

San Francisco State University
Independent Study in Advanced Networks
[BICS 699]
Dr. Sameer Verma [sverma@sfsu.edu]

Philie Chang
philiec@yahoo.com

Herbert Ishii
hishii@yahoo.com

Implementing Secure Services Implementing Secure Services Implementing Secure Services Implementing Secure Services
over a Wireless Networkover a Wireless Networkover a Wireless Networkover a Wireless Network

A Captive Portal and Traffic Shaping Approach

 II

About this document

This report is the result of an independent study course (BICS 699) conducted in the Information Systems and
Business Analysis department in the College of Business at San Francisco State University. The course was taken
by P. Chang and H. Ishii and was under the guidance of Dr. Sameer Verma.

 III

 Table of Contents

Abstract...1

Introduction:..2

Background ..3

A. Notion of Security ...3

B. Purpose of Encryption, WEP and other Approaches ...4

C. Need for Authentication: using SSL...5

D. Traffic Shaping and Quality of Service ..5

E. Netfilter: Working with the IP Layer ...6

Approach ..7

A. Use a wireless access point as the main point of entry..7

B. Redirect traffic to a Gateway, implementing netfilter. ...7

C. Use an SSL server for authentication front-end..7

D. Use a database for account management..7

E. Use PGP/GnuPG for Gateway<->AuthServ authentication...7

F. Use SSL for End-User<->AuthServ authentication ..7

G. Use Gateway with Netfilter and Traffic Shaping to implement QoS ..8

H. Diagram...10

Implementation ..11

Results..14

Conclusion..15

References...16

1

 Abstract
IMPLEMENTING SECURE SERVICES OVER A
WIRELESS NETWORK:
A CAPTIVE PORTAL AND TRAFFIC SHAPING APPROACH

Abstract

The concept of IEEE 802.11b standard-based wireless network or "Wi-Fi" has become very popular in
the last year or so. Wi-Fi's widespread use raises questions about the notion of security of a technology
that uses radio waves for communication. The primary focus of this project is the issue of
authentication, authorization and possibly, accounting on a Wi-Fi network. The project does not
particularly address the notion of security via encryption of data (such as WEP) transmitted wirelessly.
After examining the possible options, we discuss a solution and the implementation of an experimental
wireless network service at San Francisco State University.

Wireless networks are not secure at the physical layer, because unauthorized users do not need
access to an Ethernet jack. They can tap into a wireless LAN using limited information and packet
sniffing tools in the proximity of a network. The only form of encryption natively available on such
networks is called Wired Equivalency Privacy, or WEP. It has been demonstrated that encryption keys
can be sniffed and decrypted after monitoring 100MB to 1GB of traffic. Therefore, some sort of
authentication is needed to ensure that acceptable use policies (AUP) are not being violated. To this
end, we analyze the problem at hand and use an existing collection of tools to build a proof-of-concepts
system. Our approach to a secure service is based on an open source solution called NoCatAuth.
This solution allows us to implement a Captive Portal with traffic-shaping capabilities on our wireless
network. Although NoCatAuth is an open source solution that is operational, it is in the beta phase.
Availability of source code allows us to better understand the underlying system.

 2

Introduction:

A new networking standard protocol labeled IEEE 802.11b is proving to be one of the fastest and most
convenient ways of getting on a network. Often called Wi-Fi, it does away with the need for cabling,
network jack installation, and the addition of ports on switches & hubs to add clients to a network.

Wi-Fi operates in the consumer oriented unlicensed 2.4 Gigahertz wireless spectrum, and has a useful
range of about 300 to 500 feet (Panko, 2001). Maximum theoretical throughput is 11 Megabits per
second.

Our goal is to implement secure services over a wireless network. Our requirements are:

� Authentication – Only provide service to clients specified in a database

� Easy Manageability – Minimize complicated management

� Traffic Shaping – Provide some Quality of Service

� Easy Access – Eliminate the need for an additional client software

� User Friendly – Easy learning curve for users

� Low Cost – Use in-house resources. This is an interim solution until a newer project
(perhaps based on IEEE 802.1X) is implemented

To serve most of the requirements above, we find NoCatAuth (Flickenger, 2002), an open source
captive portal solution to address many of the concerns. Some modifications and additions were made
by us to tailor the system to our needs1.

1Since NoCatAuth is available in the opensource realm, and is released to the community under the GNU General Public License
(GPL), we made our contribution available to the community in accordance with the spirit and letter of GPL.

 3

Background

A. Notion of Security

A brief overview of the 7-layer OSI Reference model of network communication is in order (Panko,
2001).

1. Physical Layer – Defines the mechanical and electrical specifications
of the network medium and network interface hardware, how they connect
with one another, and how data is placed on and retrieved from the
network medium.

2. Data Link Layer – Organizes the Physical layer’s 1s and 0s into
frames. The Data Link Layer also detects and corrects errors;
controls data flow, and identifies particular computers on the
network.

3. Network Layer – Moves information across a network made up of multiple
network segments. The Network layer does this by examining the
destination Network address and sending the packet to the next transit
point in the internetwork.

4. Transport Layer – Ensures reliable data delivery through a variety of
mechanisms, like orderly connection establishment and teardown,
acknowledgement messages, sequence numbers, and flow control.

5. Session Layer – Adds control mechanisms to the data the establish,
maintain, synchronize, and maintain dialog between communicating
applications.

6. Presentation Layer – Transforms data into a mutually agreed-upon
format that can be understood by each application and by the computers
they run on. The presentation layer may also compress, expand,
encrypt and decrypt data.

7. Application Layer – Specifies the communication interface with the
user and manages communication between computer applications.

Wireless Networks (WLAN’s) are not secure at the physical layer, because unauthorized hackers only
need a laptop, a directional antenna, and a wireless card that is compliant with the IEEE 802.11b
standard. Tapping into a WLAN only requires an individual to be in the general proximity of an Access
Point. For instance, one can walk around any downtown district with a laptop to pick up a signal(s) from
Access Points installed in office buildings (Gomes, 2001). Peter Shipley has presented results of
‘WarDriving’ in the San Francisco Bay Area, where he drove around town with a GPS, laptop,
antennas, and an 802.11b network card and make note of all the 802.11b networks he ‘stumbled’ upon
(Shipley, 2001). Wired Equivalent Privacy (WEP) is the only standard to provide physical & data link
layer privacy. In the next section we will discuss the flaws in WEP.

 4

B. Purpose of Encryption, WEP and other Approaches

Data is encrypted to ensure that only authorized users have access to information. 802.11b presents
an interesting problem in terms of security. Because radio waves cannot be controlled effectively or
enclosed by walls, additional methods of security are needed to prevent unauthorized users.

Two methods of data encryption are available for the 802.11b protocol. The first method provides 40
bit keys, called WEP or Wired Equivalent Privacy (Fennelly, 2001). Unfortunately, WEP has a serious
flaw in its implementation. The keys are static – and can be sniffed in a relatively short amount of time
(Verton, 2001). According to www.extremetech.com, AirSnort, a program that runs on a Linux system
with a 2.4 kernel and Prism-based wireless cards, can discover a WEP key after passively monitoring a
wireless network (Fisher, 2001). According to the site (http://airsnort.sourceforge.net), AirSnort can
determine the WEP key in seconds after "listening" to 100MB-1GB of traffic. The second method is
similar to 40 bit WEP but is operates under 128 bit keys. Unfortunately, 128-bit encryption is
proprietary through vendors like Cisco, 3Com, and Lucent, and has similar weaknesses like WEP.

Some other approaches to security are:

� Radius Authentication – Very effective, but requires a RADIUS system implemented in the network

� Adding a DMZ (De-Militarized Zone) – Also effective, but adds an extra layer to manage

� Forcing VPN – Forces wireless users to create a VPN tunnel to the network

http://www.extremetech.com/

 5

C. Need for Authentication: using SSL

According to the Internet-Draft on Secure Socket Layer (also called TLS or Transport Layer Security),
the primary goal of the SSL Protocol is to provide privacy and reliability between two communicating
applications. The protocol is composed of two layers (Dierks & Allen, 1999). At the lowest level,
layered on top of some reliable transport protocol (e.g., TCP), is the SSL Record Protocol. The SSL
Record Protocol is used for encapsulation of various higher-level protocols. One such encapsulated
protocol, the SSL Handshake Protocol, allows the server and client to authenticate each other and to
negotiate an encryption algorithm and cryptographic keys before the application protocol transmits or
receives its first byte of data. One advantage of SSL is that it is application protocol independent. A
higher-level protocol can layer on top of the SSL Protocol transparently. The SSL protocol provides
connection security that has three basic properties:

• The connection is private. Encryption is used after an initial handshake to define a secret key. Symmetric
cryptography is used for data encryption (e.g., DES, RC4, etc.)

• The peer's identity can be authenticated using asymmetric, or public key cryptography (e.g., RSA, DSS, etc.)

• The connection is reliable. Message transport includes a message integrity check using a keyed MAC. Secure hash
functions (e.g., SHA, MD5, etc.) are used for MAC computations.

D. Traffic Shaping and Quality of Service

Traffic Shaping is the general term given to a broad range of techniques designed to enforce
prioritization policies on the transmission of data over a network link. Traffic shaping allows the
implementation of a specific policy that alters the way in which data is queued for transmission. The
methods of Quality of Service (QoS) supported in the Linux kernel (Radhakrishnan, 2001)are:

• Class Based Queue (CBQ)

• Token Bucket Flow (TBF)

• Clark-Shenker-Zhang (CSZ)

• First In First Out (FIFO)

• Priority

• Traffic Equalizer (TEQL)

• Stochastic Fair Queuing (SFQ)

• Asynchronous Transfer Mode (ATM)

• Random Early Detection (RED)

• Generalized RED (GRED)

• Diff-Serv Marker (DS_MARK)
Generally speaking, QoS is used to describe an end-to-end guarantee of some kind of quality of
service. It is the idea that transmission rates, error rates, and other characteristics can be measured,

 6

improved, and, to some extent, guaranteed in advance. QoS is needed when receiving audio (VoIP)
and video (Steaming Media) transmissions, where data is flowing continuously. Quality of Service can
only be achieved where some sort of Service Level Agreement (SLA) is made, otherwise it would only
be “best effort” (Taylor & Hettick, 2001).

This guarantee is generally created using reservation protocols such as RSVP (Armitage, 2000)
(Braden, Zhang, Berson, Herzog, & Jamin, 1997). The reservation of bandwidth and throughput is
done between the client and server with several hops in between. All hopping stations (routers) have
an agreement to provide the reserved bandwidth and throughput.

E. Netfilter: Working with the IP Layer

Netfilter is a set of rules that are set in the IP layer using IPTables in Linux. The relationship between
Netfilter and IPTables is that Netfilter is like the Kernel in Linux and IPTables is the user-space program
to interface with the kernel and provide what the kernel needs (Russell, 2001). It has four parts.

1. Firstly, each protocol defines "hooks" which are well-defined points in a packet's traversal
of that protocol stack. At each of these points, the protocol will call the netfilter framework
with the packet and the hook number.

2. Secondly, parts of the kernel can register to listen to the different hooks for each protocol.
So when a packet is passed to the netfilter framework, it checks to see if anyone has
registered for that protocol and hook; if so, they each get a chance to examine (and
possibly alter) the packet in order, then discard the packet, allow it to pass, tell netfilter to
forget about the packet, or ask netfilter to queue the packet for userspace.

3. The third part is the packets that have been queued for sending to userspace; these
packets are handled asynchronously.

4. The final part consists of comments in the code and documentation.

Main Features

• Stateful packet filtering (connection tracking)

• Many kinds of network address translation

• Flexible and extensible infrastructure

• Large number of additional features as patches

Netfilter/IPTables use

• Build Internet firewalls based on stateless and stateful packet filtering

• Use NAT and masquerading where we don't have enough addresses

• Use NAT for implementing transparent proxies

• Aid the tc+iproute2 system used to build sophisticated QoS routers

• Do further packet manipulation (mangling) like altering the TOS field of the IP
header

 7

Approach

Our approach in implementing a secure wireless network used Linux as a platform, where different
kinds of services run on it. Such services will include Gateway, Authentication, and Netfilter.
NoCatAuth was chosen as the open source solution that is currently at its beta stage, but has a
promising future. NoCatAuth can be downloaded from: http://nocat.net/ (Flickenger, 2002)

A. Use a wireless access point as the main point of entry.

A wireless access point was used to communicate with other wireless users on the
WLAN. The AP will act as the main point of entry for every user, and then it will redirect its
traffic to the Gateway Server.

B. Redirect traffic to a Gateway, implementing netfilter.

Once traffic has been redirected from the Access Point to the gateway and the user is
authenticated successfully, a Netfilter profile is implemented based on the user type. Such
users could be divided into three classes such as: faculty, student, or administrator.

C. Use an SSL server for authentication front-end.

SSL with the Apache web server was implemented in order to secure transmission of login
and password information between the client and the server. This is to prevent
unauthorized users from sniffing usernames and passwords that would otherwise be
transmitted as clear text.

D. Use a database for account management.

MYSQL was used to store the user account information. Data manipulation can be done
via simple forms. For advanced DB manipulation, we used PHPMyAdmin.

E. Use PGP/GnuPG for Gateway<->AuthServ authentication

Communication between the Gateway and the AuthServ requires trust. PGP/GnuPG was
used to secure the communication, through the use of trusted keys. The original
NoCatAuth distribution specifies that the AuthServ and the Gateway reside in two
separate systems, thus the need for secure authentication. Because our Gateway
implementation contains both the AuthServ and the Gateway in the same box this extra
layer of authentication is somewhat redundant. However, this approach allows us to
migrate the AuthServ to another location very easily.

F. Use SSL for End-User<->AuthServ authentication

Secure Sockets Layer was used to guarantee the transaction between the End-User and
the Auth Server. Again, this is to prevent unauthorized users from sniffing usernames and
passwords that would otherwise be transmitted over wireless signals.

http://nocat.net/

 8

G. Use Gateway with Netfilter and Traffic Shaping to implement QoS

In our project, we are referring to QoS from a very simple perspective. Instead of looking
at a reservation across several hopping stations, we are merely looking at some control of
bandwidth and throughput between two interfaces (eth0 and eth1) on the same computer.
Details of the various approaches to QoS can be found in a book titled "Quality of service
in IP networks by Grenville Armitage" (see references).

For this project we chose to implement QoS features as a possible option. This option is
implemented via the Class Based Queue (CBQ) method. Let's look further into what CBQ
really means for a wireless LAN. CBQ is a method that works with how a router handles
arriving packets at the IP layer. CBQ allows for the creation of classes. Based on markers
such as source IP address, destination IP address, protocols, Type of Service (ToS) bits
etc., CBQ can create a set of classes. These classes could be constructed to differentiate
TCP vs. UDP traffic. For example, TCP packets that come in for an FTP transfer would
get marked differently than UDP packets for streaming audio, video or real-time
multiplayer games. Another way to differentiate is to create classes for traffic coming from
different parts of the network or from different gateway devices. Yet another possibility is
to create classes based on some user-defined characteristics that are controlled by
network administrators.

Looking further into CBQ, we find that each class can get its predetermined bandwidth and
under some conditions, a class may borrow bandwidth from other classes if the network
administrator allows us for such a transfer (Radhakrishnan, 2001). Of course, the
borrowing of bandwidth can only occur if bandwidth is actually available in the other
classes. One of the strengths of CBQ is in being able to allocate link bandwidth to classes
while independently assigning priorities to those classes. Thus, a router could have a high-
priority real-time and a lower-priority non-real-time class, each with a different bandwidth
allocation, and the packets from the real-time class would receive priority scheduling as
long as sufficient bandwidth was available, or in times of congestion, as long as the arrival
rate for that class did not exceed its allocated bandwidth.

NoCatAuth implements CBQ via the “throttle.fw” script in the bin folder. Looking closely
and this script we see the implementation of a CBQ system using the tc package.

The general syntax for using the tc package is:

tc [OPTIONS] OBJECT { COMMAND | help }

where OBJECT:= { qdisc | class | filter }

OPTIONS:= { -s[statistics] | -d[details] | -r[rawq] }

The following statement from the throttle.fw file is an example of a class based queue
system being implemented on the internal device ($InternalDevice). Looking at this line we
see that the throttle script is using the CBQ method for controlling the use of bandwidth in
NoCatAuth.

tc qdisc add dev $InternalDevice root handle 10: cbq bandwidth 10Mbit avpkt 1000

According to the original design of NoCatAuth, the users can be put into three different
classes namely owners, co-op users, and public users. Instead of using a scheme where

 9

automated methods are used for creating classes, NoCatAuth chooses to create classes
based on the role that a user plays.

et
h0

 Node Owner Class

Public Class

Co-op member Class

et
h1

Class Based Queue (CBQ)

The approach of using a “plug-in” file for providing a traffic shaper in NoCatAuth adds a lot
of flexibility to the system. This leads us to believe that the implementation of class-based
queues in NoCatAuth is simply the beginning of many other possibilities. NoCatAuth
allows for a plug-and-play implementation of bandwidth throttling. By getting creative with
its throttle script (throttle.fw) one could implement not just CBQ but many other Traffic
Shaping methods such as stochastic fair queuing (SFQ). More detail on the various
methods used for quality of service and related issues can be found in the following RFCs:
1349 (Almquist, 1992), 1812 (Baker, 1995), 2205 (Braden et al., 1997) and 2309 (Braden
et al., 1998).

The netfilter rules are implemented via IPTables in the /bin/iptables/ folder. The initialize.fw
script does most of the firewall initialization. It also does the initial marking. In our
implementation, in order to prevent certain End-Users from consuming all the bandwidth,
netfilter tools and IPTables were configured to limit bandwidth to 128k for most users.
Owners of the NoCatAuth system were allowed the maximum amount of bandwidth.

 10

H. Diagram

 11

Implementation

� For the project, an Intel Based PC was used. Below are the hardware specifications:

• Disk Drives
o Hard Drive

� Western Digital WDC AC26400B
o CD-Rom

� Mitsumi FX3400
o Floppy Disk

� Standard
� Iomega ZIP 100

• Display
o ATI Tech. Inc. 3D Rage Pro AGP 2X

• Network Adaptors
o Intel 8255X- based PCI Ethernet Adapter
o Intel ® Pro/100 + PCI Adapter

• Sound
o Creative SB16 Compatible

� The Linux Distribution Package used was Red Hat Linux 7.1. The Install type

selected was workstation. The Hard drive was manually partitioned, using the
following partition table:

 / 2 gig hda5
 /boot 20 Meg hda1
 /swap 917 Meg hda10
 /usr 2 gig hda6
 /home 500 Meg hda7
 /var 200 Meg hda9
 /tmp 500 Meg hda8

� The Networking interfaces were configured as follows:

Eth0
 IP 130.212.14.62
 Netmask 255.255.255.0
 Network 130.212.14.0
 Broadcast 130.212.14.255
 Hostname nocatout
 Gateway 130.212.14.254
 Primary DNS 130.212.10.163
 Secondary DNS 130.212.10.162

 Eth1

IP 130.212.14.63
 Netmask 255.255.255.0
 Network 130.212.14.0
 Broadcast 130.212.14.255
 Hostname nocatin
 Gateway 130.212.14.254

 12

 Primary DNS 130.212.10.163
 Secondary DNS 130.212.10.162

� No Firewall was selected. We chose not to install RedHat’s firewalls because we
weren’t sure how it would work with NoCatAuth’s implementation of Netfilter.

� A number of packages were chosen during installation, as follows:

Databases
 MySQL
 Internet
 Open SSL-Perl
 System
 Auth_ldap (for future use)
 Gnome-linuxconf
 Linuxconf
 Development
 Languages
 Perl
 PHP (to support PHPMyAdmin)
 System Environment
 IPTables v1.2.4
 Wireless Tools
 Daemons
 DHCP
 OpenLDAP(for future use)
 OpenSSH
 HTTP + HTTPS

� In addition to the root account, two additional users accounts were created (pchang
and hishii).

� GNU Privacy Guard was installed from www.gnupg.org/download.html.

� The IPRoute2 Package was installed from ftp.inr.ac.ru/ip-routing.

� PHPMyAdmin version 2.2.0 was downloaded and installed from www.phpwizard.net.
PHPMyAdmin is a MySQL Database configuration tool.

o The MySQL database information was populated using NoCatAuth’s SQL script.

� The Apache web server was configured by editing the httpd.conf configuration file.

o Apache was configured, and the pointers to Apache’s cgi-bin were changed to
point to /usr/local/nocat/cgi-bin.

o MOD_SSL was obtained and installed from http://www.modssl.org/

o Document root of Apache was pointed to /usr/local/nocat/htdocs.

� NoCatAuth version 0.60 was downloaded from http://nocat.net/, and uncompressed
into usr/local/nocat.

o The command make gateway was issued, and the files were uncompressed into
usr/local/nocat.

http://www.gnupg.org/download.html
ftp://ftp.inr.ac.ru/ip-routing
http://www.phpwizard.net/
http://nocat.net/

 13

� The command make authserv was issued, to install and configure the
authentication server

� The command make keys were made to create the PGP keys and certificates for
the auth server.

� The NoCatAuth configuration file was edited as follows:

o LocalNetwork_Eth1 – 130.212.14.63/255.255.255.0

o DNSAddr – 130.212.10.163

o Configured NoCatAuth to allow ports HTTP (80), FTP (20), and SSL (443)
traffic

o Modified AuthServiceAddr –130.212.10.62 – To use our own Authentication

o Modified AuthServiceURL – https://130.212.14.62

A few problems arose during the implementation of the Secure Wireless Network Project.
It took us a while to test it and make sure it works to some extent. One such problem was
concerned with the trustedkeys.gpg file. After executing ‘make pgpkey’, trustedkeys.gpg
was created by the NoCatAuth script into the NoCat default folder (/usr/local/nocat), which
was not in the same directory as /usr/local/nocat/pgp/. To correct this problem we moved
the trustedkeys.gpg to the /usr/local/nocat/pgp/ folder. Note that a stock trustedkeys.gpg
came with the NoCatAuth script that works with NoCatAuth’s auth server at
auth.nocat.net. The purpose of this stock trustedkeys.gpg is to make a gateway work
with the auth service at auth.nocat.net . This trustedkeys.gpg will not work if it is run in
CAPTIVE MODE with a different AuthServ. When running in CAPTIVE MODE, the
trustedkeys.gpg file that is generated by your auth server must be moved to the pgp
folder.

Another problem occurred during the process of making the pgp keys. The system asked
for a passphrase, which was not necessary2 (Flickenger, 2001). Since the NoCatAuth
script did not use a passphrase, the Gateway and AuthServ were not communicating
because it expected a passphrase. To fix this issue, the passphrase was left blank during
the process of ‘make pgpkey’. Another problem is that the ownership was changed from
root to apache for all the files under the nocat/pgp/ folder. This solved the permission
issue between the gateway and auth server during communication.

Finally, in the AuthServ script ‘AuthService.pm’, the 4th line down from sub gateway_ip, the
return $gw; was commented out. Without commenting this out, the login keeps
looping. All this is with respect to version 0.60

2This information is now reflected in the NoCatAuth directions.

 14

Results

Implementation of a secure wireless network works well, but does not protect from WEP-related
attacks. In the notion of security, the only part that is left open is the encryption-over-air part. This is
probably solvable by creating a VPN, where secure point-to-point tunnels or layer 2 tunnels are
created. The discussion about the benefits of WEP vs. its vulnerability is outside the scope of this
document.

Although traffic shaping is available based on the different types of users, bottlenecks at the gateway
server may exist during peak times. If bottlenecks exist, it would be a good idea to only run the
necessary services to keep the gateway server operating at peak efficiency.

The gateway and AuthServ can be used in a wired network environment as well. This implementation
is often called a choke point server. This would prevent unauthorized users from getting access to the
network. The network at SFSU is fully accessible in certain areas, where anyone can basically come in
with a laptop and plug into the network. Hopefully, this will change in the near future.

 15

Conclusion

The NoCatAuth gateway system worked as intended. The NoCatAuth code is still very beta, and much
work needs to be done before it can be considered a complete product. It is the most promising
software released to date. The system needs to be put through a stress test, before it is fully
implemented.

The fact that NoCatAuth is available in the open source domain was a great advantage. We had
access to the entire source code and were able to “look under the hood” when necessary. The open
source community related to NoCatAuth (available via their mailing list) was also very insightful. Next
steps include: Implementing a system to monitor and track usage of the system, a better interface for
user configuration and management, and implementing the entire NoCatAuth system into a user
friendly, all in one box.

 16

References

Almquist, P. (1992). RFC 1349: Type of Service in the Internet Protocol Suite, [Web]. IETF. Available:
http://www.ietf.org/rfc/rfc1349.txt

Armitage, G. (2000). Quality of Service in IP networks: Foundations for a Multi-Service Internet (1 ed.):
Macmillan Technical Publishing.

Baker, F. (1995). RFC 1812: Requirements for IP Version 4 Routers, [Web]. IETF. Available:
http://www.ietf.org/rfc/rfc1812.txt

Braden, B., et al. (1998). RFC 2309:Recommendations on Queue Management and Congestion
Avoidance in the Internet, [Web]. IETF. Available: http://www.ietf.org/rfc/rfc2309.txt

Braden, R., Zhang, L., Berson, S., Herzog, S., & Jamin, S. (1997). RFC 2205:Resource ReSerVation
Protocol (RSVP), [Web]. IETF. Available: http://www.ietf.org/rfc/rfc2205.txt

Dierks, T., & Allen, C. (1999). RFC 2246: The TLS Protocol, [Web]. IETF. Available:
http://www.ietf.org/rfc/rfc2246.txt

Fennelly, C. (2001). Security in wireless, [Web]. IBM Developer Works. Available: http://www-
106.ibm.com/developerworks/library/wi-sec.html?dwzone=wireless

Fisher, D. (2001). 802.11 Wireless Security Holes Exposed, [Web]. ExtremeTech. Available:
http://www.extremetech.com/article/0,3396,s%253D201%2526a%253D11271,00.asp

Flickenger, R. (2001). How do I fix the passphrase problem? In a conversation with S. Verma. San
Francisco, via AOL Instant Messenger.

Flickenger, R. (2002). Building Community Wireless Networks (1 ed.). Sebastopol, CA: O'Reilly &
Associates.

Gomes, L. (2001). Many wireless networks open to attack, [Web]. ZDNet News. Available:
http://zdnet.com.com/2100-11-529460.html?legacy=zdnn

Panko, R. (2001). Business Data Communications and Networking (3 ed.). New Jersey: Prentice Hall.

Radhakrishnan, S. (2001). Linux - Advanced Networking Overview, Version 1, [Web]. Available:
http://qos.ittc.ukans.edu/howto/

Russell, P. (2001). Netfilter: Firewalling, NAT and packet mangling for Linux 2.4. Netfilter.org. Available:
http://www.netfilter.org/documentation/index.html

Shipley, P. (2001). Open WLANs: the early results of wardriving, [Web]. dis.org. Available:
http://www.dis.org/filez/openlans.pdf

Taylor, S., & Hettick, L. (2001). QoS at the IP layer, Part 1, [Web]. Network World Fusion. Available:
http://www.nwfusion.com/newsletters/converg/2001/01123443.html

http://www.ietf.org/rfc/rfc1349.txt
http://www.ietf.org/rfc/rfc1812.txt
http://www.ietf.org/rfc/rfc2309.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www-106.ibm.com/developerworks/library/wi-sec.html?dwzone=wireless
http://www-106.ibm.com/developerworks/library/wi-sec.html?dwzone=wireless
http://www.extremetech.com/article/0,3396,s%253D201%2526a%253D11271,00.asp
http://zdnet.com.com/2100-11-529460.html?legacy=zdnn
http://qos.ittc.ukans.edu/howto/
http://www.netfilter.org/documentation/index.html
http://www.dis.org/filez/openlans.pdf
http://www.nwfusion.com/newsletters/converg/2001/01123443.html

 17

Verton, D. (2001). Flaws in Wireless Security Detailed, [Web]. Computerworld. Available:
http://www.computerworld.com/cwi/stories/0,1199,NAV47-81_STO62220,00.html

Notes:

http://www.computerworld.com/cwi/stories/0,1199,NAV47-81_STO62220,00.html

	Abstract
	Introduction:
	Background
	Notion of Security
	Purpose of Encryption, WEP and other Approaches
	Need for Authentication: using SSL
	Traffic Shaping and Quality of Service
	Netfilter: Working with the IP Layer

	Approach
	Use a wireless access point as the main point of entry.
	Redirect traffic to a Gateway, implementing netfilter.
	Use an SSL server for authentication front-end.
	Use a database for account management.
	Use PGP/GnuPG for Gateway<->AuthServ authentication
	Use SSL for End-User<->AuthServ authentication
	Use Gateway with Netfilter and Traffic Shaping to implement QoS
	Diagram

	Implementation
	Results
	Conclusion
	References

