

4G Services, Architecture and Networks: Speculation and Challenges

Ravi Jain rjain@docomolabs-usa.com January 24, 2003

R

Outline

- Introduction and Motivation
- What is 4G anyway?
- Pet peeves
- Summary

CR

Summary

- 4G should be defined in terms of applications and services
 - Not purely by air interface protocol, backbone network or bandwidth
- Coming: Gazillions of gizmos
 - Need for massive mobile data management
- Rapid service introduction and heterogeneous technologies (air interface, terminal device, backbone)
 - => programmability and open APIs at all levels of the system
 - => applications with market size of 1
 - Maturing industry
 - => attend to environmental impacts (*Jain & Wullert*, Mobicom 02)
 - Plateau of revenue in current markets
 - => B24B

Introduction Mobile devices will dominate

Strong growth in subscribers

(I_R Ro. V R 0000

Usage high ... and rising in all countries

Availability of wireless data devices increasing

Source: CTIA, 2000

Strong Growth in Subscribers, Minutes, Data BUT Falling \$/MOU Subscribers Double 97-00 \$ / MOU falling

\$0.58 \$0.57 \$0.56 \$0.60 \$0.54 \$0.53 \$0.50 Per Minute \$0.45 \$0.43 \$0.40 \$0.35 Average Price \$0.28 \$0.30 \$0.24 \$0.22 \$0.20 \$0.19 \$0.18 \$0.17 \$0.20 \$0.10 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Data Services Exploding

Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 3/3/2003

250

200

150

100

50

0

U.S.

Average MOU Per Month

221

DoCoMo ARPU (voice and i-mode)

Source: NTT DoCoMo Website, www.nttdocomo.com Investor Relations

Mobile Multimedia (i-mode Access Breakdown^{*1})

Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved.

3/3/2003

Ravi Jain

12

1 billion gizmos by 200x (Choose x = 4, 5, ...)

- Gizmos and technology originally developed for one purpose will be used in new and innovative ways for other purposes
 - e.g. Bluetooth was primarily designed as a cable replacement but can be used as a location technology
- Two parallel, contradictory (or complementary) gizmo trends leading to different location needs and capabilities – Integration:
 - cell phone as pager, organizer, e-wallet, radio, media player ...
 - -Specialization:
 - different functionality, form factors, power requirements, connectivity, processing and storage, fashion niches

R

00000000

- DoCoMo 3G FOMA phone
- Download 684 kbps, Upload 64 kbps (nominal)
- Still and video digital camera
 - Add text and frames to pictures or split into a jigsaw puzzle
 - Send as email
 - Share video while talking
- Remote video monitoring using a second phone
- *i-motion* service for multimedia content download (music, movie clips etc)

Source: NTT DoCoMo website

R

3G Woes

- 3G in Europe •
 - Too little, too late, too pricey?
 - Sonera/Telefonica cancellation
 - 3G in USA
 - Sprint PCS
 - AT&T rollout
- 3G in Japan •
 - FOMA: first out the gate

WLAN: Threat or Opportunity

Interaction characteristics

- Human-Human:
 - voice, text, multimedia conversation and messaging
 - 3D video
- Human-Machine:
 - web access, remote operation
 - virtual reality
- Machine-Machine:
 - telemetering, sensor/actuator networks
 - ubiquitous computing

Traffic characteristics

Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 3/3/2003 Ravi Jain 18

R

Outline

- Introduction and Motivation
- What is 4G anyway?
 - Ways of defining 4G
 - My view: 4G Imperatives
 - Database issues in 4G
- Pet peeves
- Summary

Ways of defining 4G

- Historically wireless generations have been defined in terms of air interface technology, focusing on raw bandwidth
- As 3G demonstrates, good wireless access technology and high raw bandwidth is no longer sufficient for business success
- Thus for 4G it seems more appropriate to use other criteria
 - Technology view
 - Network operator view
 - User view

Technology view: Bandwidth Speed bps

Alternative ways of classifying generations: Other technology views

- Layer 1 and Layer 2 wireless interface protocols
 - Analog -> Digital -> WCDMA
- Cell sizes or types
 - Cells -> Microcells -> Picocells ... Hotspots
- Network (Layer 3) wireless layer protocol
 - Layer 1&2 specific -> (proposed) Wireless ATM -> (proposed)
 Wireless IP
- System architecture
 - Loosely connected wireless islands -> Tightly integrated with PSTN -> Tightly integrated with Internet
- But this is really a bottom-up view ...
- Where's the money?

3/3/2003

Alternative ways of classifying generations: Network operator view

- Cost: Spectral efficiency
 - bps/Hz
 - bps/Hz per cell
- Cost: System efficiency
 - \$ per bps/Hz
 - \$ / (bps/Hz) m²
- Revenue
 - ARPU
 - \$ / MoU
 - \$ / packet
 - \$/bit
- Market share:
 - Penetration
 - ARPU*penetration
- But where's the user in all this ...? Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 3/3/2003 Ravi Jain 23

Wireless generations: User's view (1 of 2)

Attribute	1 G	2 G	3 G	4 G
Cost				
Initial	High	Low	Low	Flexible
Per-min	Very high	High	Affordable	Flexible
Installation	Inconvenient	Quick or instant	Instant	Instant; DIY
Handset	Clunky, heavy	Reasonable for voice, poor for data	Good for voice, poor for data	Many, app- specific
Battery life	Very Low	Low	Low	1 week use

Wireless generations: User's view (2 of 2)

Attribute	1 G	2G	3 G	4 G
Voice quality	Poor	Reasonable	Good	Excellent
Coverage	Poor	Reasonable	Good	Excellent
Roaming	None or Inconvenient	Reasonable	Good for voice	Seamless for all apps
Voice services	Few	Basic telephony	Reasonable	Many; DIY
Data	None	Limited	Limited	Many
WWW	N/A	Poor	Limited	Convenient
Other user issues		Decreasing \$/MoU but Increasing total \$/month	Security: w-spam, privacy, etc	Tradeoff security/QoS for price. Low Environment Impact

User's view: This is just the beginning

Source:

ICDE 2001

ITU-R view

Source: ITU-R WP8F Vision Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 3/3/2003 Ravi Jain 27

ITU-R view

Another view: 4G Imperatives

(1 of 4)

- Innovative applications, not voice, will be the key revenue generator
 - \Rightarrow Programmability and Open APIs
 - while maintaining security, QoS, and bill-ability
 - \Rightarrow Foster a 3rd-party app developer community
 - Build on work centered on fixed networks (Parlay, JAIN, OSA)
 - \Rightarrow The search for the killer app should never end
 - Any static portfolio of applications and services will eventually become a commodity
 - \Rightarrow Radical personalization and niche applications
 - Applications with a market size of 1

Another view: 4G Imperatives

(2 of 4)

- True convergence with the Internet is critical
 - \Rightarrow IP must be supported efficiently
 - ⇒Remove discontinuities at the wired/wireless interface and the data/voice interface
 - ⇒The Internet must also evolve to support wireless mobility and ubiquity efficiently
 - Example: Fundamental addressing issues dictate IPv6 Example: Fundamental inefficiencies in supporting mobility must be removed

Example: Use of proxies vs the end-to-end argument must be investigated critically

Another view: 4G Imperatives

(3 of 4)

- Spectrum will remain the vital resource
 - Integrate with unlicensed spectrum
 - Allow creative technology and business models for seamless inclusion of hotspots and multihop WLAN and other technologies
 - Operator-owned and 3rd-party owned WLAN elements
 - Aggregator and community access models
 - Manage licensed spectrum efficiently
 - Consider dynamic and market-based mechanisms for ondemand spectrum allocation

La DS

Another view: 4G Imperatives

(4 of 4)

- Allow rapid organic, bottom-up technology introduction
- Flexibly integrate multiple air interface technologies that coexist and provide synergy
- Flexibly support multiple devices that coexist and provide synergy
- Usability and User Interfaces will remain key
 - New UI and devices will extend the application space (C.f. Palm PDA)

Needed: The Sony Walkman of 4G (with Tactile, Speech, & other UI)

4G: An evolvable, programmable, multi-tier multi-device network

4G: The Basic Model

Evolution towards 4G

- <u>3.5G</u>: An All-IP network (i.e., with Wireless IP) integrating all our current favorite IETF protocols (MIP, FMIP, HMIP, CARD, PANA, etc)
- <u>4G:</u> A programmable, flexible, application-oriented Web-based architecture suitable for fundamentally supporting
 - mobility
 - WWW
 - ubiquitous computing
 - semantics-aware applications

Database issues in 4G: Evolution of database network architectures

- Centralized
 Distributed
 Mobile wireless database access
 - Database access using a gizmo

Ad-hoc database networks
 Database on the gizmo

Viability

- Mobile DB market
 - Connect mobile workers to back-office enterprise servers
 - Vertical markets: Field service, transportation, retail, utilities, financial, healthcare, government
 - Gartner: \$70M in 2001, Up to ~\$150M in 2006 (16% CAGR)
- Need a clearer business case for further architecture evolution
 - Sensors to a DB: for niche vertical applications?
 - Pervasive and Ad-hoc networked databases?

Ravi Jain

3/3/2003

Information management: Location, location, location

- The easiest way to add context to the user experience
- Also maybe the easiest way to add value
- Total location information management in a comprehensive multitier wireless network with seamless connectivity
- Location estimation
- Location (i.e. "next-cell") prediction
- Location privacy

Location management: It's not just for gizmos anymore!

- Mobile software will become an increasingly important aspect of next generation networks and applications
 - Mobile agents, active networks, mobile code, programmable networks, etc.
- Mobile software to serve a (mobile) user
 - A user agent for personalized information retrieval, shopping, etc
 - Makes particular sense for information access over a wireless link
 - Jain and Anjum, IEEE WCNC, 2000
- Mobile software to serve the network provider
 - Mobile software in the network to decrease the cost of personalized information delivery to (mobile) users
 - Shah, Jain, Rajagopalan, Anjum, 2001
- Managing the itineraries and location of mobile software modules will be a major challenge
 - Security, cost, and efficiency implications

Database needs: gizmos as blessing (and curse ...)

- Where is my gizmo?
 - Databases for managing the location and mobility of distributed communicating devices
- Where is the user (or object) who has my (or this) gizmo?
 - Databases for using devices and connectivity to identify, authenticate, and locate users -- as well as other devices
- What can my gizmo do for me today?
 - Databases for dynamic service discovery, download, and activation
- Why can't my one gizmo do everything?
 - Integrating database facilities with other horizontal & vertical applications
- Why can't I have a special gizmo to do this one thing I need? – Application-specific *micro-databases* and database micro-clients
- Why can't my gizmo and your gizmo figure things out together?
 - Database transactions across ad-hoc networks Copyright © 2003 DoCoMo Communications Laboratories USA, Inc. All Rights Reserved. 3/3/2003 Ravi Jain 40

R

Outline

- Introduction and Motivation
- What is 4G anyway?
- Pet peeves
- Summary

A maturing industry

New Challenges Require Creative Thinking

B24B

Provide useful, affordable Information Technology services to the 4 billion people on the planet earning less than \$2000 *per yr*

- A Grand Challenge if there ever was one
 - Kalil, 2002
 - Prahalad & Hammond,
 HBR, 2002

Why? Enlightened Self-Interest

- New markets are the key to growth
 - Penetration and ARPU is saturating in the developed world
 - The economies of less developed countries are growing faster than the developed world
 - Hence less headroom for ARPU
 - The population of less developed countries is growing faster
 - The penetration of IT in less developed countries is miniscule
 - although increasing rapidly at the top of the local pyramid

R

JET VS(

Why? Enlightened Self-Interest

(2 of 2)

- "we renew our commitment to the principle of inclusion: everyone, everywhere should be enabled to participate in and no one should be excluded from the benefits of the global information society."
 - Okinawa Charter on the Global Informaton Society, G8 Summit in Okinawa, Japan, 2000
- In the long run, stability and prosperity everywhere is interconnected
 - "There will be no stability and prosperity in the world in the 21st Century unless the problems of Africa are resolved."
 - Japanese PM Y. Mori, Jan 2001

Frequently Raised Objections (FRO)

- The poor don't need PCs and broadband, they need food, water, power ...
 - True, but only partially
 - We are not proposing PC and broadband, but IT that can help them procure their basic needs
 - Example: Price discovery for agricultural produce

FRO:

The poor don't have money to buy IT

- "The poor" are not a homogeneous mass: vast differences between urban and rural
 - Dharavi, a shantytown in Mumbai (Bombay, India)
 - Buying a house or access to indoor running water is unrealistic
 - Penetration of TV: 85%, Pressure cooker: 75%, Mixer: 75%, Gas stove: 56%
- Large amount of aggregate purchasing power
 - Grameen Telecom village phone model
 - A single entrepreneur's cell phone is used by the entire village
 - Mean ARPU = \$90 (~ twice of US)
 - Max ARPU = \$1000
 - Consumers willing to spend 7% of their income on phone service

SAR

FRO:

Goods must be cheap so no room for profit

- True, but only partly
- The Poverty Premium
 - Dharavi (shantytown) vs Warden Rd (upper-class suburb)
 - Water: 37X, Diarrhea medication: 10x, Rice: 1.2x
 - Phone call: 1.8x
- Cost of delivering goods to urban poor can be low
 - Most live in densely populated cities
 - Roughly half of the Bottom of the Pyramid lives in 1300 cities
 - Many of the slums of these cities have a thriving, commercial, entrepreneur-driven micro-economy

FRO:

The poor cannot use advanced technology

- All new technology requires consumer awareness and education
 - Building this, at least for the urban poor, can be less costly than in developed countries
 - A much softer sell is necessary: the technology is obviously needed
- Grameen Telecom: Poor rural women in Bangladesh easily learn to use GSM phones although may have never made a phone call in their life
- In Kenya, poor teenagers are successfully trained as Web developers

R

Success metrics

- Individual
 - Number of people with access to connectivity within walking distance
 - Cost equal to a cup of coffee a day
- Societal
 - Number of people who cross the poverty line
 - Improved health (education, telemedicine, etc)
 - Better preparation and response to disasters
 - Free flow of information

Technical Challenges

- User interfaces
 - Multi-lingual
 - Cross-cultural
 - Simpler and more intuitive
- Less reliance on infrastructure
 - Ad-hoc and multi-hop networks
 - Better power usage and alternative power sources
- Better support for resource and device sharing
 - Privacy and security
 - Immediate and itemized charging, billing, and payment
 - Personalization

- Modular, streamlined products
 - Remove the unnecessary bells and whistles
 - Allow incremental upgrade and pay-only-for-what-you-use
 - Better software and system design
- Biometric and non-linguistic security
- Be open to *Reverse Flow of Innovation*
 - Incorporate diverse feedback loops into the product process
 - Examples: handcrank radios, MiniGSM

P

Summary

- 4G should be defined in terms of applications and services
 - Not purely by air interface protocol, backbone network or bandwidth
- Coming: Gazillions of gizmos
 - Need for massive mobile data management
- Rapid service introduction and heterogeneous technologies (air interface, terminal device, backbone)
 - => programmability and open APIs at all levels of the system
 - => applications with market size of 1
 - Maturing industry
 - => attend to environmental impacts (*Jain & Wullert*, Mobicom 02)
 - Plateau of revenue in current markets
 - => B24B