

http://www.viagenie.qc.ca

MWIF meeting 26/07/2000

Viagénie

- Consulting firm specialized in:
 - Network security and PKI
 - Advanced IP networks (IPv6)
 - Voice/Video/Telephony over IP
 - Internationalisation
- Runs the CA*net3 IPv6 backbone with Dalhousie Univ.
- Runs the 6tap exchange with ESnet.
- Designed and runs the freenet6 tunnel server (http://www.freenet6.net)
- Port quake to IPv6 and runs a quake IPv6 server
- Helping ISP and organisations to deploy IPv6

Plan

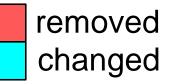
- IPv6 Features
 - Address space
 - Packet format
 - Autoconfiguration
- Mobile IPv6
- Applications
- Deployment
- What to choose ?

3

IPv6 Features

- Larger Address Space
- Aggregation-based address hierarchy

 Efficient backbone routing
- Efficient and Extensible IP datagram
- Autoconfiguration
- Security (IPsec mandatory)
- Mobility
- IP Renumbering


Larger Address Space

- IP addresses are 128 bits
- IP addresses are scoped
 - Link-local scope (trafic limited to local link)
 - Site-local scope (trafic limited to site)
 - Global scope
- Address types
 - unicast (one to one)
 - multicast (one to many)
 - anycast (one to nearest)
 - NO broadcast

IPv4 packet format

Ver.	header	TOS	total length			
identification		flag	fragment offset			
Т	ΓL	Protocol	Checksum			
32 bit Source Address						
32 bit Destination Address						

• IPv4 packet length: 20 bytes + options

IPv6 packet format

Ver.	TrafficClass	Flow Label				
Payload Length		h Next Header	Hop Limit			
128 bit Source Address						
128 bit Destination Address						

• IPv6 packet length: 40 bytes (= 2x IPv4)

7

Efficient and Extensible IP datagram

- IPv6 basic packet is of fixed length
 - Simple header, 64 bits field alignement
 - No options, no checksums
 - No fragmentation by routers
 - >> Efficient routing
- IPv6 packet length is twice as big as an IPv4 packet without options
 - BUT: the size of the average compressed IPv6 header will be smaller than the corresponding IPv4 header

Efficient and Extensible IP datagram

• Extensions to the header can be added – Most do not require router intervention

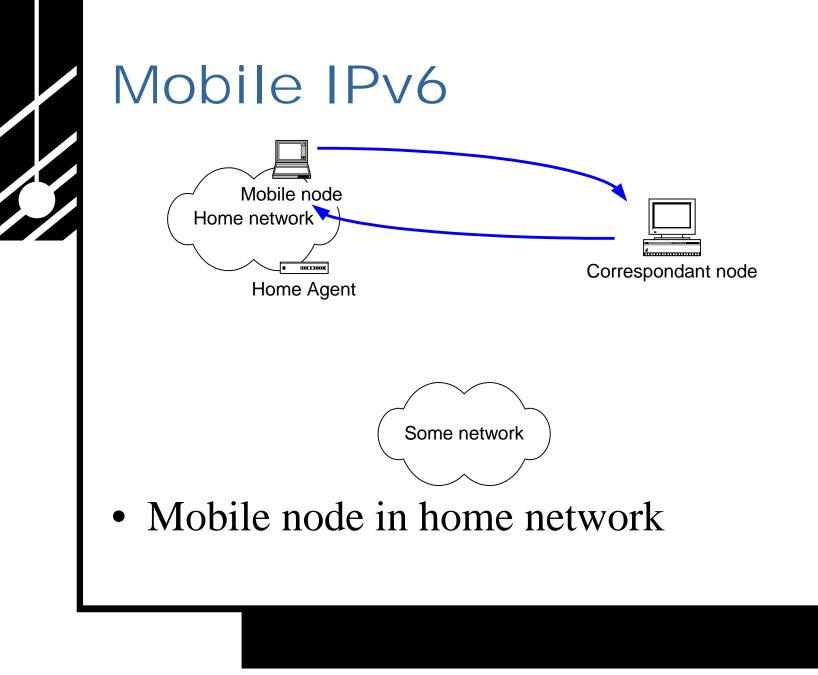
IPv6 Header next = routing header	Routing Header next = TCP	TCP Header + data
Touting house		

IPv6 HeaderSecurity hdrnext =next =security hdrDestination hdr	Destination hdr next = TCP	TCP Header + data
--	-------------------------------	----------------------

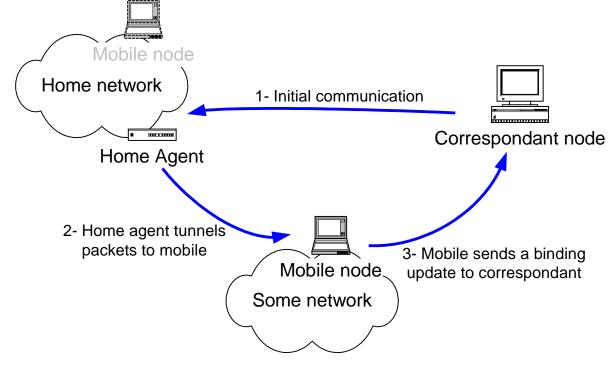
9

Autoconfiguration

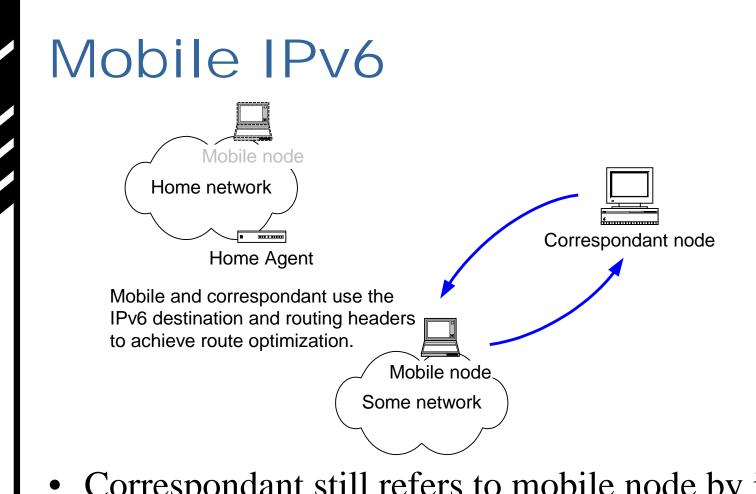
- Stateless Address Autoconfiguration
 - Plug and Play
 - No manual configuration required on end nodes
 - Nodes uses router advertisements on the link to automatically configure its IPv6 address, default route, MTU


Mobile IPv6

- Mobile IP allows node to always be identified by its home address, regardless of its current point of attachment to the Internet
- Benefits of IPv6
 - Mobile IP is now fully integrated into IPv6
 - Mobile IPv6 uses the destination header options in IPv6
 - Provides many improvements over Mobile IPv4.


Mobile IPv6

- Route optimization is built in IPv6
 - eliminates the « triangle routing » problem in mobile IPv4
- No need for foreign agents
 - Neighgor discovery and autoconfiguration provides the required mechanisms for the mobile node
- IPsec is used as the security mechanism – available in all IPv6 implementations



Mobile IPv6

- Mobile node registers its new address with home agent
- Home agent will redirect traffic to mobile node

- Correspondant still refers to mobile node by its home address
- Mobility is now fully integrated into IP

Applications

- More and more applications are being ported to IPv6
- The IPv6 API is well documented and standardized
 - Source and binary compatible with existing code and applications
 - Existing binairies (IPv4) will continue to run
 - Minimum changes in API
 - Porting applications to IPv6 should be easy
 - Seamless IPv6/IPv4 interoperability

Applications

- Test case: Quake
 - Only 200 lines of code needed to be changed of a total of 146500 lines. (Including comments and blank lines)
 - Compiled under *BSD/KAME, Linux, Solaris8, WindowsNT/2000 using the same standard API

IPv6 deployment

- New infrastructures can build on IPv6 from start
 - Deploy IPv6 nodes and applications
 - New applications deployed within IPv6 networks do not require proxies or NAT boxes.
 - Simpler and less expensive to deploy new applications
 - IPv6 clients can access any IPv6 applications, services, content ...

IPv6 deployment

- Not all applications are IPv6 ready (as of today, the Internet is still mostly IPv4)
- IPv6 was designed from the beginning with transition mechanisms in mind (many tools are available)
- For example, application gateways can provide access to the IPv4 network services
 - Typically, a dual stack (IPv4/IPv6) node running application proxies (mail, web ...)
 - These gateways are used only when an IPv6 client is requesting a service from an IPv4 only server.

What to choose ?

- IPv4 is well knowed
- IPv4 is a « comfortable » technology

• BUT

- IPv4 doesn't offer the address space required for the new technologies
- IPv4 requires NAT for any large scale deployment
 - New services will be harder and more expensive to deploy
 - End-to-end model broken. Hard to implement security
- IPv4 requires « add-ins » for new services (Mobile IP, IPsec)

What to choose ?

• IPv4 may look as an easy path now, but new deployments using IPv4 will be stuck with the current limits.

What to choose ?

- IPv6 is stable
- Has industry support
- Provides new features
- Integrates Mobile IP and IPsec
- And may be adapted for new technologies

Conclusion

- IPv6 is NEW ...
 - built on the experiences learned from IPv4
 - new features
 - large address space
 - new efficient header
 - autoconfiguration
 - IPsec, mobility
- ... and OLD
 - still IP
 - build on a solid base
 - started in 1995, a lot of implementations and tests done

Some links on IPv6

- IPng wg: http://playground.sun.com/pub/ipng/html/
- NGtrans: http://www.6bone.net/ngtrans
- IPv6 users site: http://www.ipv6.org
- IPv6 Forum: http://www.ipv6forum.com
- Normos (Internet standards): http://www.normos.org