −t −n −i ppp0 −s 512 −vv ip6 or proto ipv6
tcpdump: listening on ppp0
1.2.3.4 > 5.6.7.8: 2002:ffff:f5f8::1 > 3ffe:ffff:100::1: icmp6: echo request
¬ (len 64, hlim 64) (DF) (ttl 64, id 0, len 124)
5.6.7.8 > 1.2.3.4: 3ffe:ffff:100::1 > 2002:ffff:f5f8::1: icmp6: echo reply (len
¬ 64, hlim 61) (ttl 23, id 29887, len 124)
1.2.3.4 > 5.6.7.8: 2002:ffff:f5f8::1 > 3ffe:ffff:100::1: icmp6: echo request
¬ (len 64, hlim 64) (DF) (ttl 64, id 0, len 124)
5.6.7.8 > 1.2.3.4: 3ffe:ffff:100::1 > 2002:ffff:f5f8::1: icmp6: echo reply (len
¬ 64, hlim 61) (ttl 23, id 29919, len 124)

4.4. IPv6−ready programs

Current distributions already contain the most needed IPv6 enabled client and servers. See first on
IPv6+Linux−Status−Distribution. If still not included, you can check IPv6 & Linux − Current Status −
Applications whether the program is already ported to IPv6 and usable with Linux. For common used
programs there are some hints available at IPv6 & Linux − HowTo − Part 3 and IPv6 & Linux − HowTo −
Part 4.

4.5. IPv6−ready client programs (selection)

To run the following shown tests, it's required that your system is IPv6 enabled, and some examples show
addresses which only can be reached if a connection to the 6bone is available.

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 24

http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-distributions.html
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-apps.html
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-apps.html
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-3.html
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-4.html
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/IPv6-HOWTO-4.html

4.5.1. Checking DNS for resolving IPv6 addresses

Because of security updates in the last years every Domain Name System (DNS) server should run newer
software which already understands the (intermediate) IPv6 address−type AAAA (the newer one named A6
isn't still common at the moment because only supported using BIND9 and newer and also the non−existent
support of root domain IP6.ARPA). A simple whether the used system can resolve IPv6 addresses is

host −t AAAA www.join.uni−muenster.de

and should show something like following:

www.join.uni−muenster.de. is an alias for ns.join.uni−muenster.de.
ns.join.uni−muenster.de. has AAAA address 3ffe:400:10:100:201:2ff:feb5:3806

4.5.2. IPv6−ready telnet clients

IPv6−ready telnet clients are available. A simple test can be done with

$ telnet 3ffe:400:100::1 80
Trying 3ffe:400:100::1...
Connected to 3ffe:400:100::1.
Escape character is '^]'.
HEAD / HTTP/1.0
HTTP/1.1 200 OK
Date: Sun, 16 Dec 2001 16:07:21
GMT Server: Apache/2.0.28 (Unix)
Last−Modified: Wed, 01 Aug 2001 21:34:42 GMT
ETag: "3f02−a4d−b1b3e080"
Accept−Ranges: bytes
Content−Length: 2637
Connection: close
Content−Type: text/html; charset=ISO−8859−1
Connection closed by foreign host.

If the telnet client don't understand the IPv6 address and says something like "cannot resolve hostname", then
it's not IPv6−enabled.

4.5.3. IPv6−ready ssh clients

4.5.3.1. openssh

Current versions of openssh are IPv6−ready. Depending on configuring before compiling it has two behavior.

−−without−ipv4−default: the client tries an IPv6 connect first automatically and fall back to IPv4 if
not working

•

−−with−ipv4−default: default connection is IPv4, IPv6 connection must be force like following
example shows

•

$ ssh −6 ::1
user@::1's password: ******
[user@ipv6host user]$

If your ssh client doesn't understand the option "−6" then it's not IPv6−enabled, like most ssh version 1
packages.

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 25

4.5.3.2. ssh.com

SSH.com's SSH client and server is also IPv6 aware now and is free for all Linux and FreeBSD machine
regardless if used for personal or commercial use.

4.5.4. IPv6−ready web browsers

A current status of IPv6 enabled web browsers is available at IPv6+Linux−status−apps.html#HTTP.

Most of them have unresolved problems at the moment

If using an IPv4 only proxy in the settings, IPv6 requests will be sent to the proxy, but the proxy will
fail to understand the request and the request fails. Solution: update proxy software (see later).

1.

Automatic proxy settings (*.pac) cannot be extended to handle IPv6 requests differently (e.g. don't
use proxy) because of their nature (written in Java−script and well hard coded in source like to be
seen in Maxilla source code).

2.

Also older versions don't understand an URL with IPv6 encoded addresses like http://[3ffe:400:100::1]/ (this
given URL only works with an IPv6−enabled browser!).

A short test is to try shown URL with a given browser and using no proxy.

4.5.4.1. URLs for testing

A good starting point for browsing using IPv6 is http://www.kame.net/. If the turtle on this page is animated,
the connection is via IPv6, otherwise the turtle is static.

4.6. IPv6−ready server programs

In this part of this HOWTO, more client specific issues are mentioned. Therefore hints for IPv6−ready servers
like sshd, httpd, telnetd, etc. are shown below in Hints for IPv6−enabled daemons.

4.7. FAQ (IPv6−ready system check)

4.7.1. Using tools

4.7.1.1. Q: Cannot ping6 to link−local addresses

Error message: "connect: Invalid argument"

Kernel doesn't know, which physical or virtual link you want to use to send such ICMPv6 packets. Therefore
it displays this error message.

Solution: Specify interface like: "ping6 −I eth0 fe80::2e0:18ff:fe90:9205", see also program ping6 usage.

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 26

http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-apps.html#HTTP
http://[3ffe:400:100::1]/
http://www.kame.net/

4.7.1.2. Q: Cannot ping6 or traceroute6 as normal user

Error message: "icmp socket: Operation not permitted"

These utilities create special ICMPv6 packets and send them out. This is done by using raw sockets in the
kernel. But raw sockets can only be used by the "root" user. Therefore normal users get such error message.

Solution: If it's really needed that all users should be able to use this utilities, you can add the "suid" bit using
"chmod u+s /path/to/program", see also program ping6 usage. If not all users should be able to, you can
change the group of the program to e.g. "wheel", add this power users to this group and remove the execution
bit for other users using "chmod o−rwx /path/to/program". Or configure "sudo" to enable your security policy.

Linux IPv6 HOWTO

Chapter 4. IPv6−ready system check 27

Chapter 5. Configuring interfaces

5.1. Different network devices

On a node, there exist different network devices. They can be collected in classes

Physically bounded, like eth0, tr0•
Virtually existing, like ppp0, tun0, tap0, sit0, isdn0, ippp0•

5.1.1. Physically bounded

Physically bounded interfaces like Ethernet or Token−Ring are normal ones and need no special treatment.

5.1.2. Virtually bounded

Virtually bounded interfaces always need special support

5.1.2.1. IPv6−in−IPv4 tunnel interfaces

This interfaces are normally named sitx. The name sit is a shortcut for Simple Internet Transition. This device
has the capability to encapsulate IPv6 packets into IPv4 ones and tunnel them to a foreign endpoint.

sit0 has a special meaning and cannot be used for dedicated tunnels.

5.1.2.2. PPP interfaces

PPP interfaces get their IPv6 capability from an IPv6 enabled PPP daemon.

5.1.2.3. ISDN HDLC interfaces

IPv6 capability for HDLC with encapsulation ip is already built−in in the kernel

5.1.2.4. ISDN PPP interfaces

ISDN PPP interfaces (ippp) aren't IPv6 enabled by kernel. Also there are also no plans to do that because in
kernel 2.5.+ they will be replaced by a more generic ppp interface layer.

5.1.2.5. SLIP + PLIP

Like mentioned earlier, this interfaces don't support IPv6 transport (sending is OK, but dispatching on
receiving don't work).

5.1.2.6. Ether−tap device

Ether−tap devices are IPv6−enabled and also stateless configured. For use, the module "ethertap" has to be
loaded before.

Chapter 5. Configuring interfaces 28

5.1.2.7. tun devices

Currently not tested by me.

5.1.2.8. ATM

01/2002: Aren't currently supported by vanilla kernel, supported by USAGI extension

5.1.2.9. Others

Did I forget an interface?...

5.2. Bringing interfaces up/down

Two methods can be used to bring interfaces up or down.

5.2.1. Using "ip"

Usage:

ip link set dev <interface> up
ip link set dev <interface> down

Example:

ip link set dev eth0 up
ip link set dev eth0 down

5.2.2. Using "ifconfig"

Usage:

/sbin/ifconfig <interface> up
/sbin/ifconfig <interface> down

Example:

/sbin/ifconfig eth0 up
/sbin/ifconfig eth0 down

Linux IPv6 HOWTO

Chapter 5. Configuring interfaces 29

Chapter 6. Configuring IPv6 addresses
There are different ways to configure an IPv6 address on an interface. You can use use "ifconfig" or "ip".

6.1. Displaying existing IPv6 addresses

First you should check, whether and which IPv6 addresses are already configured (perhaps auto−magically
during stateless auto−configuration).

6.1.1. Using "ip"

Usage:

/sbin/ip −6 addr show dev <interface>

Example for a static configured host:

/sbin/ip −6 addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_ fast qlen 100
inet6 fe80::210:a4ff:fee3:9566/10 scope link
inet6 3ffe:ffff:0:f101::1/64 scope global
inet6 fec0:0:0:f101::1/64 scope site

Example for a host which is auto−configured

Here you see some auto−magically configured IPv6 addresses and their lifetime.

/sbin/ip −6 addr show dev eth0
3: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast qlen
¬ 100
inet6 2002:d950:f5f8:f101:2e0:18ff:fe90:9205/64 scope global dynamic
valid_lft 16sec preferred_lft 6sec
inet6 3ffe:400:100:f101:2e0:18ff:fe90:9205/64 scope global dynamic
valid_lft 2591997sec preferred_lft 604797sec inet6 fe80::2e0:18ff:fe90:9205/10
¬ scope link

6.1.2. Using "ifconfig"

Usage:

/sbin/ifconfig <interface>

Example (output filtered with grep to display only IPv6 addresses). Here you see different IPv6 addresses
with different scopes.

/sbin/ifconfig eth0 |grep "inet6 addr:"
inet6 addr: fe80::210:a4ff:fee3:9566/10 Scope:Link
inet6 addr: 3ffe:ffff:0:f101::1/64 Scope:Global
inet6 addr: fec0:0:0:f101::1/64 Scope:Site

Chapter 6. Configuring IPv6 addresses 30

6.2. Add an IPv6 address

Adding an IPv6 address is similar to the mechanism of "IP ALIAS" addresses in Linux IPv4 addressed
interfaces.

6.2.1. Using "ip"

Usage:

/sbin/ip −6 addr add <ipv6address>/<prefixlength> dev <interface>

Example:

/sbin/ip −6 addr add 3ffe:ffff:0:f101::1/64 dev eth0

6.2.2. Using "ifconfig"

Usage:

/sbin/ifconfig <interface> inet6 add <ipv6address>/<prefixlength>

Example:

/sbin/ifconfig eth0 inet6 add 3ffe:ffff:0:f101::1/64

6.3. Removing an IPv6 address

Not so often needed, be carefully with removing non existent IPv6 address, sometimes using older kernels it
results in a crash.

6.3.1. Using "ip"

Usage:

/sbin/ip −6 addr del <ipv6address>/<prefixlength> dev <interface>

Example:

/sbin/ip −6 addr del 3ffe:ffff:0:f101::1/64 dev eth0

6.3.2. Using "ifconfig"

Usage:

/sbin/ifconfig <interface> inet6 del <ipv6address>/<prefixlength>

Example:

Linux IPv6 HOWTO

Chapter 6. Configuring IPv6 addresses 31

/sbin/ifconfig eth0 inet6 del 3ffe:ffff:0:f101::1/64

Linux IPv6 HOWTO

Chapter 6. Configuring IPv6 addresses 32

Chapter 7. Configuring normal IPv6 routes
If you want to leave your link and want to send packets in the world wide IPv6−Internet, you need routing. If
there is already an IPv6 enabled router on your link, it's possible enough to add IPv6 routes.

Also here there are different ways to configure an IPv6 address on an interface. You can use use "ifconfig" or
"ip"

7.1. Displaying existing IPv6 routes

First you should check, whether and which IPv6 addresses are already configured (perhaps auto−magically
during auto−configuration).

7.1.1. Using "ip"

Usage:

/sbin/ip −6 route show [dev <device>]

Example:

/sbin/ip −6 route show dev eth0
3ffe:ffff:0:f101::/64 proto kernel metric 256 mtu 1500 advmss 1440
fe80::/10 proto kernel metric 256 mtu 1500 advmss 1440
ff00::/8 proto kernel metric 256 mtu 1500 advmss 1440
default proto kernel metric 256 mtu 1500 advmss 1440

7.1.2. Using "route"

Usage:

/sbin/route −A inet6

Example (output is filtered for interface eth0). Here you see different IPv6 routes for different addresses on a
single interface.

/sbin/route −A inet6 |grep −w "eth0"
3ffe:ffff:0:f101 ::/64 :: UA 256 0 0 eth0 <− Interface route for global
¬ address
fe80::/10 :: UA 256 0 0 eth0 <− Interface route for link−local
¬ address
ff00::/8 :: UA 256 0 0 eth0 <− Interface route for all multicast
¬ addresses
::/0 :: UDA 256 0 0 eth0 <− Automatic default route

7.2. Add an IPv6 route through a gateway

Mostly needed to reach the outside with IPv6 using an IPv6−enabled router on your link.

Chapter 7. Configuring normal IPv6 routes 33

7.2.1. Using "ip"

Usage:

/sbin/ip −6 route add <ipv6network>/<prefixlength> via <ipv6address>
¬ [dev <device>]

Example:

/sbin/ip −6 route add 2000::/3 via 3ffe:ffff:0:f101::1

7.2.2. Using "route"

Usage:

/sbin/route −A inet6 add <ipv6network>/<prefixlength> gw
¬ <ipv6address> [dev <device>]

A device can be needed, too, if the IPv6 address of the gateway is a link local one.

Following shown example adds a route for all currently global addresses (2000::/3) through gateway
3ffe:ffff:0:f101::1

/sbin/route −A inet6 add 2000::/3 gw 3ffe:ffff:0:f101::1

7.3. Removing an IPv6 route through a gateway

Not so often needed manually, mostly done by network configure scripts on shutdown (full or per interface)

7.3.1. Using "ip"

Usage:

/sbin/ip −6 route del <ipv6network>/<prefixlength> via <ipv6address>
¬ [dev <device>]

Example:

/sbin/ip −6 route del 2000::/3 via 3ffe:ffff:0:f101::1

7.3.2. Using "route"

Usage:

/sbin/route −A inet6 del <network>/<prefixlength> [dev <device>]

Example for removing upper added route again:

/sbin/route −A inet6 del 2000::/3 gw 3ffe:ffff:0:f101::1

Linux IPv6 HOWTO

Chapter 7. Configuring normal IPv6 routes 34

7.4. Add an IPv6 route through an interface

Not often needed, sometimes in cases of dedicated point−to−point links.

7.4.1. Using "ip"

Usage:

/sbin/ip −6 route add <ipv6network>/<prefixlength> dev <device>
¬ metric 1

Example:

/sbin/ip −6 route add 2000::/3 dev eth0 metric 1

Metric "1" is used here to be compatible with the metric used by route, because the default metric on using
"ip" is "1024".

7.4.2. Using "route"

Usage:

/sbin/route −A inet6 add <network>/<prefixlength> dev <device>

Example:

/sbin/route −A inet6 add 2000::/3 dev eth0

7.5. Removing an IPv6 route through an interface

Not so often needed to use by hand, configuration scripts will use such on shutdown.

7.5.1. Using "ip"

Usage:

/sbin/ip −6 route del <ipv6network>/<prefixlength> dev <device>

Example:

/sbin/ip −6 route del 2000::/3 dev eth0

7.5.2. Using "route"

Usage:

Linux IPv6 HOWTO

Chapter 7. Configuring normal IPv6 routes 35

/sbin/route −A inet6 del <network>/<prefixlength> dev <device>

Example:

/sbin/route −A inet6 del 2000::/3 dev eth0

7.6. FAQ for IPv6 routes

7.6.1. Support of an IPv6 default route

One idea of IPv6 was a hierachical routing, therefore only less routing entries are needed in routers.

There are some issues in current Linux kernels:

7.6.1.1. Clients (not routing any packet!)

Client can setup a default route like prefix "::/0", they also learn such route on autoconfiguration e.g. using
radvd on the link like following example shows:

ip −6 route show | grep ^default
default via fe80::212:34ff:fe12:3450 dev eth0 proto kernel metric 1024 expires
¬ 29sec mtu 1500 advmss 1440

7.6.1.2. Routers on packet forwarding

Current mainstream Linux kernel (at least <= 2.4.17) don't support default routes. You can set them up, but
the route lookup fails when a packet should be forwarded (normal intention of a router).

Therefore at this time "default routing" can be setup using the currently only global address prefix "2000::/3".

The USAGI project already supports this in their extension with a hack.

Note: take care about default routing without address filtering on edge routers. Otherwise unwanted multicast
or site−local traffic leave the edge.

Linux IPv6 HOWTO

Chapter 7. Configuring normal IPv6 routes 36

Chapter 8. Neighbor Discovery
Neighbor discovery was the IPv6 successor for the ARP (Address Resolution Protocol) in IPv4. You can
retrieve information about the current neighbors, in addition you can set and delete entries.

Neighbor detection

The kernel keeps tracking of successful neighbor detection (like ARP in IPv4). You can dig into the learnt
table using "ip".

8.1. Displaying neighbors using "ip"

With following command you can display the learnt or configured IPv6 neighbors

ip −6 neigh show [dev <device>]

The following example shows one neighbor, which is a reachable router

ip −6 neigh show
fe80::201:23ff:fe45:6789 dev eth0 lladdr 00:01:23:45:67:89 router nud reachable

8.2. Manipulating neighbors table using "ip"

8.2.1. Manually add an entry

With following command you are able to manually add an entry

ip −6 neigh add <IPv6 address> lladdr <link−layer address> dev <device>

Example:

ip −6 neigh add fec0::1 lladdr 02:01:02:03:04:05 dev eth0

8.2.2. Manually delete an entry

Like adding also an entry can be deleted:

ip −6 neigh del <IPv6 address> lladdr <link−layer address> dev <device>

Example:

ip −6 neigh del fec0::1 lladdr 02:01:02:03:04:05 dev eth0

8.2.3. More advanced settings

The tool "ip" is less documentated, but very strong. See online "help" for more:

Chapter 8. Neighbor Discovery 37

ip −6 neigh help
Usage: ip neigh { add | del | change | replace } { ADDR [lladdr LLADDR]
 [nud { permanent | noarp | stale | reachable }]
 | proxy ADDR } [dev DEV]
 ip neigh {show|flush} [to PREFIX] [dev DEV] [nud STATE]

Looks like some options are only for IPv4...if you can contribute information about flags and advanced usage,
pls. send.

Linux IPv6 HOWTO

Chapter 8. Neighbor Discovery 38

Chapter 9. Configuring IPv6−in−IPv4 tunnels
If you want to leave your link you have no IPv6 capable network around you, you need IPv6−in−IPv4
tunneling to reach the World Wide IPv6−Internet.

There are some kind of tunnel mechanism and also some possibilities to setup tunnels.

9.1. Types of tunnels

There are more than one possibility to tunnel IPv6 packets over IPv4−only links.

9.1.1. Static point−to−point tunneling: 6bone

A point−to−point tunnel is a dedicated tunnel to an endpoint, which knows about your IPv6 network (for
backward routing) and the IPv4 address of your tunnel endpoint and defined in RFC 2893 / Transition
Mechanisms for IPv6 Hosts and Routers. Requirements:

IPv4 address of your local tunnel endpoint must be static, global unique and reachable from the
foreign tunnel endpoint

•

A global IPv6 prefix assigned to you (see 6bone registry)•
A foreign tunnel endpoint which is capable to route your IPv6 prefix to your local tunnel endpoint
(mostly remote manual configuration required)

•

9.1.2. Automatically tunneling

Automatic tunneling occurs, when a node directly connects another node gotten the IPv4 address of the other
node before.

9.1.3. 6to4−Tunneling

6to4 tunneling (RFC 3056 / Connection of IPv6 Domains via IPv4 Clouds) uses a simple mechanism to create
automatic tunnels. Each node with a global unique IPv4 address is able to be a 6to4 tunnel endpoint (if no
IPv4 firewall prohibits traffic). 6to4 tunneling is mostly not a one−to−one tunnel. This case of tunneling can
be divided into upstream and downstream tunneling. Also, a special IPv6 address indicates that this node will
use 6to4 tunneling for connecting the world−wide IPv6 network

9.1.3.1. Generation of 6to4 prefix

The 6to4 address is defined like following (schema is taken from RFC 3056 / Connection of IPv6 Domains
via IPv4 Clouds):

| 3+13 | 32 | 16 | 64 bits |
+−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| FP+TLA | V4ADDR | SLA ID | Interface ID |
| 0x2002 | | | |
+−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Where FP is the known prefix for global addresses, TLA is the top level aggregator. V4ADDR is the node's

Chapter 9. Configuring IPv6−in−IPv4 tunnels 39

http://rfc.net/rfc2893.html
http://rfc.net/rfc2893.html
http://rfc.net/rfc3056.html
http://rfc.net/rfc3056.html
http://rfc.net/rfc3056.html

global unique IPv4 address (in hexadecimal notation). SLA is the subnet identifier (65536 local subnets
possible).

Such prefix is generated and normally using SLA "0000" and suffix "::1" assigned to the 6to4 tunnel interface.

9.1.3.2. 6to4 upstream tunneling

The node has to know to which foreign tunnel endpoint its in IPv4 packed IPv6 packets should be send to. In
"early" days of 6to4 tunneling, dedicated upstream accepting routers were defined. See NSayer's 6to4
information for a list of routers.

Nowadays, 6to4 upstream routers can be found auto−magically using the anycast address 192.88.99.1. In the
background routing protocols handle this, see RFC 3068 / An Anycast Prefix for 6to4 Relay Routers for
details.

9.1.3.3. 6to4 downstream tunneling

The downstream (6bone −> your 6to4 enabled node) is not really fix and can vary from foreign host which
originated packets were send to. There exist two possibilities:

Foreign host uses uses 6to4 and sends packet direct back to your node (see below)•
Foreign host sends packets back to the world−wide IPv6 network and depending on the dynamic
routing a relay router create a automatic tunnel back to your node.

•

9.1.3.4. Possible 6to4 traffic

from 6to4 to 6to4: is normally directly tunneled between the both 6to4 enabled hosts•
from 6to4 to non−6to4: is sent via upstream tunneling•
non−6to4 to 6to4: is sent via downstream tunneling•

9.2. Displaying existing tunnels

9.2.1. Using "ip"

Usage:

/sbin/ip −6 tunnel show [<device>]

Example:

/sbin/ip −6 tunnel show
sit0: ipv6/ip remote any local any ttl 64 nopmtudisc
sit1: ipv6/ip remote 195.226.187.50 local any ttl 64

9.2.2. Using "route"

Usage:

/sbin/route −A inet6

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 40

http://www.kfu.com/~nsayer/6to4/
http://www.kfu.com/~nsayer/6to4/
http://www.faqs.org/rfcs/rfc3068.html

Example (output is filtered to display only tunnels through virtual interface sit0):

/sbin/route −A inet6 | grep "\Wsit0\W*$"
::/96 :: U 256 2 0 sit0
2002::/16 :: UA 256 0 0 sit0
2000::/3 ::193.113.58.75 UG 1 0 0 sit0
fe80::/10 :: UA 256 0 0 sit0
ff00::/8 :: UA 256 0 0 sit0

9.3. Setup of point−to−point tunnel

There are 3 possibilities to add or remove point−to−point tunnels.

9.3.1. Add point−to−point tunnels

9.3.1.1. Using "ip"

Common method at the moment for a small amount of tunnels

Usage for creating a tunnel device (but it's not up afterward, also a TTL must be specified because the default
value is 0).

/sbin/ip tunnel add <device> mode sit ttl <ttldefault> remote
¬ <ipv4addressofforeigntunnel> local <ipv4addresslocal>

Usage (generic example for three tunnels):

/sbin/ip tunnel add sit1 mode sit ttl <ttldefault> remote
¬ <ipv4addressofforeigntunnel1> local <ipv4addresslocal>
/sbin/ip set dev sit1 up
/sbin/ip −6 route add <prefixtoroute1> dev sit1 metric 1
/sbin/ip tunnel add sit2 mode sit ttl <ttldefault>
¬ <ipv4addressofforeigntunnel2> local <ipv4addresslocal>
/sbin/ip set dev sit2 up
/sbin/ip −6 route add <prefixtoroute2> dev sit2 metric 1
/sbin/ip tunnel add sit3 mode sit ttl <ttldefault>
¬ <ipv4addressofforeigntunnel3> local <ipv4addresslocal>
/sbin/ip set dev sit3 up
/sbin/ip −6 route add <prefixtoroute3> dev sit3 metric 1

9.3.1.2. Using "ifconfig" and "route" (deprecated)

This not very recommended way to add a tunnel because it's a little bit strange. No problem if adding only
one, but if you setup more than one, you cannot easy shutdown the first ones and leave the others running.

Usage (generic example for three tunnels):

/sbin/ifconfig sit0 up
/sbin/ifconfig sit0 tunnel <ipv4addressofforeigntunnel1>
/sbin/ifconfig sit1 up
/sbin/route −A inet6 add <prefixtoroute1> dev sit1
/sbin/ifconfig sit0 tunnel <ipv4addressofforeigntunnel2>
/sbin/ifconfig sit2 up
/sbin/route −A inet6 add <prefixtoroute2> dev sit2

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 41

/sbin/ifconfig sit0 tunnel <ipv4addressofforeigntunnel3>
/sbin/ifconfig sit3 up
/sbin/route −A inet6 add <prefixtoroute3> dev sit3

Important: DON'T USE THIS, because this setup implicit enable "automatic tunneling" from anywhere in the
Internet, this is a risk, and it should not be advocated.

9.3.1.3. Using "route" only

It's also possible to setup tunnels in Non Broadcast Multiple Access (NBMA) style, it's a easy way to add
many tunnels at once. But none of the tunnel can be numbered (which is a not required feature).

Usage (generic example for three tunnels):

/sbin/ifconfig sit0 up
/sbin/route −A inet6 add <prefixtoroute1> gw
¬ ::<ipv4addressofforeigntunnel1> dev sit0
/sbin/route −A inet6 add <prefixtoroute2> gw
¬ ::<ipv4addressofforeigntunnel2> dev sit0
/sbin/route −A inet6 add <prefixtoroute3> gw
¬ ::<ipv4addressofforeigntunnel3> dev sit0

Important: DON'T USE THIS, because this setup implicit enable "automatic tunneling" from anywhere in the
Internet, this is a risk, and it should not be advocated.

9.3.2. Removing point−to−point tunnels

Manually not so often needed, but used by scripts for clean shutdown or restart of IPv6 configuration.

9.3.2.1. Using "ip"

Usage for removing a tunnel device:

/sbin/ip tunnel del <device>

Usage (generic example for three tunnels):

/sbin/ip −6 route del <prefixtoroute1> dev sit1
/sbin/ip set sit1 down
/sbin/ip tunnel del sit1
/sbin/ip −6 route del <prefixtoroute2> dev sit2
/sbin/ip set sit2 down
/sbin/ip tunnel del sit2
/sbin/ip −6 route del <prefixtoroute3> dev sit3
/sbin/ip set sit3 down
/sbin/ip tunnel del sit3

9.3.2.2. Using "ifconfig" and "route" (deprecated because not very funny)

Not only the creation is strange, the shutdown also...you have to remove the tunnels in backorder, means the
latest created must be removed first.

Usage (generic example for three tunnels):

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 42

/sbin/route −A inet6 del <prefixtoroute3> dev sit3
/sbin/ifconfig sit3 down
/sbin/route −A inet6 del <prefixtoroute2> dev sit2
/sbin/ifconfig sit2 down
/sbin/route −A inet6 add <prefixtoroute1> dev sit1
/sbin/ifconfig sit1 down
/sbin/ifconfig sit0 down

9.3.2.3. Using "route"

This is like removing normal IPv6 routes

Usage (generic example for three tunnels):

/sbin/route −A inet6 del <prefixtoroute1> gw
¬ ::<ipv4addressofforeigntunnel1> dev sit0
/sbin/route −A inet6 del <prefixtoroute2> gw
¬ ::<ipv4addressofforeigntunnel2> dev sit0
/sbin/route −A inet6 del <prefixtoroute3> gw
¬ ::<ipv4addressofforeigntunnel3> dev sit0
/sbin/ifconfig sit0 down

9.3.3. Numbered point−to−point tunnels

Sometimes it's needed to configure a point−to−point tunnel with IPv6 addresses like in IPv4 today. This is
only possible with the first (ifconfig+route − deprecated) and third (ip+route) tunnel setup. In such cases, you
can add the IPv6 address to the tunnel interface like shown on interface configuration.

9.4. Setup of 6to4 tunnels

Pay attention that the support of 6to4 tunnels currently lacks on vanilla kernel series 2.2.x (see
systemcheck/kernel for more information). Also note that that the prefix length for a 6to4 address is 16
because of from network point of view, all other 6to4 enabled hosts are on the same layer 2.

9.4.1. Add a 6to4 tunnel

First, you have to calculate your 6to4 prefix using your local assigned global routable IPv4 address (if your
host has no global routable IPv4 address, in special cases NAT on border gateways is possible):

Assuming your IPv4 address is

1.2.3.4

the generated 6to4 prefix will be

2002:0102:0304::

Local 6to4 gateways should always assigned the manual suffix "::1", therefore your local 6to4 address will be

2002:0102:0304::1

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 43

Use e.g. following for automatic generation:

ipv4="1.2.3.4"; printf "2002:%02x%02x:%02x%02x::1" `echo $ipv4 | tr "." " "`

There are two ways possible to setup 6to4 tunneling now.

9.4.1.1. Using "ip" and a dedicated tunnel device

This is now the recommended way.

Create a new tunnel device

/sbin/ip tunnel add tun6to4 mode sit remote any local <localipv4address>

Bring interface up

/sbin/ip link set dev tun6to4 up

Add local 6to4 address to interface (note: prefix length 16 is imporant!)

/sbin/ip −6 addr add <local6to4address>/16 dev tun6to4

Add (default) route to the global IPv6 network using the all−6to4−routers IPv4 anycast address

/sbin/ip −6 route add 2000::/3 via ::192.88.99.1 dev tun6to4 metric 1

9.4.1.2. Using "ifconfig" and "route" and generic tunnel device "sit0" (deprecated)

This is now deprecated because using the generic tunnel device sit0 doesn't let specify filtering per device.

Bring generic tunnel interface sit0 up

/sbin/ifconfig sit0 up

Add local 6to4 address to interface

/sbin/ifconfig sit0 add <local6to4address>/16

Add (default) route to the global IPv6 network using the all−6to4−relays IPv4 anycast address

/sbin/route −A inet6 add 2000::/3 gw ::192.88.99.1 dev sit0

9.4.2. Remove a 6to4 tunnel

9.4.2.1. Using "ip" and a dedicated tunnel device

Remove all routes through this dedicated tunnel device

/sbin/ip −6 route flush dev tun6to4

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 44

Shut down interface

/sbin/ip link set dev tun6to4 down

Remove created tunnel device

/sbin/ip tunnel del tun6to4

9.4.2.2. Using "ifconfig" and "route" and generic tunnel device "sit0" (deprecated)

Remove (default) route through the 6to4 tunnel interface

/sbin/route −A inet6 del 2000::/3 gw ::192.88.99.1 dev sit0

Remove local 6to4 address to interface

/sbin/ifconfig sit0 del <local6to4address>/16

Shut down generic tunnel device (take care about this, perhaps it's still in use...)

/sbin/ifconfig sit0 down

Linux IPv6 HOWTO

Chapter 9. Configuring IPv6−in−IPv4 tunnels 45

Chapter 10. Configuring IPv4−in−IPv6 tunnels
This will be filled in the future. At the moment, such tunnels are more used in test environments.

More information in the meantime: RFC 2473 / Generic Packet Tunneling in IPv6 Specification

Chapter 10. Configuring IPv4−in−IPv6 tunnels 46

http://rfc.net/rfc2473.html

Chapter 11. Kernel settings in /proc−filesystem
Note: the source of this section is mostly the file "ip−sysctl.txt" which is included in current kernel sources in
directory "Documentation/networking". Credits to Pekka Savola for maintaining the IPv6−related part in this
file. Also some text is more or less copied & pasted into this document.

11.1. How to access the /proc−filesystem

11.1.1. Using "cat" and "echo"

Using "cat" and "echo" is the simplest way to access the /proc filesystem, but two requirements are needed for
that

The /proc−filesystem had to be enabled in kernel, means on compiling following switch has to be set•

CONFIG_PROC_FS=y

The /proc−filesystem was mounted before, which can be tested using•

mount | grep "type proc"
none on /proc type proc (rw)

You need read and sometimes also write access (normally root only) to the /proc−filesystem•

Normally, only entries in /proc/sys/* are writable, the others are readonly and for information retrieving only.

11.1.1.1. Retrieving a value

The value of an entry can be retrieved using "cat":

cat /proc/sys/net/ipv6/conf/all/forwarding
0

11.1.1.2. Setting a value

A new value can be set (if entry is writable) using "echo":

echo "1" >/proc/sys/net/ipv6/conf/all/forwarding

11.1.2. Using "sysctl"

Using the "sysctl" program to access the kernel switches is a modern method today. You can use it also, if the
/proc−filesystem isn't mounted. But you have only access to /proc/sys/*!

The program "sysctl" is included in package "procps" (on Red Hat Linux systems).

The sysctl−interface had to be enabled in kernel, means on compiling following switch has to be set•

Chapter 11. Kernel settings in /proc−filesystem 47

CONFIG_SYSCTL=y

11.1.2.1. Retrieving a value

The value of an entry can be retrieved now:

sysctl net.ipv6.conf.all.forwarding
net.ipv6.conf.all.forwarding = 0

11.1.2.2. Setting a value

A new value can be set (if entry is writable):

sysctl −w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1

Note: Don't use spaces around the "=" on setting values. Also on multiple values per line, quote them like e.g.

sysctl −w net.ipv4.ip_local_port_range="32768 61000"
net.ipv4.ip_local_port_range = 32768 61000

11.1.2.3. Additionals

Note: There are sysctl versions in the wild which displaying "/" instead of the "."

For more details take a look into sysctl's manpage.

Hint: for digging fast into the settings, use the option "−a" (display all entries) in conjunction with "grep"

11.1.3. Values found in /proc−filesystems

There are several formats seen in /proc−filesystem:

BOOLEAN: simple a "0" (false) or a "1" (true)•
INTEGER: an integer value, can be unsigned, too•
more sophisticated lines with several values: sometimes a header line is displayed also, if not, have a
look into the kernel source to retrieve information about the meaning of each value...

•

11.2. Entries in /proc/sys/net/ipv6/

11.2.1. conf/default/*

Change the interface−specific default settings.

11.2.2. conf/all/*

Change all the interface−specific settings.

Exception: "conf/all/forwarding" has a different meaning here

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 48

11.2.2.1. conf/all/forwarding

Type: BOOLEAN•

This enables global IPv6 forwarding between all interfaces.

In IPv6 you can't control forwarding per device, forwarding control has to be done using IPv6−netfilter
(controlled with ip6tables) rulesets and specify input and output devices (see Firewalling/Netfilter6 for more).
This is different to IPv4, where you are able to control forwarding per device (decission is made on interface
where packet came in).

This also sets all interfaces' Host/Router setting 'forwarding' to the specified value. See below for details. This
referred to as global forwarding.

If this value is 0, no IPv6 forwarding is enabled, packets never leave another interface, neither physical nor
logical like e.g. tunnels.

11.2.3. conf/interface/*

Change special settings per interface.

The functional behaviour for certain settings is different depending on whether local forwarding is enabled or
not.

11.2.3.1. accept_ra

Type: BOOLEAN•
Functional default: enabled if local forwarding is disabled. disabled if local forwarding is enabled.•

Accept Router Advertisements, and autoconfigure this interface with received data.

11.2.3.2. accept_redirectsc

Type: BOOLEAN•
Functional default: enabled if local forwarding is disabled. disabled if local forwarding is enabled.•

Accept Redirects sent by an IPv6 router.

11.2.3.3. autoconf

Type: BOOLEAN•
Default: TRUE•

Configure link−local addresses (see also Addresstypes) using L2 hardware addresses. E.g. this generates
automagically an address like "fe80::201:23ff:fe45:6789" on an interface with a L2−MAC address.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 49

11.2.3.4. dad_transmits

Type: INTEGER•
Default: 1•

The amount of Duplicate Address Detection probes to send.

11.2.3.5. forwarding

Type: BOOLEAN•
Default: FALSE if global forwarding is disabled (default), otherwise TRUE•

Configure interface−specific Host/Router behaviour.

Note: It is recommended to have the same setting on all interfaces; mixed router/host scenarios are rather
uncommon.

Value FALSE: By default, Host behaviour is assumed. This means:•

IsRouter flag is not set in Neighbour Advertisements.1.
Router Solicitations are being sent when necessary.2.
If accept_ra is TRUE (default), accept Router Advertisements (and do autoconfiguration).3.
If accept_redirects is TRUE (default), accept Redirects.4.

Value TRUE: If local forwarding is enabled, Router behaviour is assumed. This means exactly the
reverse from the above:

•

IsRouter flag is set in Neighbour Advertisements.1.
Router Solicitations are not sent.2.
Router Advertisements are ignored.3.
Redirects are ignored.4.

11.2.3.6. hop_limit

Type: INTEGER•
Default: 64•

Default Hop Limit to set.

11.2.3.7. mtu

Type: INTEGER•
Default: 1280 (IPv6 required minimum)•

Default Maximum Transfer Unit

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 50

11.2.3.8. router_solicitation_delay

Type: INTEGER•
Default: 1•

Number of seconds to wait after interface is brought up before sending Router Solicitations.

11.2.3.9. router_solicitation_interval

Type: INTEGER•
Default: 4•

Number of seconds to wait between Router Solicitations.

11.2.3.10. router_solicitations

Type: INTEGER•
Default: 3•

Number of Router Solicitations to send until assuming no routers are present.

11.2.4. neigh/default/*

Change default settings for neighbor detection and some special global interval and threshold values:

11.2.4.1. gc_thresh1

Type: INTEGER•
Default: 128•

More to be filled.

11.2.4.2. gc_thresh2

Type: INTEGER•
Default: 512•

More to be filled.

11.2.4.3. gc_thresh3

Type: INTEGER•
Default: 1024•

Tuning parameter for neighbour table size.

Increase this value if you have a lot of interfaces and problem with routes start to act mysteriously and fail. Or
if a running Zebra (routing daemon) reports:

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 51

ZEBRA: netlink−listen error: No buffer space available, type=RTM_NEWROUTE(24), seq=426, pid=0

11.2.4.4. gc_interval

Type: INTEGER•
Default: 30•

More to be filled.

11.2.5. neigh/interface/*

Change special settings per interface for neighbor detection.

11.2.5.1. anycast_delay

Type: INTEGER•
Default: 100•

More to be filled.

11.2.5.2. gc_stale_time

Type: INTEGER•
Default: 60•

More to be filled.

11.2.5.3. proxy_qlen

Type: INTEGER•
Default: 64•

More to be filled.

11.2.5.4. unres_qlen

Type: INTEGER•
Default: 3•

More to be filled.

11.2.5.5. app_solicit

Type: INTEGER•
Default: 0•

More to be filled.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 52

11.2.5.6. locktime

Type: INTEGER•
Default: 0•

More to be filled.

11.2.5.7. retrans_time

Type: INTEGER•
Default: 100•

More to be filled.

11.2.5.8. base_reachable_time

Type: INTEGER•
Default: 30•

More to be filled.

11.2.5.9. mcast_solicit

Type: INTEGER•
Default: 3•

More to be filled.

11.2.5.10. ucast_solicit

Type: INTEGER•
Default: 3•

More to be filled

11.2.5.11. delay_first_probe_time

Type: INTEGER•
Default: 5•

More to be filled.

11.2.5.12. proxy_delay

Type: INTEGER•
Default: 80•

More to be filled.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 53

11.2.6. route/*

Change global settings for routing

11.2.6.1. flush

Removed in newer kernel releases − more to be filled.

11.2.6.2. gc_interval

Type: INTEGER•
Default: 30•

More to be filled.

11.2.6.3. gc_thresh

Type: INTEGER•
Default: 1024•

More to be filled.

11.2.6.4. mtu_expires

Type: INTEGER•
Default: 600•

More to be filled.

11.2.6.5. gc_elasticity

Type: INTEGER•
Default: 0•

More to be filled.

11.2.6.6. gc_min_interval

Type: INTEGER•
Default: 5•

More to be filled.

11.2.6.7. gc_timeout

Type: INTEGER•
Default: 60•

More to be filled.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 54

11.2.6.8. min_adv_mss

Type: INTEGER•
Default: 12•

More to be filled.

11.2.6.9. max_size

Type: INTEGER•
Default: 4096•

More to be filled.

11.2.6.10. max_size

Type: INTEGER•
Default: 4096•

More to be filled.

11.3. IPv6−related entries in /proc/sys/net/ipv4/

At the moment (and this will be until IPv4 is completly converted to an independend kernel module) some
switches are also used here for IPv6.

11.3.1. ip_*

11.3.1.1. ip_local_port_range

This control setting is used by IPv6 also.

11.3.2. tcp_*

This control settings are used by IPv6 also.

11.3.3. icmp_*

This control settings are not used by IPv6. To enable ICMPv6 rate limting (which is very recommended
because of the capability of ICMPv6 storms) netfilter−v6 rules must be used.

11.3.4. others

Unknown, but probably not used by IPv6.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 55

11.4. IPv6−related entries in /proc/net/

In /proc/net there are several read−only entries available. You cannot retrieve information using "sysctl" here,
so use e.g. "cat".

11.4.1. if_inet6

Type: One line per addresss containing multiple values•

Here all configured IPv6 addresses are shown in a special format. The example displays for loopback
interface only. The meaning is shown below (see "net/ipv6/addrconf.c" for more)

cat /proc/net/if_inet6
00000000000000000000000000000001 01 80 10 80 lo
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ ++ ++ ++ ++ ++
| | | | | |
1 2 3 4 5 6

IPv6 address displayed in 32 hexadecimal chars without colons as separator1.
Netlink device number (interface index) in hexadecimal (see "ip addr" , too)2.
Prefix length in hexadecimal3.
Scope value (see kernel source " include/net/ipv6.h" and "net/ipv6/addrconf.c" for more)4.
Interface flags (see "include/linux/rtnetlink.h" and "net/ipv6/addrconf.c" for more)5.
Device name6.

11.4.2. ipv6_route

Type: One line per route containing multiple values•

Here all configured IPv6 routes are shown in a special format. The example displays for loopback interface
only. The meaning is shown below (see "net/ipv6/route.c" for more)

cat /proc/net/ipv6_route
00000000000000000000000000000000 00 00000000000000000000000000000000 00
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ ++ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ ++
| | | |
1 2 3 4
¬ 00000000000000000000000000000000 ffffffff 00000001 00000001 00200200 lo
¬ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ +−−−−−−+ +−−−−−−+ +−−−−−−+ +−−−−−−+ ++
¬ | | | | | |
¬ 5 6 7 8 9 10

IPv6 destination network displayed in 32 hexadecimal chars without colons as separator1.
IPv6 destination prefix length in hexadecimal2.
IPv6 source network displayed in 32 hexadecimal chars without colons as separator3.
IPv6 source prefix length in hexadecimal4.
IPv6 next hop displayed in 32 hexadecimal chars without colons as separator5.
Metric in hexadecimal6.
Reference counter7.
Use counter8.
Flags9.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 56

Device name10.

11.4.3. sockstat6

Type: One line per protocol with description and value•

Statistics about used IPv6 sockets. Example:

cat /proc/net/sockstat6
TCP6: inuse 7
UDP6: inuse 2
RAW6: inuse 1
FRAG6: inuse 0 memory 0

11.4.4. tcp6

To be filled.

11.4.5. udp6

To be filled.

11.4.6. igmp6

To be filled.

11.4.7. raw6

To be filled.

11.4.8. ip6_flowlabel

To be filled.

11.4.9. rt6_stats

To be filled.

11.4.10. snmp6

Type: One line per SNMP description and value•

SNMP statistics, can be retrieved via SNMP server and related MIB table by network management software.

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 57

11.4.11. ip6_tables_names

Available netfilter6 tables

Linux IPv6 HOWTO

Chapter 11. Kernel settings in /proc−filesystem 58

Chapter 12. Netlink−Interface to kernel
To be filled...I have no experience with that...

Chapter 12. Netlink−Interface to kernel 59

Chapter 13. Network debugging

13.1. Server socket binding

13.1.1. Using "netstat" for server socket binding check

It's always interesting which server sockets are currently active on a node. Using "netstat" is a short way to get
such information:

Used options: −nlptu

Example:

netstat −nlptu
Active Internet connections (only servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
¬ PID/Program name
tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN
¬ 1258/rpc.statd
tcp 0 0 0.0.0.0:32769 0.0.0.0:* LISTEN
¬ 1502/rpc.mountd
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN
¬ 22433/lpd Waiting
tcp 0 0 1.2.3.1:139 0.0.0.0:* LISTEN
¬ 1746/smbd
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
¬ 1230/portmap
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
¬ 3551/X
tcp 0 0 1.2.3.1:8081 0.0.0.0:* LISTEN
¬ 18735/junkbuster
tcp 0 0 1.2.3.1:3128 0.0.0.0:* LISTEN
¬ 18822/(squid)
tcp 0 0 127.0.0.1:953 0.0.0.0:* LISTEN
¬ 30734/named
tcp 0 0 ::ffff:1.2.3.1:993 :::* LISTEN
¬ 6742/xinetd−ipv6
tcp 0 0 :::13 :::* LISTEN
¬ 6742/xinetd−ipv6
tcp 0 0 ::ffff:1.2.3.1:143 :::* LISTEN
¬ 6742/xinetd−ipv6
tcp 0 0 :::53 :::* LISTEN
¬ 30734/named
tcp 0 0 :::22 :::* LISTEN
¬ 1410/sshd
tcp 0 0 :::6010 :::* LISTEN
¬ 13237/sshd
udp 0 0 0.0.0.0:32768 0.0.0.0:*
¬ 1258/rpc.statd
udp 0 0 0.0.0.0:2049 0.0.0.0:*
¬ −
udp 0 0 0.0.0.0:32770 0.0.0.0:*
¬ 1502/rpc.mountd
udp 0 0 0.0.0.0:32771 0.0.0.0:*
¬ −
udp 0 0 1.2.3.1:137 0.0.0.0:*
¬ 1751/nmbd

Chapter 13. Network debugging 60

udp 0 0 0.0.0.0:137 0.0.0.0:*
¬ 1751/nmbd
udp 0 0 1.2.3.1:138 0.0.0.0:*
¬ 1751/nmbd
udp 0 0 0.0.0.0:138 0.0.0.0:*
¬ 1751/nmbd
udp 0 0 0.0.0.0:33044 0.0.0.0:*
¬ 30734/named
udp 0 0 1.2.3.1:53 0.0.0.0:*
¬ 30734/named
udp 0 0 127.0.0.1:53 0.0.0.0:*
¬ 30734/named
udp 0 0 0.0.0.0:67 0.0.0.0:*
¬ 1530/dhcpd
udp 0 0 0.0.0.0:67 0.0.0.0:*
¬ 1530/dhcpd
udp 0 0 0.0.0.0:32858 0.0.0.0:*
¬ 18822/(squid)
udp 0 0 0.0.0.0:4827 0.0.0.0:*
¬ 18822/(squid)
udp 0 0 0.0.0.0:111 0.0.0.0:*
¬ 1230/portmap
udp 0 0 :::53 :::*
¬ 30734/named

13.2. Examples for tcpdump packet dumps

Here some examples of captured packets are shown, perhaps useful for your own debugging...

...more coming next...

13.2.1. Router discovery

13.2.1.1. Router advertisement

15:43:49.484751 fe80::212:34ff:fe12:3450 > ff02::1: icmp6: router
¬ advertisement(chlim=64, router_ltime=30, reachable_time=0,
¬ retrans_time=0)(prefix info: AR valid_ltime=30, preffered_ltime=20,
¬ prefix=2002:0102:0304:1::/64)(prefix info: LAR valid_ltime=2592000,
¬ preffered_ltime=604800, prefix=3ffe:ffff:0:1::/64)(src lladdr:
¬ 0:12:34:12:34:50) (len 88, hlim 255)

Router with link−local address "fe80::212:34ff:fe12:3450" send an advertisement to the all−node−on−link
multicast address "ff02::1" containing two prefixes "2002:0102:0304:1::/64" (lifetime 30 s) and
"3ffe:ffff:0:1::/64" (lifetime 2592000 s) including its own layer 2 MAC address "0:12:34:12:34:50"

13.2.1.2. Router solicitation

15:44:21.152646 fe80::212:34ff:fe12:3456 > ff02::2: icmp6: router solicitation
¬ (src lladdr: 0:12:34:12:34:56) (len 16, hlim 255)

Node with link−local address "fe80::212:34ff:fe12:3456" and layer 2 MAC address "0:12:34:12:34:56" is
looking for a router on−link, therefore sending this solicitation to the all−router−on−link multicast address
"ff02::2".

Linux IPv6 HOWTO

Chapter 13. Network debugging 61

13.2.2. Neighbor discovery

13.2.2.1. Neighbor discovery solicitation for duplicate address detection

Following packets are sent by a node with layer 2 MAC address "0:12:34:12:34:56" during autoconfiguration
to check whether a potential address is already used by another node on the link sending this to the
solicited−node link−local multicast address

Node wants to configure its link−local address "fe80::212:34ff:fe12:3456", checks for duplicate now•

15:44:17.712338 :: > ff02::1:ff12:3456: icmp6: neighbor sol: who has
¬ fe80::212:34ff:fe12:3456(src lladdr: 0:12:34:12:34:56) (len 32, hlim 255)

Node wants to configure its global address "2002:0102:0304:1:212:34ff:fe12:3456" (after receiving
advertisement shown above), checks for duplicate now

•

15:44:21.905596 :: > ff02::1:ff12:3456: icmp6: neighbor sol: who has
¬ 2002:0102:0304:1:212:34ff:fe12:3456(src lladdr: 0:12:34:12:34:56) (len 32,
¬ hlim 255)

Node wants to configure its global address "3ffe:ffff:0:1:212:34ff:fe12:3456" (after receiving
advertisement shown above), checks for duplicate now

•

15:44:22.304028 :: > ff02::1:ff12:3456: icmp6: neighbor sol: who has
¬ 3ffe:ffff:0:1:212:34ff:fe12:3456(src lladdr: 0:12:34:12:34:56) (len 32, hlim
¬ 255)

13.2.2.2. Neighbor discovery solicitation for looking for host or gateway

Note wants to send packages to "3ffe:ffff:0:1::10" but has no layer 2 MAC address to send packet, so
send solicitation now

•

13:07:47.664538 2002:0102:0304:1:2e0:18ff:fe90:9205 > ff02::1:ff00:10: icmp6:
¬ neighbor sol: who has 3ffe:ffff:0:1::10(src lladdr: 0:e0:18:90:92:5) (len 32,
¬ hlim 255)

Node looks for "fe80::10" now•

13:11:20.870070 fe80::2e0:18ff:fe90:9205 > ff02::1:ff00:10: icmp6: neighbor
¬ sol: who has fe80::10(src lladdr: 0:e0:18:90:92:5) (len 32, hlim 255)

Linux IPv6 HOWTO

Chapter 13. Network debugging 62

Chapter 14. Support for persistent IPv6
configuration in Linux distributions
Some Linux distribution contain already support of a persistent IPv6 configuration using existing or new
configuration and script files and some hook in the IPv4 script files.

14.1. Red Hat Linux and "clones"

Since starting writing the IPv6 & Linux − HowTo it was my intention to enable a persistent IPv6
configuration which catch most of the wished cases like host−only, router−only, dual−homed−host, router
with second stub network, normal tunnels, 6to4 tunnels, and so on. Nowadays there exists a set of
configuration and script files which do the job very well (never heard about real problems, but I don't know
how many use the set. Because this configuration and scrips files are extended from time to time, they got
their own HOWTO page: IPv6−HOWTO/scripts/current. Because I began my IPv6 experience using a Red
Hat Linux 5.0 clone, my IPv6 development systems are mostly Red Hat Linux based now, it's kind a logic that
the scripts are developed for this kind of distribution (so called historic issue). Also it was very easy to extend
some configuration files, create new ones and create some simple hook for calling IPv6 setup during IPv4
setup.

Fortunately, in Red Hat Linux since 7.1 a snapshot of my IPv6 scripts is included, this was and is still further
on assisted by Pekka Savola.

Mandrake since version 8.0 also includes an IPv6−enabled initscript package, but a minor bug still prevents
usage ("ifconfig" misses "inet6" before "add").

14.1.1. Test for IPv6 support of network configuration scripts

You can test, whether your Linux distribution contain support for persistent IPv6 configuration using my set.
Following script library should exist:

/etc/sysconfig/network−scripts/network−functions−ipv6

Auto−magically test:

test −f /etc/sysconfig/network−scripts/network−functions−ipv6 && echo "Main
¬ IPv6 script library exists"

The version of the library is important if you miss some features. You can get it executing following (or easier
look at the top of the file):

source /etc/sysconfig/network−scripts/network−functions−ipv6 &&
¬ getversion_ipv6_functions
20011124

In shown example, the used version is 20011124. Check this against latest information on
IPv6−HOWTO/scripts/current to see what has been changed. There is also a change−log available in the
distributed tar−ball.

Chapter 14. Support for persistent IPv6 configuration in Linux distributions 63

http://www.bieringer.de/linux/IPv6/
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/scripts/current/
http://www.bieringer.de/linux/IPv6/IPv6-HOWTO/scripts/current/

14.1.2. Short hint for enabling IPv6 on current RHL 7.1, 7.2, 7.3, ...

Check whether running system has already IPv6 module loaded•

modprobe −c | grep net−pf−10
alias net−pf−10 off

If result is "off", then enable IPv6 networking by editing /etc/sysconfig/network, add following new
line

•

NETWORKING_IPV6=yes

Reboot or restart networking using•

service network restart

Now IPv6 module should be loaded•

modprobe −c | grep ipv6
alias net−pf−10 ipv6

If your system is on a link which provides router advertisement, autoconfiguration will be done automatically.
For more information which settings are supported see /usr/share/doc/initscripts−$version/sysconfig.txt.

14.2. SuSE Linux

In newer 7.x versions there is a really rudimentary support available, see /etc/rc.config for details.

Because of the really different configuration and script file structure it is hard (or impossible) to use the set for
Red Hat Linux and clones with this distribution. In versions 8.x they completly change their configuration
setup.

14.2.1. Further information

How to setup 6to4 IPv6 with SuSE 7.3•

14.3. Debian Linux

I still don't have any information whether a persistent IPv6 configuration can be stored somewhere.

14.3.1. Further information

IPv6 on Debian Linux•

Linux IPv6 HOWTO

Chapter 14. Support for persistent IPv6 configuration in Linux distributions 64

http://www.feyrer.de/IPv6/SuSE73-IPv6+6to4-setup.html
http://people.debian.org/~csmall/ipv6/

Chapter 15. Auto−configuration and mobility

15.1. Stateless auto−configuration

Is supported and seen on the assigned link−local address after an IPv6−enabled interface is up.

15.2. Stateful auto−configuration using Router
Advertisement Daemon (radvd)

to be filled. See radvd daemon autoconfiguration below.

15.3. Dynamic Host Configuration Protocol v6 (DHCPv6)

to be filled.

15.4. Mobility

to be filled.

For the moment, see Mobile IPv6 for Linux(MIPL) homepage for more details

Chapter 15. Auto−configuration and mobility 65

http://www.mipl.mediapoli.com/

Chapter 16. Firewalling
IPv6 firewalling is important, especially if using IPv6 on internal networks with global IPv6 addresses.
Because unlike at IPv4 networks where in common internal hosts are protected automatically using private
IPv4 addresses like RFC 1918 / Address Allocation for Private Internets or APIPA / Automatic Private IP
Addressing, in IPv6 normally global addresses are used and someone with IPv6 connectivity can reach all
internal IPv6 enabled nodes.

16.1. Firewalling using netfilter6

Native IPv6 firewalling is only supported in kernel versions 2.4+. In older 2.2− you can only filter
IPv6−in−IPv4 by protocol 41.

Attention: no warranty that described rules or examples are really protect your system!

Audit your ruleset after installation, see Section 17.3 for more.

16.1.1. More information

Netfilter project•
maillist archive of netfilter users•
maillist archive of netfilter developers•
Unofficial status informations•

16.2. Preparation

16.2.1. Get sources

Get the latest kernel source: http://www.kernel.org/

Get the latest iptables package:

Source tarball (for kernel patches): http://www.netfilter.org/•
Source RPM for rebuild of binary (for RedHat systems):
ftp://ftp.redhat.com/redhat/linux/rawhide/SRPMS/SRPMS/ or perhaps also at
http://www.netcore.fi/pekkas/linux/ipv6/

•

16.2.2. Extract sources

Change to source directory:

cd /path/to/src

Unpack and rename kernel sources

tar z|jxf kernel−version.tar.gz|bz2
mv linux linux−version−iptables−version+IPv6

Chapter 16. Firewalling 66

http://rfc.net/rfc1918.html
http://www.glossary-tech.com/apipa.htm
http://www.glossary-tech.com/apipa.htm
http://www.netfilter.org/
http://lists.samba.org/pipermail/netfilter/
http://lists.samba.org/pipermail/netfilter-devel/
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-kernel.html#netfilter6
http://www.kernel.org/
http://www.netfilter.org/
ftp://ftp.redhat.com/redhat/linux/rawhide/SRPMS/SRPMS/
http://www.netcore.fi/pekkas/linux/ipv6/

Unpack iptables sources

tar z|jxf iptables−version.tar.gz|bz2

16.2.3. Apply latest iptables/IPv6−related patches to kernel source

Change to iptables directory

cd iptables−version

Apply pending patches

make pending−patches KERNEL_DIR=/path/to/src/linux−version−iptables−version/

Apply additional IPv6 related patches (still not in the vanilla kernel included)

make patch−o−matic KERNEL_DIR=/path/to/src/linux−version−iptables−version/

Say yes at following options (iptables−1.2.2)

ah−esp.patch•
masq−dynaddr.patch (only needed for systems with dynamic IP assigned WAN connections like PPP
or PPPoE)

•

ipv6−agr.patch.ipv6•
ipv6−ports.patch.ipv6•
LOG.patch.ipv6•
REJECT.patch.ipv6•

Check IPv6 extensions

make print−extensions
Extensions found: IPv6:owner IPv6:limit IPv6:mac IPv6:multiport

16.2.4. Configure, build and install new kernel

Change to kernel sources

cd /path/to/src/linux−version−iptables−version/

Edit Makefile

− EXTRAVERSION =
+ EXTRAVERSION = −iptables−version+IPv6−try

Run configure, enable IPv6 related

 Code maturity level options
 Prompt for development and/or incomplete code/drivers : yes
 Networking options
 Network packet filtering: yes
 The IPv6 protocol: module

Linux IPv6 HOWTO

Chapter 16. Firewalling 67

 IPv6: Netfilter Configuration
 IP6 tables support: module
 All new options like following:
 limit match support: module
 MAC address match support: module
 Multiple port match support: module
 Owner match support: module
 netfilter MARK match support: module
 Aggregated address check: module
 Packet filtering: module
 REJECT target support: module
 LOG target support: module
 Packet mangling: module
 MARK target support: module

Configure other related to your system, too

Compilation and installing: see the kernel section here and other HOWTOs

16.2.5. Rebuild and install binaries of iptables

Make sure, that upper kernel source tree is also available at /usr/src/linux/

Rename older directory

mv /usr/src/linux /usr/src/linux.old

Create a new softlink

ln /path/to/src/linux−version−iptables−version /usr/src/linux

Rebuild SRPMS

rpm −−rebuild /path/to/SRPMS/iptables−version−release.src.rpm

Install new iptables packages (iptables + iptables−ipv6)

On RH 7.1 systems, normally, already an older version is installed, therefore use "freshen"•

rpm −Fhv /path/to/RPMS/cpu/iptables*−version−release.cpu.rpm

If not already installed, use "install"•

rpm −ihv /path/to/RPMS/cpu/iptables*−version−release.cpu.rpm

On RH 6.2 systems, normally, no kernel 2.4.x is installed, therefore the requirements don't fit. Use
"−−nodeps" to install it

•

rpm −ihv −−nodep /path/to/RPMS/cpu/iptables*−version−release.cpu.rpm

Perhaps it's necessary to create a softlink for iptables libraries where iptables looks for them

ln −s /lib/iptables/ /usr/lib/iptables

Linux IPv6 HOWTO

Chapter 16. Firewalling 68

16.3. Usage

16.3.1. Check for support

Load module, if so compiled

modprobe ip6_tables

Check for capability

[! −f /proc/net/ip6_tables_names] && echo "Current kernel doesn't support
¬ 'ip6tables' firewalling (IPv6)!"

16.3.2. Learn how to use ip6tables

16.3.2.1. List all IPv6 netfilter entries

Short•

ip6tables −L

Extended•

ip6tables −n −v −−line−numbers −L

16.3.2.2. List specified filter

ip6tables −n −v −−line−numbers −L INPUT

16.3.2.3. Insert a log rule at the input filter with options

ip6tables −−table filter −−append INPUT −j LOG −−log−prefix "INPUT:"
¬ −−log−level 7

16.3.2.4. Insert a drop rule at the input filter

ip6tables −−table filter −−append INPUT −j DROP

16.3.2.5. Delete a rule by number

ip6tables −−table filter −−delete INPUT 1

16.3.2.6. Allow ICMPv6

Using older kernels (unpatched kernel 2.4.5 and iptables−1.2.2) no type can be specified

Accept incoming ICMPv6 through tunnels•

Linux IPv6 HOWTO

Chapter 16. Firewalling 69

ip6tables −A INPUT −i sit+ −p icmpv6 −j ACCEPT

Allow outgoing ICMPv6 through tunnels•

ip6tables −A OUTPUT −o sit+ −p icmpv6 −j ACCEPT

Newer kernels allow specifying of ICMPv6 types:

ip6tables −A INPUT −p icmpv6 −−icmpv6−type echo−request −j ACCEPT

16.3.2.7. Rate−limiting

Because it can happen (author already saw it to times) that an ICMPv6 storm will raise up, you should use
available rate limiting for at least ICMPv6 ruleset. In addition logging rules should also get rate limiting to
prevent DoS attacks against syslog and storage of log file partition. An example for a rate limited ICMPv6
looks like:

ip6tables −A INPUT −−protocol icmpv6 −−icmpv6−type echo−request −j ACCEPT −−match limit −−limit 30/minute

16.3.2.8. Allow incoming SSH

Here an example is shown for a ruleset which allows incoming SSH connection from a specified IPv6 address

Allow incoming SSH from 3ffe:ffff:100::1/128•

ip6tables −A INPUT −i sit+ −p tcp −s 3ffe:ffff:100::1/128 −−sport 512:65535
¬ −−dport 22 −j ACCEPT

Allow response packets (at the moment IPv6 connection tracking isn't in mainstream netfilter6
implemented)

•

ip6tables −A OUTPUT −o sit+ −p tcp −d 3ffe:ffff:100::1/128 −−dport 512:65535
¬ −−sport 22 ! −−syn j ACCEPT

16.3.2.9. Enable tunneled IPv6−in−IPv4

Tto accept tunneled IPv6−in−IPv4 packets, you have to insert rules in your IPv4 firewall setup relating to
such packets, for example

Accept incoming IPv6−in−IPv4 on interface ppp0•

iptables −A INPUT −i ppp0 −p ipv6 −j ACCEPT

Allow outgoing IPv6−in−IPv4 to interface ppp0•

iptables −A OUTPUT −o ppp0 −p ipv6 −j ACCEPT

If you have only a static tunnel, you can specify the IPv4 addresses, too, like

Accept incoming IPv6−in−IPv4 on interface ppp0 from tunnel endpoint 1.2.3.4•

iptables −A INPUT −i ppp0 −p ipv6 −s 1.2.3.4 −j ACCEPT

Linux IPv6 HOWTO

Chapter 16. Firewalling 70

Allow outgoing IPv6−in−IPv4 to interface ppp0 to tunnel endpoint 1.2.3.4•

iptables −A OUTPUT −o ppp0 −p ipv6 −d 1.2.3.4 −j ACCEPT

16.3.2.10. Protection against incoming TCP connection requests

VERY RECOMMENDED! For security issues you should really insert a rule which blocks incoming TCP
connection requests. Adapt "−i" option, if other interface names are in use!

Block incoming TCP connection requests to this host•

ip6tables −I INPUT −i sit+ −p tcp −−syn −j DROP

Block incoming TCP connection requests to hosts behind this router•

ip6tables −I FORWARD −i sit+ −p tcp −−syn −j DROP

Perhaps the rules have to be placed below others, but that is work you have to think about it. Best way is to
create a script and execute rules in a specified way.

16.3.2.11. Protection against incoming UDP connection requests

ALSO RECOMMENDED! Like mentioned on my firewall information it's possible to control the ports on
outgoing UDP/TCP sessions. So if all of your local IPv6 systems are use local ports e.g. from 32768 to 60999
you are able to filter UDP connections also (until connection tracking works) like:

Block incoming UDP packets which cannot be responses of outgoing requests of this host•

ip6tables −I INPUT −i sit+ −p udp ! −−dport 32768:60999 −j DROP

Block incoming UDP packets which cannot be responses of forwarded requests of hosts behind this
router

•

ip6tables −I FORWARD −i sit+ −p udp ! −−dport 32768:60999 −j DROP

16.3.3. Demonstration example

Following lines show a more sophisticated setup as an example. Happy netfilter6 ruleset creation....

ip6tables −n −v −L
Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 extIN all sit+ * ::/0 ::/0
 4 384 intIN all eth0 * ::/0 ::/0
 0 0 ACCEPT all * * ::1/128 ::1/128
 0 0 ACCEPT all lo * ::/0 ::/0
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `INPUT−default:'
 0 0 DROP all * * ::/0 ::/0

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
¬

Linux IPv6 HOWTO

Chapter 16. Firewalling 71

 0 0 int2ext all eth0 sit+ ::/0 ::/0
 0 0 ext2int all sit+ eth0 ::/0 ::/0
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `FORWARD−default:'
 0 0 DROP all * * ::/0 ::/0

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
¬
 0 0 extOUT all * sit+ ::/0 ::/0
 4 384 intOUT all * eth0 ::/0 ::/0
 0 0 ACCEPT all * * ::1/128 ::1/128
 0 0 ACCEPT all * lo ::/0 ::/0
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `OUTPUT−default:'
 0 0 DROP all * * ::/0 ::/0

Chain ext2int (1 references)
 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT icmpv6 * * ::/0 ::/0
 0 0 ACCEPT tcp * * ::/0 ::/0
¬ tcp spts:1:65535 dpts:1024:65535 flags:!0x16/0x02
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `ext2int−default:'
 0 0 DROP tcp * * ::/0 ::/0
 0 0 DROP udp * * ::/0 ::/0
 0 0 DROP all * * ::/0 ::/0

Chain extIN (1 references)
 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT tcp * * 3ffe:400:100::1/128 ::/0
¬ tcp spts:512:65535 dpt:22
 0 0 ACCEPT tcp * * 3ffe:400:100::2/128 ::/0
¬ tcp spts:512:65535 dpt:22
 0 0 ACCEPT icmpv6 * * ::/0 ::/0
 0 0 ACCEPT tcp * * ::/0 ::/0
¬ tcp spts:1:65535 dpts:1024:65535 flags:!0x16/0x02
 0 0 ACCEPT udp * * ::/0 ::/0
¬ udp spts:1:65535 dpts:1024:65535
 0 0 LOG all * * ::/0 ::/0
¬ limit: avg 5/min burst 5 LOG flags 0 level 7 prefix `extIN−default:'
 0 0 DROP all * * ::/0 ::/0

Chain extOUT (1 references)
 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT tcp * * ::/0
¬ 3ffe:ffff:100::1/128tcp spt:22 dpts:512:65535 flags:!0x16/0x02
 0 0 ACCEPT tcp * * ::/0
¬ 3ffe:ffff:100::2/128tcp spt:22 dpts:512:65535 flags:!0x16/0x02
 0 0 ACCEPT icmpv6 * * ::/0 ::/0
 0 0 ACCEPT tcp * * ::/0 ::/0
¬ tcp spts:1024:65535 dpts:1:65535
 0 0 ACCEPT udp * * ::/0 ::/0
¬ udp spts:1024:65535 dpts:1:65535
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `extOUT−default:'
 0 0 DROP all * * ::/0 ::/0

Chain int2ext (1 references)

Linux IPv6 HOWTO

Chapter 16. Firewalling 72

 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT icmpv6 * * ::/0 ::/0
 0 0 ACCEPT tcp * * ::/0 ::/0
¬ tcp spts:1024:65535 dpts:1:65535
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `int2ext:'
 0 0 DROP all * * ::/0 ::/0
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `int2ext−default:'
 0 0 DROP tcp * * ::/0 ::/0
 0 0 DROP udp * * ::/0 ::/0
 0 0 DROP all * * ::/0 ::/0

Chain intIN (1 references)
 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT all * * ::/0
¬ fe80::/ffc0::
 4 384 ACCEPT all * * ::/0 ff02::/16

Chain intOUT (1 references)
 pkts bytes target prot opt in out source destination
¬
 0 0 ACCEPT all * * ::/0
¬ fe80::/ffc0::
 4 384 ACCEPT all * * ::/0 ff02::/16
 0 0 LOG all * * ::/0 ::/0
¬ LOG flags 0 level 7 prefix `intOUT−default:'
 0 0 DROP all * * ::/0 ::/0

Linux IPv6 HOWTO

Chapter 16. Firewalling 73

Chapter 17. Security

17.1. Node security

It's very recommend to apply all available patches and disable all not necessary services. Also bind services to
the needed IPv4/IPv6 addresses only and install local firewalling.

More to be filled...

17.2. Access limitations

Many services uses the tcp_wrapper library for access control. Below is described the use of tcp_wrapper.

More to be filled...

17.3. IPv6 security auditing

Currently there are no comfortable tools out which are able to check a system over network for IPv6 security
issues. Neither Nessus nor any commercial security scanner is as far as I know able to scan IPv6 addresses.

17.3.1. Legal issues

ATTENTION: always take care that you only scan your own systems or after receiving a written order,
otherwise legal issues are able to come up to you. CHECK destination IPv6 addresses TWICE before starting
a scan.

17.3.2. Security auditing using IPv6−enabled netcat

With the IPv6−enabled netcat (see IPv6+Linux−status−apps/security−auditing for more) you can run a
portscan by wrapping a script around which run through a port range, grab banners and so on. Usage example:

nc6 ::1 daytime
13 JUL 2002 11:22:22 CEST

17.3.3. Security auditing using IPv6−enabled nmap

NMap, one of the best portscaner around the world, supports IPv6 since version 3.10ALPHA1. Usage
example:

nmap −6 −sT ::1
Starting nmap V. 3.10ALPHA3 (www.insecure.org/nmap/)
Interesting ports on localhost6 (::1):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
53/tcp open domain
515/tcp open printer
2401/tcp open cvspserver
Nmap run completed −− 1 IP address (1 host up) scanned in 0.525 seconds

Chapter 17. Security 74

http://www.nessus.org/
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-apps.html#security-auditing
http://www.insecure.org/nmap/

17.3.4. Security auditing using IPv6−enabled strobe

Strobe is a (compared to NMap) more a low budget portscanner, but there is an IPv6−enabling patch available
(see IPv6+Linux−status−apps/security−auditing for more). Usage example:

./strobe ::1 strobe 1.05 (c) 1995−1999 Julian Assange <proff@iq.org>.
::1 2401 unassigned unknown
::1 22 ssh Secure Shell − RSA encrypted rsh
::1 515 printer spooler (lpd)
::1 6010 unassigned unknown
::1 53 domain Domain Name Server

Note: strobe isn't really developed further on, the shown version number isn't the right one.

17.3.5. Audit results

If the result of an audit mismatch your IPv6 security policy, use IPv6 firewalling to close the holes, e.g. using
netfilter6 (see Firewalling/Netfilter6 for more).

Linux IPv6 HOWTO

Chapter 17. Security 75

http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status-apps.html#security-auditing

Chapter 18. Encryption and Authentication
Unlike in IPv4 encryption and authentication is a mandatory feature of IPv6. This features are normally
implemented using IPsec (which can be also used by IPv4).

But because of the independence of encryption and authentication from the key exchange protocol there exists
currently some interoperability problems regarding this issue.

18.1. Support in kernel

18.1.1. Support in vanilla Linux kernel

Currently missing in 2.4, perhaps in 2.5 (see below). There is an issue about keeping the Linux kernel source
free of export/import−control−laws regarding encryption code. This is also one case why FreeS/WAN project
(IPv4 only IPsec) isn't still contained in vanilla source.

18.1.2. Support in USAGI kernel

The USAGI project has taken over in July 2001 the IPv6 enabled FreeS/WAN code from the IABG / IPv6
Project and included in their kernel extensions, but still work in progress, means that not all IABG features are
already working in USAGI extension.

18.2. Usage

to be filled, mostly like FreeS/WAN for IPv4. For the meantime look for documentation at FreeS/WAN /
Online documentation.

Chapter 18. Encryption and Authentication 76

http://www.freeswan.org/
http://www.ipv6.iabg.de/downloadframe/
http://www.ipv6.iabg.de/downloadframe/
http://www.freeswan.org/doc.html
http://www.freeswan.org/doc.html

Chapter 19. Quality of Service (QoS)
IPv6 supports QoS with use of Flow Labels and Traffic Classes. This can be controlled using "tc" (contained
in package "iproute").

more to be filled...

Chapter 19. Quality of Service (QoS) 77

Chapter 20. Hints for IPv6−enabled daemons
Here some hints are shown for IPv6−enabled daemons.

20.1. Berkeley Internet Name Daemon BIND (named)

IPv6 is supported since version 9. Always use newest available version. At least version 9.1.3 must be used,
older versions can contain remote exploitable security holes.

20.1.1. Listening on IPv6 addresses

Note: unlike in IPv4 current versions doesn't allow to bind a server socket to dedicated IPv6 addresses, so
only any or none are valid. Because this can be a security issue, check the Access Control List (ACL) section
below, too!

20.1.1.1. Enable BIND named for listening on IPv6 address

To enable IPv6 for listening, following options are requested to change

options {
 # sure other options here, too
 listen−on−v6 { any; };
};

This should result after restart in e.g.

netstat −lnptu |grep "named\W*$"
tcp 0 0 :::53 :::* LISTEN 1234/named # incoming TCP requests
udp 0 0 1.2.3.4:53 0.0.0.0:* 1234/named # incoming UDP requests to IPv4 1.2.3.4
udp 0 0 127.0.0.1:53 0.0.0.0:* 1234/named # incoming UDP requests to IPv4 localhost
udp 0 0 0.0.0.0:32868 0.0.0.0:* 1234/named # dynamic chosen port for outgoing queries
udp 0 0 :::53 :::* 1234/named # incoming UDP request to any IPv6

And a simple test looks like

dig localhost @::1

and should show you a result.

20.1.1.2. Disable BIND named for listening on IPv6 address

To disable IPv6 for listening, following options are requested to change

options {
 # sure other options here, too
 listen−on−v6 { none; };
};

Chapter 20. Hints for IPv6−enabled daemons 78

20.1.2. IPv6 enabled Access Control Lists (ACL)

IPv6 enabled ACLs are possible and should be used whenever it's possible. An example looks like following:

acl internal−net {
 127.0.0.1;
 1.2.3.0/24;
 3ffe:ffff:100::/56;
 ::1/128;
 ::ffff:1.2.3.4/128;
};
acl ns−internal−net {
 1.2.3.4;
 1.2.3.5;
 3ffe:ffff:100::4/128;
 3ffe:ffff:100::5/128;
};

This ACLs can be used e.g. for queries of clients and transfer zones to secondary name−servers. This prevents
also your caching name−server to be used from outside using IPv6.

options {
 # sure other options here, too
 listen−on−v6 { none; };
 allow−query { internal−net; };
 allow−transfer { ns−internal−net; };
};

It's also possible to set the allow−query and allow−transfer option for most of single zone definitions, too.

20.1.3. Sending queries with dedicated IPv6 address

This option is not required, but perhaps needed:

query−source−v6 address <ipv6address|*> port <port|*>;

20.1.4. Per zone defined dedicated IPv6 addresses

It's also possible to define per zone some IPv6 addresses.

20.1.4.1. Transfer source address

Transfer source address is used for outgoing zone transfers:

transfer−source−v6 <ipv6addr|*> [port port];

20.1.4.2. Notify source address

Notify source address is used for outgoing notify messages:

notify−source−v6 <ipv6addr|*> [port port];

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 79

20.1.5. Serving IPv6 related DNS data

For IPv6 new types and root zones for reverse lookups are defined:

AAAA and reverse IP6.INT: specified in RFC 1886 / DNS Extensions to support IP version 6, usable
since BIND version 4.9.6

•

A6, DNAME (DEPRICATED NOW!) and reverse IP6.ARPA: specified in RFC 2874 / DNS
Extensions to Support IPv6 Address Aggregation and Renumbering, usable since BIND 9, but see
also an information about the current state at draft−ietf−dnsext−ipv6−addresses−00.txt

•

Perhaps filled later more content, for the meantime take a look at given RFCs and

AAAA and reverse IP6.INT: IPv6 DNS Setup Information•
A6, DNAME (DEPRICATED NOW!) and reverse IP6.ARPA: take a look into chapter 4 and 6 of the
BIND 9 Administrator Reference Manual (ARM) distributed which the bind−package or get this here:
BIND version 9 ARM (PDF)

•

Because IP6.INT is deprecated (but still in use), a DNS server which will support IPv6 information has to
serve both reverse zones.

20.1.5.1. Current best practice

Because there are some troubles around using the new formats, current best practice is:

Forward lookup support:

AAAA•

Reverse lookup support:

Reverse nibble format for zone ip6.int (FOR BACKWARD COMPATIBILITY)•
Reverse nibble format for zone ip6.arpa (RECOMMENDED)•

20.1.6. Checking IPv6−enabled connect

To check, whether BIND is listening on an IPv6 socket and serving data see following examples.

20.1.6.1. IPv6 connect, but denied by ACL

Specifying a dedicated server for the query, an IPv6 connect can be forced:

$ host −t aaaa www.6bone.net 3ffe:ffff:200:f101::1
Using domain server:
Name: 3ffe:ffff:200:f101::1
Address: 3ffe:ffff:200:f101::1#53
Aliases:
Host www.6bone.net. not found: 5(REFUSED)

Related log entry looks like following:

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 80

http://rfc.net/rfc1886.html
http://rfc.net/rfc2874.html
http://rfc.net/rfc2874.html
http://www.ietf.org/internet-drafts/
http://www.isi.edu/~bmanning/v6DNS.html
http://www.nominum.com/resources/documentation/Bv9ARM.pdf

Jan 3 12:43:32 gate named[12347]: client
¬ 3ffe:ffff:200:f101:212:34ff:fe12:3456#32770:
 query denied

If you see such entries in the log, check whether requests from this client should be allowed and perhaps
review your ACL configuration.

20.1.6.2. Successful IPv6 connect

A successful IPv6 connect looks like following:

$ host −t aaaa www.6bone.net 3ffe:ffff:200:f101::1
Using domain server:
Name: 3ffe:ffff:200:f101::1
Address: 3ffe:ffff:200:f101::1#53
Aliases:
www.6bone.net. is an alias for 6bone.net.
6bone.net. has AAAA address 3ffe:b00:c18:1::10

20.2. Internet super daemon (xinetd)

IPv6 is supported since version around 1.8.9. Always use newest available version. At least version 2.3.3 must
be used, older versions can contain remote exploitable security holes.

Some Linux distribution contain an extra package for the IPv6 enabled xinetd, some others start the
IPv6−enabled xinetd if following variable is set: NETWORKING_IPV6="yes", mostly done by
/etc/sysconfig/network (only valid for Red Hat like distributions).

If you enable a built−in service like e.g. daytime by modifying the configuration file in /etc/xinetd.d/daytime
like

diff −u /etc/xinetd.d/daytime.orig /etc/xinetd.d/daytime
−−− /etc/xinetd.d/daytime.orig Sun Dec 16 19:00:14 2001
+++ /etc/xinetd.d/daytime Sun Dec 16 19:00:22 2001
@@ −10,5 +10,5 @@
 protocol = tcp
 user = root
 wait = no
− disable = yes
+ disable = no
 }

After restarting the xinetd you should get a positive result like:

netstat −lnptu −A inet6 |grep "xinetd*"
tcp 0 0 ::ffff:192.168.1.1:993 :::* LISTEN 12345/xinetd−ipv6
tcp 0 0 :::13 :::* LISTEN 12345/xinetd−ipv6 <− service
¬ daytime/tcp
tcp 0 0 ::ffff:192.168.1.1:143 :::* LISTEN 12345/xinetd−ipv6

Shown example also displays an IMAP and IMAP−SSL IPv4−only listening xinetd.

Note: An IPv4−only xinetd won't start on an IPv6−enabled node and also the IPv6−enabled won't start on an
IPv4−only node (will be hopefully fixed in the future).

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 81

20.3. Webserver Apache2 (httpd2)

Apache web server supports IPv6 native by maintainers since 2.0.14. Available patches for the older 1.3.x
series are not current and shouldn't be used in public environment, but available at KAME / Misc.

20.3.1. Listening on IPv6 addresses

Note: virtual hosts on IPv6 addresses are broken in versions until 2.0.28 (a patch is available for 2.0.28). But
always try latest available version first because earlier versions had some security issues.

20.3.1.1. Virtual host listen on an IPv6 address only

Listen [3ffe:ffff:100::1]:80
<VirtualHost [3ffe:ffff:100::1]:80>
 ServerName ipv6only.yourdomain.yourtopleveldomain
 # ...sure more config lines
</VirtualHost>

20.3.1.2. Virtual host listen on an IPv6 and on an IPv4 address

Listen [3ffe:ffff:100::2]:80
Listen 1.2.3.4:80
<VirtualHost [3ffe:ffff:100::2]:80 1.2.3.4:80>
 ServerName ipv6andipv4.yourdomain.yourtopleveldomain
 # ...sure more config lines
</VirtualHost>

This should result after restart in e.g.

netstat −lnptu |grep "httpd2\W*$"
tcp 0 0 1.2.3.4:80 0.0.0.0:* LISTEN 12345/httpd2
tcp 0 0 3ffe:ffff:100::1:80 :::* LISTEN 12345/httpd2
tcp 0 0 3ffe:ffff:100::2:80 :::* LISTEN 12345/httpd2

For simple tests use the telnet example already shown.

20.4. Router Advertisement Daemon (radvd)

The router advertisement daemon is very useful on a LAN, if clients should be auto−configured. The daemon
itself should run a Linux router (not necessary the default IPv4 gateway).

You can specify some information and flags which should be contained in the advertisement. Common used
are

Prefix (needed)•
Lifetime of the prefix•
Frequency of sending advertisements (optional)•

After a proper configuration, the daemon sends advertisements through specified interfaces and clients are
hopefully receive them and auto−magically configure addresses with received prefix and the default route.

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 82

ftp://ftp.kame.net/pub/kame/misc/

20.4.1. Configuring radvd

20.4.1.1. Simple configuration

Radvd's config file is normally /etc/radvd.conf. An simple example looks like following:

interface eth0 {
 AdvSendAdvert on;
 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 prefix 3ffe:ffff:0100:f101::/64 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
};

This results on client side in

ip −6 addr show eth0
3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
 inet6 3ffe:ffff:100:f101:2e0:12ff:fe34:1234/64 scope global dynamic
 valid_lft 2591992sec preferred_lft 604792sec
 inet6 fe80::2e0:12ff:fe34:1234/10 scope link

Because no lifetime was defined, a very high value was used.

20.4.1.2. Special 6to4 configuration

Version since 0.6.2pl3 support the automatic (re)−generation of the prefix depending on an IPv4 address of a
specified interface. This can be used to distribute advertisements in a LAN after the 6to4 tunneling has
changed. Mostly used behind a dynamic dial−on−demand Linux router. Because of the sure shorter lifetime of
such prefix (after each dial−up, another prefix is valid), the lifetime configured to minimal values:

interface eth0 {
 AdvSendAdvert on;
 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 prefix 0:0:0:f101::/64 {
 AdvOnLink off;
 AdvAutonomous on;
 AdvRouterAddr on;
 Base6to4Interface ppp0;
 AdvPreferredLifetime 20;
 AdvValidLifetime 30;
 };
};

This results on client side in (assuming, ppp0 has currently 1.2.3.4 as local IPv4 address):

ip −6 addr show eth0
3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
 inet6 2002:0102:0304:f101:2e0:12ff:fe34:1234/64 scope global dynamic
 valid_lft 22sec preferred_lft 12sec
 inet6 fe80::2e0:12ff:fe34:1234/10 scope link

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 83

Because a small lifetime was defined, such prefix will be thrown away quickly, if no related advertisement
was received.

20.4.2. Debugging

A program called "radvdump" can help you looking into sent or received advertisements. Simple to use:

radvdump
Router advertisement from fe80::280:c8ff:feb9:cef9 (hoplimit 255)
 AdvCurHopLimit: 64
 AdvManagedFlag: off
 AdvOtherConfigFlag: off
 AdvHomeAgentFlag: off
 AdvReachableTime: 0
 AdvRetransTimer: 0
 Prefix 2002:0102:0304:f101::/64
 AdvValidLifetime: 30
 AdvPreferredLifetime: 20
 AdvOnLink: off
 AdvAutonomous: on
 AdvRouterAddr: on
 Prefix 3ffe:ffff:100:f101::/64
 AdvValidLifetime: 2592000
 AdvPreferredLifetime: 604800
 AdvOnLink: on
 AdvAutonomous: on
 AdvRouterAddr: on
 AdvSourceLLAddress: 00 80 12 34 56 78

Output shows you each advertisement package in readable format. You should see your configured values
here again, if not, perhaps it's not your radvd which sends the advertisement...look for another router on the
link (and take the LLAddress, which is the MAC address for tracing).

20.5. tcp_wrapper

tcp_wrapper is a library which can help you to protect service against misuse.

20.5.1. Filtering capabilities

You can use tcp_wrapper for

Filtering against source addresses (IPv4 or IPv6)•
Filtering against users (requires a running ident daemon on the client)•

20.5.2. Which program uses tcp_wrapper

Following are known:

Each service which is called by xinetd (if xinetd is compiled using tcp_wrapper library)•
sshd (if compiled using tcp_wrapper)•

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 84

20.5.3. Usage

tcp_wrapper is controlled by two files name /etc/hosts.allow and /etc/hosts.deny. For more information see

$ man hosts.all

20.5.3.1. Example for /etc/hosts.allow

In this file, each service which should be positive filtered (means connects are accepted) need a line.

sshd: 1.2.3. [3ffe:ffff:100:200::]/64
daytime−stream: 1.2.3. [3ffe:ffff:100:200::]/64

20.5.3.2. Example for /etc/hosts.deny

This file contains all negative filter entries and should normally deny the rest using

ALL: ALL

If this node is a more sensible one you can replace the standard line above with this one, but this can cause a
DoS attack (load of mailer and spool directory), if too many connects were made in short time. Perhaps a
logwatch is better for such issues.

ALL: ALL: spawn (echo "Attempt from %h %a to %d at `date`"
 | tee −a /var/log/tcp.deny.log | mail root@localhost)

20.5.4. Logging

Depending on the entry in the syslog daemon configuration file /etc/syslog.conf the tcp_wrapper logs
normally into /var/log/secure.

20.5.4.1. Refused connection

A refused connection via IPv4 to an xinetd covered daytime service produces a line like following example

Jan 2 20:40:44 gate xinetd−ipv6[12346]: FAIL: daytime−stream libwrap
¬ from=::ffff:1.2.3.4
Jan 2 20:32:06 gate xinetd−ipv6[12346]: FAIL: daytime−stream libwrap
 from=3ffe:ffff:100:200::212:34ff:fe12:3456

A refused connection via IPv4 to an dual−listen sshd produces a line like following example

Jan 2 20:24:17 gate sshd[12345]: refused connect from ::ffff:1.2.3.4
¬ (::ffff:1.2.3.4)
Jan 2 20:39:33 gate sshd[12345]: refused connect
 from 3ffe:ffff:100:200::212:34ff:fe12:3456
¬ (3ffe:ffff:100:200::212:34ff:fe12:3456)

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 85

20.5.4.2. Permitted connection

A permitted connection via IPv4 to an xinetd covered daytime service produces a line like following example

Jan 2 20:37:50 gate xinetd−ipv6[12346]: START: daytime−stream pid=0
¬ from=::ffff:1.2.3.4
Jan 2 20:37:56 gate xinetd−ipv6[12346]: START: daytime−stream pid=0
 from=3ffe:ffff:100:200::212:34ff:fe12:3456

A permitted connection via IPv4 to an dual−listen sshd produces a line like following example

Jan 2 20:43:10 gate sshd[21975]: Accepted password for user from ::ffff:1.2.3.4
¬ port 33381 ssh2
Jan 2 20:42:19 gate sshd[12345]: Accepted password for user
 from 3ffe:ffff:100:200::212:34ff:fe12:3456 port 33380 ssh2

Linux IPv6 HOWTO

Chapter 20. Hints for IPv6−enabled daemons 86

Chapter 21. Programming (using API)
I have no experience in IPv6 programming, perhaps this chapter will be filled by others or moved away to
another HOWTO.

Chapter 21. Programming (using API) 87

Chapter 22. Interoperability
There are some projects around the world which checks the interoperability of different operating systems
regarding the implementation of IPv6 features. Here some URLs:

TAHI Project•

More coming next...

Chapter 22. Interoperability 88

http://www.tahi.org/

Chapter 23. Further information and URLs

23.1. Paper printed books, articles, online reviews (mixed)

23.1.1. German language

Technik der IP−Netze (TCP/IP incl. IPv6) bei Amazon.de Anatol Badach, Erwin Hoffmann Carl
Hanser Verlag München, Wien, 2001 ISBN: 3−446−21501−8 Kap. 6: Protokoll IPv6 S.205−242 Kap.
7: Plug&Play−Unterstützung bei IPv6 S.243−276 Kap. 8: Migration zum IPv6−Einsatz S.277−294
Kap. 9.3.4: RIP für das Protokoll IPv6 (RIPng) S.349−351 Kap. 9.4.6: OSPF für IPv6 S.384−385
Kommentar: tw. nicht ganz up−to−date bzw. nicht ganz fehlerfreie Abbildungen Homepage des
Buches und Tabelle mit Fixes

•

Internet−Sicherheit (Browser, Firewalls und Verschlüsselung) bei Amazon.de Kai Fuhrberg 2. akt.
Auflage 2000 Carl Hanser Verlag München, Wien, ISBN: 3−446−21333−3 Kap.2.3.1.4. IPv6
S.18−22 Kurz angerissen werden: RFC1825 − Security Association Konzept RFC1826 − IP
authentication Header RFC1827 − IP Encapsulation Security Payload

•

23.1.2. Articles, Books, Online Reviews (mixed)

Getting Connected with 6to4 by Huber Feyrer, 06/01/2001•
How Long the Aversion to IP Version 6 − Review of META Group, Inc., full access needs (free)
registration at META Group, Inc.

•

O'reilly Network search for keyword IPv6 results in 29 hits (28. January 2002)•
Wireless boosting IPv6 by Carolyn Duffy Marsan, 10/23/2000•
IPv6, théorie et pratique (french) 2e édition, mars 1999, O'Reilly (??? no newer one available ???)
ISBN: 2−84177−085−0

•

Internetworking IPv6 with Cisco Routers by Silvano Gai, McGrawHill Italia, 1997 13 chapters and
appendix A−D are downloadable as PDF−documents.

•

Secure and Dynamic Tunnel Broker by Vegar Skaerven Wang, Master of Engineering Thesis in
Computer Science, 2.June 2000, Faculty of Science, Dep.of Computer Science, University of Tromso,
Norway.

•

Aufbruch in die neue Welt − IPv6 in IPv4 Netzen von Dipl.Ing. Ralf Döring, TU Illmenau, 1999•
Migration and Co−existence of IPv4 and IPv6 in Residential Networks by Pekka Savola,
CSC/FUNET, 2002

•

IPv6 Essentials written by Silvia Hagen, July 2002, O'Reilly Order Number: 1258, ISBN
0−5960−0125−8

•

23.1.3. Others

See following URL for more: SWITCH IPv6 Pilot / References

23.2. Online information

23.2.1. Join the IPv6 backbone

More to be filled later...suggestions are welcome!

Chapter 23. Further information and URLs 89

http://www.amazon.de/exec/obidos/ASIN/3446215018/
http://www.fehcom.de/tipn/tipn.html
http://www.fehcom.de/tipn/tipn.html
http://www.amazon.de/exec/obidos/ASIN/3446217258/
http://www.onlamp.com/pub/a/onlamp/2001/06/01/ipv6_tutorial.html
http://researchcenter.zdnet.com/data/detail?id=1001711171_237&type=RES&x=120054357
http://www.oreillynet.com/search/index.ncsp?sp-q=IPv6
http://www.nwfusion.com/news/2000/1023ipv6.html
http://www.oreilly.fr/catalogue/ipv6.html
http://www.ip6.com/index.html
http://www.vermicelli.pasta.cs.uit.no/ipv6/students/vegars/
http://www.netobjectdays.org/pdf/99/stja/doering.pdf
http://www.csc.fi/~psavola/residential.html
http://www.sunny.ch/publications/f_ipv6.htm
http://www.oreilly.com/catalog/ipv6ess/
http://www.switch.ch/lan/ipv6/references.html

23.2.1.1. Global registries

IPv6 test backbone: 6bone, How to join 6bone•

23.2.1.2. Major regional registries

America: ARIN, ARIN / registration page, ARIN / IPv6 guidelines•
EMEA: Ripe NCC, Ripe NCC / registration page, Ripe NCC / IPv6 registration•
Asia/Pacific: APNIC, APNIC / IPv6 information•
Latin America and Caribbea: LACNIC•
Africa: AfriNIC•

Also a list of major (prefix length 35) allocations per local registry is available here: Ripe NCC / IPv6
allocations.

23.2.1.3. Tunnel brokers

Freenet6, Canada•
Hurricane Electric, US backbone•
Centro Studi e Laboratory Telecomunicazioni, Italy•
Wanadoo, Belgium•
CERTNET−Nokia, China•
Tunnelbroker Leipzig, Germany − DialupUsers with dynamic IP's can get a fix IPv6 IP...•
Internet Initiative Japan, Japan − with IPv6 native line service and IPv6 tunneling Service•
XS26 − "Access to Six", Netherland − with POPs in Slovak Republic, Czech Republic, Netherlands,
Germany and Hungary.

•

IPng Netherland, Netherland − Intouch, SurfNet, AMS−IX, UUNet, Cistron, RIPE NCC and AT&T
are connected at the AMS−IX. It is possible (there are requirements...) to get an static tunnel.

•

UNINETT, Norway − Pilot IPv6 Service (for Customers): tunnelbroker & address allocation•
NTT Europe, NTT Euroope, United Kingdom − IPv6 Trial. IPv4 Tunnel and native IPv6 leased Line
connections. POPs are located in London, UK Dusseldorf, Germany New Jersey, USA (East Coast)
Cupertino, USA (West Coast) Tokyo, Japan

•

ESnet, USA − Energy Sciences Network: Tunnel Registry & Address Delegation for directly
connected ESnet sites and ESnet collaborators.

•

6REN, USA − The 6ren initiative is being coordinated by the Energy Sciences Network (ESnet), the
network for the Energy Research program of the US Dept. of Energy, located at the University of
California's Lawrence Berkeley National Laboratory

•

See also here for more information and URLs: ipv6−net.org.

23.2.1.4. 6to4

NSayer's 6to4 information•
RFC 3068 / An Anycast Prefix for 6to4 Relay Routers•

23.2.2. Latest news

More to be filled later...suggestions are welcome!

hs247 / IPv6 news and information, also homepage for #ipv6 channel on EFnet•

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 90

http://www.6bone.net/6bone_hookup.html
http://www.6bone.net/6bone_hookup.html
http://www.arin.net/
http://www.arin.net/regserv.html
http://www.arin.net/regserv/ipv6/ipv6guidelines.html
http://www.ripe.net/
http://www.ripe.net/ripencc/mem-services/registration/
http://www.ripe.net/ripencc/mem-services/registration/ipv6/ipv6.html
http://www.apnic.net/
http://www.apnic.net/drafts/ipv6/
http://lacnic.org/
http://www.afrinic.org/
http://www.ripe.net/ripencc/mem-services/registration/ipv6/ipv6allocs.html
http://www.ripe.net/ripencc/mem-services/registration/ipv6/ipv6allocs.html
http://www.freenet6.net/
http://ipv6tb.he.net/
https://carmen.cselt.it/ipv6tb/
http://tunnel.be.wanadoo.com/
http://tb.6test.edu.cn/
http://joshua.informatik.uni-leipzig.de/
http://www.iij.ad.jp/IPv6/index-e.html
http://www.xs26.net/
http://www.ipng.nl/
http://www.uninett.no/testnett/index.en.html
http://www.uk.v6.ntt.net/
http://www.nttv6.net/
http://www.es.net/hypertext/welcome/pr/ipv6.html
http://www.6ren.net/
http://www.ipv6-net.de/
http://www.kfu.com/~nsayer/6to4/
http://www.faqs.org/rfcs/rfc3068.html
http://hs247.com/

bofh.st / latest IPv6 news (but currently [Jan 2002] outdated...), also homepage for #IPv6 channel on
IRCnet

•

ipv6−net.org, German forum•

23.2.3. Protocol references

23.2.3.1. IPv6−related Request For Comments (RFCs)

Publishing the list of IPv6−related RFCs is beyond the scope of this document, but given URLs will lead you
to such lists:

HS247 / IPv6 RFC list (a little bit out−of−sync at the moment)•
List sorted by IPng Standardization Status or IPng Current Specifications by Robert Hinden•
IPv6 Related Specifications on IPv6.org•

23.2.3.2. Current drafts of working groups

Current (also) IPv6−related drafts can be found here:

IP Version 6 (ipv6)•
Next Generation Transitition (ngtrans)•
Dynamic Host Configuration (dhc)•
Domain Name System Extension (dnsext)•
Mobile IP (mobileip)•

23.2.3.3. Others

Network Sorcery / IPv6, Internet Protocol version 6, IPv6 protocol header•
SWITCH IPv6 Pilot / References, big list of IPv6 references maintained by Simon Leinen•
Advanced Network Management Laboratory / IPv6 Address Oracle shows you IPv6 addresses in
detail

•

23.2.4. Statistics

IPv6 routing table history created by Gert Döring, Space.Net•

23.2.5. More information

More to be filled later...suggestions are welcome!

23.2.5.1. Linux related

IPv6−HowTo for Linux by Peter Bieringer − Germany, and his Bieringer / IPv6 − software archive•
Linux+IPv6 status by Peter Bieringer − Germany•
USAGI project − Japan, and their USAGI project − software archive•
Gav's Linux IPv6 Page•
Project6 − IPv6 Networking For Linux − Italy, and their Project6 − software archive•

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 91

http://bofh.st/ipv6/
http://www.ipv6-net.de/
http://www.hs247.com/ipv6rfc.html
http://playground.sun.com/pub/ipng/html/specs/standards.html
http://playground.sun.com/pub/ipng/html/specs/specifications.html
http://www.ipv6.org/specs.html
http://www.ietf.org/ids.by.wg/ipv6.html
http://www.ietf.org/ids.by.wg/ngtrans.html
http://www.ietf.org/ids.by.wg/dhc.html
http://www.ietf.org/ids.by.wg/dnsext.html
http://www.ietf.org/ids.by.wg/mobileip.html
http://www.networksorcery.com/enp/protocol/ipv6.htm
http://www.switch.ch/lan/ipv6/references.html
http://steinbeck.ucs.indiana.edu:47401/
http://www.space.net/~gert/RIPE/
http://www.space.net/
http://www.bieringer.de/linux/IPv6/
ftp://ftp.bieringer.de/pub/linux/IPv6/
http://www.bieringer.de/linux/IPv6/status/IPv6+Linux-status.html
http://www.linux-ipv6.org/
ftp://ftp.linux-ipv6.org/pub/
http://www.bugfactory.org/~gav/ipv6/
http://project6.ferrara.linux.it/
ftp://ftp.ferrara.linux.it/pub/project6/

23.2.5.2. Linux related per distribution

PLD
Polish(ed) Linux Distribution ("market leader" in containing IPv6 enabled packages)

Red Hat
Red Hat Linux, Pekka Savola's IPv6 packages

Debian
Debian Linux, Craig Small's IPv6 information and status

SuSE
SuSE Linux

Mandrake
Linux Mandrake

For more see the distribution status page

23.2.5.3. General

IPv6.org•
6bone•
UK IPv6 Resource Centre − UK•
JOIN: IPv6 information − Germany, by the JOIN project team maintaining also Links to external
WWW pages comprising IPv6/IPng

•

TIPSTER6 project − Hungary, "Testing Experimental IPv6 Technology and Services in Hungary"•
WIDE project − Japan•
SWITCH IPv6 Pilot − Switzerland•
IPv6 Corner of Hubert Feyrer − Germany•
Vermicelli Project − Norway•
IPv6 Forum − a world−wide consortium of leading Internet vendors, Research & Education
Networks...

•

Playground.sun.com / IPv6 Info Page − maintained by Robert Hinden, Nokia•
NASA Ames Research Center (old content)•
6INIT − IPv6 Internet Initiative − an EU Fifth Framework Project under the IST Programme•

Something missing? Suggestions are welcome!

23.2.5.4. In Portuguese

IPv6 pages of Miguel Rosa•
FCCN (National Foundation for the Scientific Computation)•
Grupo de Pesquisa em IPv6 do Brasil•
University of Algarve, Portugal•
IPv6 − MFA•

23.2.6. By countries

23.2.6.1. Australia

Carl's Australian IPv6 Pages (old content)•

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 92

http://www.pld.org.pl/
http://www.redhat.com/
http://www.netcore.fi/pekkas/linux/ipv6/
http://www.debian.org/
http://people.debian.org/~csmall/ipv6/
http://www.suse.com/
http://www.linux-mandrake.com/
http://www.ipv6.org/
http://www.6bone.net/6bone_hookup.html
http://www.cs-ipv6.lancs.ac.uk/
http://www.join.uni-muenster.de/JOIN/ipv6/texte-englisch/informationsquellen.html
http://www.join.uni-muenster.de/JOIN/ipv6/texte-englisch/www.html
http://www.join.uni-muenster.de/JOIN/ipv6/texte-englisch/www.html
http://tipster6.ik.bme.hu/tipster6_en.html
http://www.v6.wide.ad.jp/
http://www.switch.ch/lan/ipv6/
http://www.feyrer.de/IPv6/
http://www.vermicelli.pasta.cs.uit.no/ipv6/
http://www.ipv6forum.com/
http://playground.sun.com/pub/ipng/html/ipng-main.html
http://www.nas.nasa.gov/Groups/LAN/IPv6/
http://www.6init.com/
http://ipng.ip6.fc.ul.pt/
http://www.rcts.pt/ipv6/ipb6.htm
http://linuxgo.persogo.com.br/ipv6/
http://www.ipv6.ualg.pt/
http://www.ipv6.mfa.eti.br/
http://oversteer.bl.echidna.id.au/IPv6/

23.2.6.2. Belgium

BELNET − the Belgian Research Network•
Euronet − one of the biggest ISP's of Belgium...•

23.2.6.3. Germany

Completel IPv6 information, German ISP•
IPv6−net.org, German IPv6 forum•

23.2.6.4. France

Renater − Renater IPv6 Project Page•

23.2.6.5. Italy

Edisontel − IPv6 Portal of Edisontel•

23.2.6.6. Japan

Yamaha IPv6 (sorry, all in japanese native ...)•

23.2.6.7. Korea

IPv6 Forum Korea − Korean IPv6 Deployment Project•

23.2.6.8. Mexico

IPv6 Mexico (spain & english version) − IPv6 Project Hompeage of The National Autonomous
University of Mexico (UNAM)

•

23.2.6.9. Netherland

SURFnet − SURFnet IPv6 Backbone•
STACK, STACK (IPv6) − Students' computer association of the Eindhoven University of
Technology, Netherland.

•

IPng.nl, collaboration between WiseGuys and Intouch.•

23.2.6.10. United Kingdom

British Telecom IPv6 Home − BT's ISP IPv6 Trial, UK's first IPv6 Internet Exchange etc.•

23.2.7. By operating systems

23.2.7.1. Cisco IOS

Cisco IOS IPv6 Entry Page•

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 93

http://vivaldi.belnet.be/ipv6/
http://www.ipv6.euronet.be/
http://www.v6bone.de/
http://www.ipv6-net.de/
http://www.renater.fr/Projets/IPv6/index.htm
http://www.6bone.it/
http://www.rtpro.yamaha.co.jp/RT/ipv6/
http://www.ipv6.or.kr/english/index.new.htm
http://www.ipv6.unam.mx/
http://www.ipv6.surfnet.nl/
http://www.stack.nl/
http://www.ipv6.stack.nl/ipv6/
http://www.ipng.nl/
http://www.bt.com/ipv6/
http://www.cisco.com/warp/public/732/Tech/ipv6/

23.2.7.2. Compaq

IPv6 at Compaq − Presentations, White Papers, Documentation...•

23.2.7.3. Microsoft

Microsoft Windows 2000 IPv6•
MSRIPv6 − Microsoft Research Network − IPv6 Homepage•
Getting Started with the Microsoft IPv6 Technology Preview for Windows 2000•

23.2.7.4. *BSD

KAME project − Japan, (*BSD)•
NetBSD's IPv6 Networking FAQ•

23.2.7.5. Solaris

Sun Microsystems IPv6 Page for Solaris 8•

23.2.7.6. Sumitoma

Sumitomo Electric has implemented IPv6 on Suminet 3700 family routers•

23.2.8. Application lists

IPv6.org / IPv6 enabled applications•
Freshmeat / IPv6 search, currently (02. May 2002) 51 projects•

23.2.8.1. Analyzer tools

Ethereal − Ethereal is a free network protocol analyzer for Unix and Windows•
Radcom RC100−WL − Download Radcom RC100−WL protocol analyzer version 3.20•

23.3. Online test tools

More to be filled later...suggestions are welcome!

finger, nslookup, ping, traceroute, whois: UK IPv6 Resource Centre / The test page•
ping, traceroute, tracepath, 6bone registry, DNS: JOIN / Testtools (German language only, but should
be no problem for non German speakers)

•

traceroute6, whois: IPng.nl•

23.4. Maillists

Focus Request e−mail addressWhat to
subscribe

Maillist e−mail address Language Access through WWW

netdev netdev (at) oss.sgi.com English Archive

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 94

http://www.compaq.com/ipv6/
http://www.microsoft.com/windows2000/technologies/communications/ipv6/default.asp
http://www.research.microsoft.com/msripv6
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6/start.asp
http://www.kame.net/
http://www.netbsd.org/Documentation/network/ipv6/
http://www.sun.com/solaris/ipv6/
http://www.sumitomo.com/htmls/randd/ipv6/ipv6.html
http://www.ipv6.org/v6-apps.html
http://freshmeat.net/search/?q=IPv6
http://ethereal.planetmirror.com/
http://www.ip6.com/us/analyzer.htm
http://www.cs-ipv6.lancs.ac.uk/ipv6/testing/
http://www.join.uni-muenster.de/lab/testtools.html
http://www.ipng.nl/
http://oss.sgi.com/projects/netdev/archive/

Linux kernel
networking
including

IPv6

majordomo (at)
oss.sgi.com

Linux and
IPv6 in

general (1)

majordomo (at)
list.f00f.org

linux−ipv6 linux−ipv6 (at)
list.f00f.org (moderated)

English

Mobile
IP(v6) for

Linux

majordomo (at)
list.mipl.mediapoli.com

mipl mipl (at)
list.mipl.mediapoli.com

English Info, Archive

Linux IPv6
users using

USAGI
extension

usagi−users−ctl (at)
linux−ipv6.org

usagi−users (at)
linux−ipv6.org

English Info / Search, Archive

IPv6 on
Debian
Linux

Web−based, see URL debian−ipv6 (at)
lists.debian.org

English Info/Subscription/Archive

IPv6/6bone
in Germany

majordomo (at)
atlan.uni−muenster.de

ipv6 ipv6 (at)
uni−muenster.de

German/English Info, Archive

6bone majordomo (at) isi.edu 6bone 6bone (at) isi.edu English Info, Threaded archive,
Mirror of archive

IPv6
discussions

majordomo (at)
sunroof.eng.sun.com

ipng ipng (at)
sunroof.eng.sun.com

English Info, Archive, Mirror of
archive

IPv6 users
in general

majordomo (at) ipv6.org users users (at) ipv6.org English Info

Bugtracking
of Internet

applications
(2)

bugtraq−subscribe (at)
securityfocus.com

bugtraq (at)
securityfocus.com

(moderated)

English Info, Archive

IPv6 in
general

Web−based, see URL ipv6 (at) ipng.nl English Info/Subscription,
Archive

majordomo
(at)

mfa.eti.br

majordomo (at)
mfa.eti.br

ipv6 ipv6 (at) mfa.eti.br Portuguese Info

(1) recommended for common Linux & IPv6 issues.

(2) very recommended if you provide server applications.

Something missing? Suggestions are welcome!

Another list is available at JOIN Project / List of IPv6−related maillists.

Linux IPv6 HOWTO

Chapter 23. Further information and URLs 95

http://www.mipl.mediapoli.com/mailinglist.html
http://www.mipl.mediapoli.com/mail-archive/
http://www.linux-ipv6.org/ml/index.html#usagi-users
http://www.linux-ipv6.org/ml/usagi-users/
http://lists.debian.org/debian-ipv6/
http://www.join.uni-muenster.de/JOIN/ipv6/texte-englisch/mailingliste.html
http://www.join.uni-muenster.de/local/majordomo/ipv6/
http://www.6bone.net/6bone_email.html
http://ryouko.dgim.crc.ca/ipv6/
http://www.wcug.wwu.edu/lists/6bone/
http://playground.sun.com/pub/ipng/html/instructions.html
ftp://playground.sun.com/pub/ipng/mail-archive/
http://www.wcug.wwu.edu/lists/ipng/
http://www.wcug.wwu.edu/lists/ipng/
http://www.ipv6.org/mailing-lists.html
http://online.securityfocus.com/popups/forums/bugtraq/intro.shtml
http://online.securityfocus.com/archive/1
http://mailman.ipng.nl/mailman/listinfo/ipv6/
http://mailman.ipng.nl/pipermail/ipv6/
http://www.mfa.eti.br/listas.html
http://www.join.uni-muenster.de/JOIN/ipv6/texte-englisch/ipv6.infoquellen.html

Chapter 24. Revision history / Credits / The End

24.1. Revision history

Versions x.y are published on the Internet.

Versions x.y.z are work−in−progress and only published as LyX file on CVS.

24.1.1. Releases 0.x

0.31
2002−09−29/PB: Extend information in proc−filesystem entries

0.30
2002−09−27/PB: Add some maillists

0.29
2002−09−18/PB: Update statement about nmap (triggered by Fyodor)

0.28.1
2002−09−16/PB: Add note about ping6 to multicast addresses, add some labels

0.28
2002−08−17/PB: Fix broken LDP/CVS links, add info about Polish translation, add URL of the IPv6
Address Oracle

0.27
2002−08−10/PB: Some minor updates

0.26.2
2002−07−15/PB: Add information neighbor discovery, split of firewalling (got some updates) and
security into extra chapters

0.26.1
2002−07−13/PB: Update nmap/IPv6 information

0.26
2002−07−13/PB: Fill /proc−filesystem chapter, update DNS information about depricated
A6/DNAME, change P−t−P tunnel setup to use of "ip" only

0.25.2
2002−07−11/PB: Minor spelling fixes

0.25.1
2002−06−23/PB: Minor spelling and other fixes

0.25
2002−05−16/PB: Cosmetic fix for 2\^{ }128, thanks to José Abílio Oliveira Matos for help with LyX

0.24
2002−05−02/PB: Add entries in URL list, minor spelling fixes

0.23
2002−03−27/PB: Add entries in URL list and at maillists, add a label and minor information about
IPv6 on RHL

0.22
2002−03−04/PB: Add info about 6to4 support in kernel series 2.2.x and add an entry in URL list and
at maillists

0.21
2002−02−26/PB: Migrate next grammar checks submitted by John Ronan

0.20.4

Chapter 24. Revision history / Credits / The End 96

2002−02−21/PB: Migrate more grammar checks submitted by John Ronan, add some additional hints
at DNS section

0.20.3
2002−02−12/PB: Migrate a minor grammar check patch submitted by John Ronan

0.20.2
2002−02−05/PB: Add mipl to maillist table

0.20.1
2002−01−31/PB: Add a hint how to generate 6to4 addresses

0.20
2002−01−30/PB: Add a hint about default route problem, some minor updates

0.19.2
2002−01−29/PB: Add many new URLs

0.19.1
2002−01−27/PB: Add some forgotten URLs

0.19
2002−01−25/PB: Add two German books, fix quote entinities in exported SGML code

0.18.2
2002−01−23/PB: Add a FAQ on the program chapter

0.18.1
2002−01−23/PB: Move "the end" to the end, add USAGI to maillists

0.18
2002−01−22/PB: Fix bugs in explanation of multicast address types

0.17.2
2002−01−22/PB: Cosmetic fix double existing text in history (at 0.16), move all credits to the end of
the document

0.17.1
2002−01−20/PB: Add a reference, fix URL text in online−test−tools

0.17
2002−01−19/PB: Add some forgotten information and URLs about global IPv6 addresses

0.16
2002−01−19/PB: Minor fixes, remove "bold" and "emphasize" formats on code lines, fix "too long
unwrapped code lines" using selfmade utility, extend list of URLs.

0.15
2002−01−15/PB: Fix bug in addresstype/anycast, move content related credits to end of document

0.14
2002−01−14/PB: Minor review at all, new chapter "debugging", review "addresses", spell checking,
grammar checking (from beginning to 3.4.1) by Martin Krafft, add tcpdump examples, copy
firewalling/netfilter6 from IPv6+Linux−HowTo, minor enhancements

0.13
2002−01−05/PB: Add example BIND9/host, move revision history to end of document, minor
extensions

0.12
2002−01−03/PB: Merge review of David Ranch

0.11
2002−01−02/PB: Spell checking and merge review of Pekka Savola

0.10
2002−01−02/PB: First public release of chapter 1

Linux IPv6 HOWTO

Chapter 24. Revision history / Credits / The End 97

24.2. Credits

The quickest way to be added to this nice list is to send bug fixes, corrections, and/or updates to me ;−).

If you want to do a major review, you can use the native LyX file (see original source) and send diffs against
it, because diffs against SGML don't help too much.

24.2.1. Major credits

David Ranch <dranch at trinnet dot net>: For encouraging me to write this HOWTO, his editorial
comments on the first few revisions, and his contributions to various IPv6 testing results on my IPv6
web site. Also for his major reviews and suggestions.

•

Pekka Savola <pekkas at netcore dot fi>: For major reviews, input and suggestions.•
Martin F. Krafft <madduck at madduck dot net>: For grammar checks and general reviewing of the
document.

•

John Ronan <j0n at tssg dot wit dot ie>: For grammar checks.•

24.2.2. Other credits

24.2.2.1. Document technique related

Writing a LDP HOWTO as a newbie (in LyX and exporting this to DocBook to conform to SGML) isn't as
easy as some people say. There are some strange pitfalls... Nevertheless, thanks to:

Authors of the LDP Author Guide•
B. Guillon: For his DocBook with LyX HOWTO•

24.2.2.2. Content related credits

Credits for fixes and hints are listed here, will grow sure in the future

S .P. Meenakshi <meena at cs dot iitm dot ernet dot in>: For a hint using a "send mail" shell program
on tcp_wrapper/hosts.deny

•

Georg Käfer <gkaefer at salzburg dot co dot at>: For detection of no proper PDF creation (fixed now
by LDP maintainer Greg Ferguson), input for German books, big list of URLs and some other
suggestions

•

Frank Dinies <FrankDinies at web dot de>: For a bugfix on IPv6 address explanation•
John Freed <jfreed at linux−mag dot com>: For finding a bug in in IPv6 multicast address explanation•
Craig Rodrigues <crodrigu at bbn dot com>: For suggestion about RHL IPv6 setup•
Fyodor <fyodor at insecure dot org>: Note me about outdated nmap information•

24.3. The End

Thanks for reading. Hope it helps!

If you have any questions, subscribe to proper maillist and describe your problem.

Linux IPv6 HOWTO

Chapter 24. Revision history / Credits / The End 98

http://www.linuxdoc.org/LDP/LDP-Author-Guide/
http://perso.libertysurf.fr/bgu/doc/db4lyx/

	Table of Contents
	Chapter 1. General
	1.1. Copyright, license and others
	1.1.1. Copyright
	1.1.2. License
	1.1.3. About the author

	1.2. Category
	1.3. Version, History and To-Do
	1.3.1. Version
	1.3.2. History
	1.3.3. To-Do

	1.4. Translations
	1.4.1. To German
	1.4.2. To other languages

	1.5. Technical
	1.5.1. Original source of this HOWTO
	1.5.2. On-line references to the HTML version of this HOWTO (linking/anchors)

	1.6. Preface
	1.6.1. How many versions of a Linux & IPv6 related HOWTO are floating around?

	1.7. Used terms
	1.7.1. Network related
	1.7.2. Document related

	1.8. Requirements for using this HOWTO
	1.8.1. Personal prerequisites
	1.8.2. Linux operating system compatible hardware

	Chapter 2. Basics
	2.1. What is IPv6?
	2.2. History of IPv6 in Linux
	2.2.1. Beginning
	2.2.2. In between
	2.2.3. Current
	2.2.4. Future

	2.3. How do IPv6 addresses look like?
	2.4. FAQ (Basics)
	2.4.1. Why is the name IPv6 and not IPv5 as successor for IPv4?
	2.4.2. IPv6 addresses: why such a high number of bits?
	2.4.3. IPv6 addresses: why so small a number of bits on a new design?

	Chapter 3. Address types
	3.1. Addresses without a special prefix
	3.1.1. Localhost address
	3.1.2. Unspecified address
	3.1.3. IPv6 address with embedded IPv4 address

	3.2. Network part, also known as prefix
	3.2.1. Link local address type
	3.2.2. Site local address type
	3.2.3. Global address type "(Aggregatable) global unicast"
	3.2.4. Multicast addresses
	3.2.5. Anycast addresses

	3.3. Address types (host part)
	3.3.1. Automatically computed (also known as stateless)
	3.3.2. Manually set

	3.4. Prefix lengths for routing
	3.4.1. Prefix lengths (also known as "netmasks")
	3.4.2. Matching a route

	Chapter 4. IPv6-ready system check
	4.1. IPv6-ready kernel
	4.1.1. Check for IPv6 support in the current running kernel
	4.1.2. Try to load IPv6 module
	4.1.3. Compile kernel with IPv6 capabilities
	4.1.4. IPv6-ready network devices

	4.2. IPv6-ready network configuration tools
	4.2.1. net-tools package
	4.2.2. iproute package

	4.3. IPv6-ready test/debug programs
	4.3.1. IPv6 ping
	4.3.2. IPv6 traceroute6
	4.3.3. IPv6 tracepath6
	4.3.4. IPv6 tcpdump

	4.4. IPv6-ready programs
	4.5. IPv6-ready client programs (selection)
	4.5.1. Checking DNS for resolving IPv6 addresses
	4.5.2. IPv6-ready telnet clients
	4.5.3. IPv6-ready ssh clients
	4.5.4. IPv6-ready web browsers

	4.6. IPv6-ready server programs
	4.7. FAQ (IPv6-ready system check)
	4.7.1. Using tools

	Chapter 5. Configuring interfaces
	5.1. Different network devices
	5.1.1. Physically bounded
	5.1.2. Virtually bounded

	5.2. Bringing interfaces up/down
	5.2.1. Using "ip"
	5.2.2. Using "ifconfig"

	Chapter 6. Configuring IPv6 addresses
	6.1. Displaying existing IPv6 addresses
	6.1.1. Using "ip"
	6.1.2. Using "ifconfig"

	6.2. Add an IPv6 address
	6.2.1. Using "ip"
	6.2.2. Using "ifconfig"

	6.3. Removing an IPv6 address
	6.3.1. Using "ip"
	6.3.2. Using "ifconfig"

	Chapter 7. Configuring normal IPv6 routes
	7.1. Displaying existing IPv6 routes
	7.1.1. Using "ip"
	7.1.2. Using "route"

	7.2. Add an IPv6 route through a gateway
	7.2.1. Using "ip"
	7.2.2. Using "route"

	7.3. Removing an IPv6 route through a gateway
	7.3.1. Using "ip"
	7.3.2. Using "route"

	7.4. Add an IPv6 route through an interface
	7.4.1. Using "ip"
	7.4.2. Using "route"

	7.5. Removing an IPv6 route through an interface
	7.5.1. Using "ip"
	7.5.2. Using "route"

	7.6. FAQ for IPv6 routes
	7.6.1. Support of an IPv6 default route

	Chapter 8. Neighbor Discovery
	8.1. Displaying neighbors using "ip"
	8.2. Manipulating neighbors table using "ip"
	8.2.1. Manually add an entry
	8.2.2. Manually delete an entry
	8.2.3. More advanced settings

	Chapter 9. Configuring IPv6-in-IPv4 tunnels
	9.1. Types of tunnels
	9.1.1. Static point-to-point tunneling: 6bone
	9.1.2. Automatically tunneling
	9.1.3. 6to4-Tunneling

	9.2. Displaying existing tunnels
	9.2.1. Using "ip"
	9.2.2. Using "route"

	9.3. Setup of point-to-point tunnel
	9.3.1. Add point-to-point tunnels
	9.3.2. Removing point-to-point tunnels
	9.3.3. Numbered point-to-point tunnels

	9.4. Setup of 6to4 tunnels
	9.4.1. Add a 6to4 tunnel
	9.4.2. Remove a 6to4 tunnel

	Chapter 10. Configuring IPv4-in-IPv6 tunnels
	Chapter 11. Kernel settings in /proc-filesystem
	11.1. How to access the /proc-filesystem
	11.1.1. Using "cat" and "echo"
	11.1.2. Using "sysctl"
	11.1.3. Values found in /proc-filesystems

	11.2. Entries in /proc/sys/net/ipv6/
	11.2.1. conf/default/*
	11.2.2. conf/all/*
	11.2.3. conf/interface/*
	11.2.4. neigh/default/*
	11.2.5. neigh/interface/*
	11.2.6. route/*

	11.3. IPv6-related entries in /proc/sys/net/ipv4/
	11.3.1. ip_*
	11.3.2. tcp_*
	11.3.3. icmp_*
	11.3.4. others

	11.4. IPv6-related entries in /proc/net/
	11.4.1. if_inet6
	11.4.2. ipv6_route
	11.4.3. sockstat6
	11.4.4. tcp6
	11.4.5. udp6
	11.4.6. igmp6
	11.4.7. raw6
	11.4.8. ip6_flowlabel
	11.4.9. rt6_stats
	11.4.10. snmp6
	11.4.11. ip6_tables_names

	Chapter 12. Netlink-Interface to kernel
	Chapter 13. Network debugging
	13.1. Server socket binding
	13.1.1. Using "netstat" for server socket binding check

	13.2. Examples for tcpdump packet dumps
	13.2.1. Router discovery
	13.2.2. Neighbor discovery

	Chapter 14. Support for persistent IPv6 configuration in Linux distributions
	14.1. Red Hat Linux and "clones"
	14.1.1. Test for IPv6 support of network configuration scripts
	14.1.2. Short hint for enabling IPv6 on current RHL 7.1, 7.2, 7.3, ...

	14.2. SuSE Linux
	14.2.1. Further information

	14.3. Debian Linux
	14.3.1. Further information

	Chapter 15. Auto-configuration and mobility
	15.1. Stateless auto-configuration
	15.2. Stateful auto-configuration using Router Advertisement Daemon (radvd)
	15.3. Dynamic Host Configuration Protocol v6 (DHCPv6)
	15.4. Mobility

	Chapter 16. Firewalling
	16.1. Firewalling using netfilter6
	16.1.1. More information

	16.2. Preparation
	16.2.1. Get sources
	16.2.2. Extract sources
	16.2.3. Apply latest iptables/IPv6-related patches to kernel source
	16.2.4. Configure, build and install new kernel
	16.2.5. Rebuild and install binaries of iptables

	16.3. Usage
	16.3.1. Check for support
	16.3.2. Learn how to use ip6tables
	16.3.3. Demonstration example

	Chapter 17. Security
	17.1. Node security
	17.2. Access limitations
	17.3. IPv6 security auditing
	17.3.1. Legal issues
	17.3.2. Security auditing using IPv6-enabled netcat
	17.3.3. Security auditing using IPv6-enabled nmap
	17.3.4. Security auditing using IPv6-enabled strobe
	17.3.5. Audit results

	Chapter 18. Encryption and Authentication
	18.1. Support in kernel
	18.1.1. Support in vanilla Linux kernel
	18.1.2. Support in USAGI kernel

	18.2. Usage

	Chapter 19. Quality of Service (QoS)
	Chapter 20. Hints for IPv6-enabled daemons
	20.1. Berkeley Internet Name Daemon BIND (named)
	20.1.1. Listening on IPv6 addresses
	20.1.2. IPv6 enabled Access Control Lists (ACL)
	20.1.3. Sending queries with dedicated IPv6 address
	20.1.4. Per zone defined dedicated IPv6 addresses
	20.1.5. Serving IPv6 related DNS data
	20.1.6. Checking IPv6-enabled connect

	20.2. Internet super daemon (xinetd)
	20.3. Webserver Apache2 (httpd2)
	20.3.1. Listening on IPv6 addresses

	20.4. Router Advertisement Daemon (radvd)
	20.4.1. Configuring radvd
	20.4.2. Debugging

	20.5. tcp_wrapper
	20.5.1. Filtering capabilities
	20.5.2. Which program uses tcp_wrapper
	20.5.3. Usage
	20.5.4. Logging

	Chapter 21. Programming (using API)
	Chapter 22. Interoperability
	Chapter 23. Further information and URLs
	23.1. Paper printed books, articles, online reviews (mixed)
	23.1.1. German language
	23.1.2. Articles, Books, Online Reviews (mixed)
	23.1.3. Others

	23.2. Online information
	23.2.1. Join the IPv6 backbone
	23.2.2. Latest news
	23.2.3. Protocol references
	23.2.4. Statistics
	23.2.5. More information
	23.2.6. By countries
	23.2.7. By operating systems
	23.2.8. Application lists

	23.3. Online test tools
	23.4. Maillists

	Chapter 24. Revision history / Credits / The End
	24.1. Revision history
	24.1.1. Releases 0.x

	24.2. Credits
	24.2.1. Major credits
	24.2.2. Other credits

	24.3. The End

