
White Paper

Joël Repiquet
01/2005

http://www.joelrepiquet.com

Simulating Classes of Services over an

IP/MPLS Backbone

VPN Case Study

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 2

Contents

1 Introduction ..4
2 IPVCoSS Simulation Tool ..5

2.1 Serialization delay samples...8
2.2 Propagation delay samples...9
2.3 IPVCoSS Trace example ..10

3 IP VPN / CoS Case Study ..11

3.1 Physical Topology...12
3.2 Traffic Flows..13
3.3 DiffServ Environment ..14
3.4 TE Traffic Trunks Options ...15

4 VPN Case Study – Initial Run ..16
4.1 Traffic Analysis – Reader’s Guide...17
4.2 Traffic Analysis – Ingress Access Links ..18
4.3 Traffic Analysis – Backbone Links ..21
4.4 Traffic Analysis – Egress Access Links...24
4.5 Traffic Analysis – EF Flows...26

5 VPN Case Study – Run #2 – Disturbance of oversubscribed EF Traffic ..27
6 VPN Case Study – Run #3 – DiffServ Aware Traffic Engineering ..28
7 VPN Case Study – Run #4 – Link Failure ..29
8 VPN Case Study – Run #5 – TCP Congestion...30
9 VPN Case Study – Run #6 – TCP Congestion Avoidance ...31
10 Jitter Bounds for EF traffic over IP/MPLS...32
11 Conclusion ...34
Annex 1: IPVCoSS – TCP Congestion Control..35

A1.1 – Slow Start..37
A1.2 – Congestion Avoidance with Fast Retransmit & Fast Recovery ...38

Annex 2: IPVCoSS – Scheduling Trace ..41
List of abbreviations...44
References ..44
Glossary ..45

List of Figures

Figure 1: IPVCoSS basic principles...5

Figure 2: IPVCoSS – Nodes and Ports..5

Figure 3: Ethernet framing...6

Figure 4: PPP HDLC framing...6

Figure 5: End-to End IP Flow chain ...6

Figure 6: VPN Case Study – Topology..11

Figure 7: VPN Case Study – Physical Ports..12

Figure 8: VPN Case Study – Generated Traffic Flows ..13

Figure 9: VPN Case Study – DiffServ Environment...14

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 3

Figure 10: VPN Case Study – Aggregate-based Traffic Trunks ..15

Figure 11: VPN Case Study – Class-based Traffic Trunks..15

Figure 12: VPN Case Study – Initial Run Configuration ..16

Figure 13: VPN Case Study – Run #2 Configuration...27

Figure 14: VPN Case Study – Run #3 Configuration...28

Figure 15: VPN Case Study – Run #4 Configuration...29

Figure 16: VPN Case Study – Run #5 Configuration...30

Figure 17: VPN Case Study – Run #6 Configuration...31

Figure 18: Configuration for testing EF jitter bounds ...32

Figure 19: TCP Sender Windows ..36

List of Tables

Table 1: Serialization time according to port rate and packet size...8
Table 2: Propagation delay according to distances, in km and miles ..9
Table 3: Examples of jitter values with numerous EF flows, heavy load but no congestion ..33

List of Charts

Chart 1: Example for reader’s guide ..17
Chart 2: Case Study Initial Run – Port 51: R1-to-PE1 ingress access link ..18
Chart 3: Case Study Initial Run – Port 52: B1-to-PE1 ingress access link ..18
Chart 4: Case Study Initial Run – Port 53: G1-to-PE1 ingress access link ..19
Chart 5: Case Study Initial Run – Port 54: R2-to-PE2 ingress access link ..19
Chart 6: Case Study Initial Run – Port 55: B2-to-PE2 ingress access link ..20
Chart 7: Case Study Initial Run – Port 56: G2-to-PE2 ingress access link ..20
Chart 8: Case Study Initial Run – Port 61: PE1-to-Px backbone link...21
Chart 9: Case Study Initial Run – Port 62: PE2-to-Px backbone link...21
Chart 10: Case Study Initial Run – Port 71: Px-to-Py backbone link ...22
Chart 11: Case Study Initial Run – Port 72: Px-to-Pz backbone link ...22
Chart 12: Case Study Initial Run – Port 81: Py-to-PE3 backbone link...23
Chart 13: Case Study Initial Run – Port 82: Pz-to-PE4 backbone link...23
Chart 14: Case Study Initial Run – Port 91: PE3-to-R3 egress access link ...24
Chart 15: Case Study Initial Run – Port 92: PE3-to-G3 egress access link...24
Chart 16: Case Study Initial Run – Port 93: PE4-to-B4 egress access link ...25
Chart 17: Case Study Initial Run – Port 94: PE4-to-R4 egress access link ...25
Chart 18: Case Study Run #2 – Port 71 ..27
Chart 19: Case Study Run #3 – Port 71 ..28
Chart 20: Case Study Run #4 – Port 72 ..29
Chart 21: Case Study Run #5 – Port 82 ..30
Chart 22: Case Study Run #6 – Port 82 ..31

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 4

1 Introduction

The object of this paper is to present a case study based on a simulation in order to provide a practical perception of how a VPN
Service Provider runs and maintains delay-sensitive applications, such as video or voice, over its IP/MPLS network. Besides
potentially many forms of layer-2 and layer-3 VPN services, it is likely that an SP network also would offer Internet transit and/or
access services. The key information for an SP regarding the traffic entering its network at each access point are, as part of the
service level agreement with the customer, the class of service along with possibly the committed and peak rates. Bandwidth
availability is a necessary condition for ensuring QoS and could also be a sufficient one for an SP network that would be strictly
oversized, at any time, with respect to the offered traffic. Unfortunately, this situation is very unlikely, even with an SP that would
totally control its fiber and transmission infrastructure. Here are some reasons:

� Links or nodes become unavailable during some time, either for planned maintenance, or due to unexpected failures.

� Services are increasingly proposed with lower-priced burst rates well above the committed rate and even up to the
access port capacity, especially with Ethernet interfaces.

� There is a minimum time needed for planning and realizing the capacity upgrade of the network.

There is definitely a need for differentiating the services across an SP backbone. We will refer to DiffServ terminology for
defining the three “classes of service” or “aggregates” that are commonly used. The class with the most stringent requirements
in terms of QoS, Expedited Forwarding or “EF”, is associated with services proposing a committed rate only, and very low delay
variation – i.e., jitter. Packets belonging to this EF class are served with the highest priority and EF traffic should not be
overbooked in order to ensure bandwidth availability, and therefore no queue delaying, at any time. The Assured Forwarding or
“AF” class is associated to services that propose different levels of quality (and pricing) based on the rate. Typically, a
committed rate is offered along with one or two peak rates, or burst sizes. AF flows are less sensitive to jitter, but they should
have their throughput maintained from end-to-end whenever the committed rate is respected. In case they exceed this
committed rate, they are eligible to packet dropping, even prior to congestion. Packet dropping at an opportune time is the basis
of congestion avoidance mechanisms for TCP flows. There can be several instances of AF class. Finally, the Best Effort or “BE”
class is the default one and has no specific requirements.

DiffServ (DS) and MPLS, especially traffic engineering (TE), are the main technologies that enable QoS with IP. We are not
reviewing in detail DS and MPLS TE in this paper but our case study, focused on the forwarding performance aspects, assume
situations that result in their application, either separately or in a combined way.

As a DiffServ domain, the Service Provider (SP) backbone controls the ingress customer traffic at its edges by classifying the IP
flows into aggregates and, depending on the service level agreement with the customer, possibly conditioning this traffic by a
metering function potentially followed by policing, shaping or re-marking functions. The appropriate forwarding treatment is then
applied throughout the domain up to the egress point. Classes are typically associated with queues at each port in the network.
These queues share the port capacity under the control of a scheduler, whose role is to select the next packet to be sent over
the link. Each class is assigned a percentage of the port capacity and as a result it should be noticed that the BE class, in spite
of its lowest priority, will be able to use its part preferably to any excess traffic from other classes. Memory attached to each
queue is also managed according to congestion detection mechanisms that anticipate and prevent a full congestion. In practice,
there is also another class, sometimes referred to as network control or “NC”, reserved for signaling traffic but this has not been
simulated, for alleviating the analysis.

As an MPLS domain, the SP assigns paths to IP flows and is therefore able to manage bandwidth consistently inside its
backbone. Traffic engineering enables the SP to gather individual flows in traffic trunks (TTs) between an ingress and egress
nodes and have them dynamically routed depending on a number of constraints, essentially related to bandwidth. DiffServ
Traffic Engineering is an emerging solution that combines the benefits of both well-established DS and TE technologies, and will
be considered in our case study.

Simulations based on software programs stay in the theoretical domain and present the advantage of offering extremely
accurate results, on a short but representative time period. In effect, the simulator does not need to be real-time by itself and as
much information as necessary can be easily gathered at each time unit. Nevertheless, the real-time nature of traffic can be
reproduced a posteriori thanks to samples collected at regular intervals that can lead to graphs or even an animation.

This paper is organized as follows:

� First the IPVCoSS simulator is presented shortly. It is a proprietary tool that was preferred to other available simulators
such as NS2, just to have the full control of options, traces and any output data.

� Then the case study consisting of 10 sites for 3 VPNs over a backbone made up of 7 routers is presented under various
aspects, followed by an in-depth analysis of a first run with 14 flows. This initial run is then followed by 5 variants.

� A specific trial completes the case study. Its purpose is to highlight the conditions that create jitter in a statistically-
multiplexed environment such as IP, and show that jitter for EF flows remains in largely acceptable limits.

� Finally, two annexes illustrate with traces the implementation by IPVCoSS of fundamental mechanisms: TCP congestion
control and packet scheduling.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 5

2 IPVCoSS Simulation Tool

IPVCoSS (IP VPN CoS Simulator) is a stand-alone program, written in C and without any prerequisites, that enables you to set
up a network topology and inject traffic at ingress points. IPVCoSS is focused on IP data forwarding performance and assumes
that data paths are pre-established. It can be configured to handle classes of service and to simulate one or more IP VPNs over
a Service Provider backbone. The network configuration is based on a data model and the data structures are built at
initialization time. During its active phase, IPVCoSS runs a loop fictitiously cadenced at 100 nanoseconds (one tenth of
microsecond) and at each tick, it analyses and ensures the progression of IP packets at each node and port. The transfer
activity is triggered by the generation of IP flows, according to parameters such as volume, throughput and packet size. In
output, IPVCoSS produces QoS final reports, QoS regular samples and, if required, a chronological trace of events.

IPVCoSS

 Configuration:
 - Nodes
 - Ports
 - Queues
 - Flows
 - Paths
 - Trace options

 Traces

 Final Reports:
 - per port/queue
 - per flow

 Per-port Tables

Figure 1: IPVCoSS basic principles

The key elements of a network configuration are the ports. Ports are unidirectional and belong to a node. They are identified by
a number, and their main attribute is the interface type, determining the rate. The 100-nanosecond clock accuracy enables
IPVCoSS to process correctly IP interfaces ranging from E1 (2 Mbps) to STM-16 (2.5 Gbps). There is no explicit notion of links
between nodes and the network topology is defined by the mapping between ports:

� An input port (IPORT) is a traffic ingress point at which a single IP flow, identified by a letter, is generated. An IPORT
maps to an output port within the same node.

� An output port (OPORT) is an internal OPORT when it maps to one or more OPORTs in another node. The distance to
this adjacent node is a key parameter of an internal OPORT.

� An output port is an egress OPORT when it does not map to another OPORT.

The conventional IP routing scheme is not used and paths are pre-determined by simple filtering, at OPORT level, based on
flow identifiers. These paths represent MPLS label switched paths (LSP) in a core network.

Node B

A

M

V

A

XM

A

X

V
X

M

Internal OPORT

IPORT
(flow source)

Egress OPORT

mapping

Node A

Node C Node D

Node E

Node F

Accepted flows
(default: all)

Figure 2: IPVCoSS – Nodes and Ports

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 6

For simplification and clarity, we have avoided having multiple logical interfaces per physical interface. ATM, Frame Relay and
VLAN layer-2 framing is therefore not considered and the encapsulation type is automatically derived from the interface type:

� PPP HDLC framing for PDH and SDH interfaces: E1, E3, DS3 and STM-1, STM-4, STM-16.

� Ethernet (without VLAN) framing for Ethernet interfaces: FE, GE.

Figure 3 and Figure 4 show respectively the framing structures with Ethernet and PPP. With Ethernet the overhead reaches
26 bytes, with a minimum interframe gap of 12 bytes. With PPP HDLC framing, the overhead is only 9 bytes, assuming a frame
check sequence (FCS) field of 4 bytes, and there is no interframe gap.

Preamble FCS

6 6 2 4

Type
0800

S
F
D

7 1 12

IP packet

 46 - 1500 bytes

Destination
Address

Source
Address interFrameGap

Figure 3: Ethernet framing

Flag Addr Control

FCS

2 or 42111

7EFF 03 0021

Protocol

IP packet

Figure 4: PPP HDLC framing

The end-to-end chain of an IP packet from source to destination is shown in Figure 5. The equipment that host the IP source or
destination are not modeled by IPVCoSS but they are supposed to be co-located respectively with the ingress IPORT and the
egress OPORT, which are IPVCoSS reference end-points for an IP flow. At each OPORT along the flow path, and eventually at
the egress OPORT, the delay, jitter and throughput QoS parameters related to any IP packet are measured, and can be
compared to their initial value when generated at the ingress IPORT. These measurements are summarized in per-flow final
reports.

When an IP packet (that includes the IP header) crosses a port, it is encapsulated in a frame that depends on the interface type.
Besides, according to BGP/MPLS VPN architecture, one or two 4-byte MPLS shim headers may be inserted before the IP
header, depending on the role of the service provider node.

Legend frame
header

frame
trailer

outer
MPLS label

inner (or VPN)
MPLS label

SP Network

UDP Data TCP DataTCP
Header

Access
Link

Desti-
nation

IP
Packet

IP
Packet

IP
Packet

IP
Packet

IP
Packet

IP
Packet

PCE1 PE2 CE2PE1Source

UDP
Header

IP
Header IPORT OPORT

IP Flow Reference End-Points

Access
Link

Figure 5: End-to End IP Flow chain

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 7

Here are the attributes that define an IP flow. Some attributes characterize the IP flow and are permanent from end to end, while
the other ones are used at generation time only.

Name Value Description

Identifier Single printable
character

Besides identifying the IP flow, this character is combined (in traces) with the
packet serial number for identifying an IP packet. By convention, and
although this is not a constraint, in a configuration using classes of services,
the following ranges of letters will be used:

� A - L for BE flows

� M - U for AF flows

� V - Z for EF flows

Class of Service Based on DiffServ “aggregate” terminology and assuming 3 physical queues
per OPORT:

 EF Expedited Forwarding low delay, low jitter, no loss, and highest priority
(but not strict priority)

 AF Assured Forwarding guaranteed rate while throughput respects the
committed rate, but lower probability whenever
excess traffic; this class enables several levels
of service while preserving per-flow packet
ordering (it is an Ordered Aggregate)

 BE Best Effort the default class

Transport Protocol UDP

TCP

UDP flows have no specific processing.

TCP-based flows are responsive to traffic load and congestion. TCP
congestion control mechanisms, normally handled at host system level, are
simulated at ingress and egress ports level. IPVCoSS supports slow start
and congestion avoidance mechanisms according to RFC 2581 ([16]).

Packet Size 46 - 1500 bytes The packet size includes the IP header, and the allowed values are based on
conventional Ethernet limits. This parameter specifies a fixed size for an
isochronous flow, or a maximum size for a variable-rate flow.

Traffic Profile CBR Isochronous flow with fixed length packets generated at regular intervals,
depending on the required throughput

 VBR Packets are generated at random with a variable size and at irregular
intervals. The size varies between 46 bytes and the value specified in
“packet size”. There is also an option for having fixed size packets. The
interval times are irregular but are constrained by the required throughput
that is ensured, by adjustment, for each 3-full-sized-packet volume. With this
profile, a SAVE / REPLAY option is offered for enabling the reproduction of
the same variable flow from one run to another.

Throughput in Mbps The throughput determines the interval between packets. Depending on
whether this interval value is rounded, or not, the throughput will be strictly
respected or very closely approached.

Volume Number of full-sized
packets

For an isochronous traffic, IPVCoSS will generate the required number of
packets while with a variable traffic, a larger number of packets will be
effectively generated.

Number of Occurrences This optional attribute enables you to generate the required volume several
times, with a fixed gap interval between two consecutive occurrences. This is
useful for generating traffic bursts, instead of a continuous flow. The required
throughput is ensured for each occurrence.

Gap Interval in milliseconds Time interval between two consecutive volumes of traffic.

Initial Tick in milliseconds Starting time for the generation of the first bit of the first packet of the IP flow.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 8

2.1 Serialization delay samples
The delay experienced by an IP packet for a flow
crossing a single node consists in the serialization
delays at the ingress IPORT and egress OPORT as
well as the processing delay (a fixed value configured
at node level) and the queuing delay, which is
examined in more detail later in the case study. The
serialization time is dependent on the interface rate
and the packet size, more exactly the size of the
packet’s frame.

R1 DestinationSource

End-to-End Packet Delay

Serialisation
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

Table 1 mainly provides the serialization times in microseconds – with a precision of 100 nanoseconds – for some typical packet
size values, according to PDH, SDH and Ethernet interface types. The real and useful rates are also provided for each interface
type. As already mentioned, we do not consider multiple logical interfaces and assume a PPP encapsulation mode for PDH and
SDH interfaces. For information, the maximum reachable IP throughput is shown, taking into account the frame overhead and
the possible minimum gap interval between frames.

Interface
Type

Physical
Rate

in b/s

Useful
Rate

in b/s

Packet
Length

in bytes

Frame
Length

in bytes

Frame
Length
in bits

Serialization
Time

in microseconds

Maximum IP
Throughput

 in Mbit/s

E1 2,048 2,048 1,500 1,509 12,072 5894.6 2.04

 1,000 1,009 8,072 3941.5 2.03

 500 509 4,072 1988.3 2.01

 46 55 440 214.9 1.71

E3 34,368 34,368 1,500 1,509 12,072 351.3 34.16

 1,000 1,009 8,072 234.9 34.06

 500 509 4,072 118.5 33.76

 46 55 440 12.9 28.53

DS3 44,736 44,210 1,500 1,509 12,072 273.1 43.94

 1,000 1,009 8,072 182.6 43.81

 500 509 4,072 92.2 43.38

 46 55 440 10.0 36.80

FE 100,000 100,000 1,500 1,526 12,208 122.1 97.48

 1,000 1,026 8,208 82.1 96.27

 500 526 4,208 42.1 92.81

 46 72 576 5.8 54.12

STM-1 155,520 149,760 1,500 1,509 12,072 80.7 148.70

 1,000 1,009 8,072 53.9 148.42

 500 509 4,072 27.2 147.06

 46 55 440 3.0 122.67

STM-4 622,080 599,040 1,500 1,509 12,072 20.2 594.06

 1,000 1,009 8,072 13.5 592.59

 500 509 4,072 6.8 588.24

 46 55 440 0.8 460.00

GE 1,000,000 1,000,000 1,500 1,526 12,208 12.3 967.74

 1,000 1,026 8,208 8.3 952.38

 500 526 4,208 4.3 909.09

 46 72 576 0.6 525.71

STM-16 2,488,320 2,396,160 1,500 1,509 12,072 5.1 2352.94

 1,000 1,009 8,072 3.4 2352.94

 500 509 4,072 1.7 2352.94

 46 55 440 0.2 1840.00

Table 1: Serialization time according to port rate and packet size

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 9

2.2 Propagation delay samples
When an IP packet crosses 2 nodes, the serialization delay on the output port must not be accounted in input of the adjacent
node. The distance of the link between the two nodes induces a propagation delay that is directly tied to the distance and is
independent of both packet size and interface capacity. This delay cannot be avoided when the source and destination are
located at far distant sites. It then depends on the topology of the SP network that might not be optimal with respect to these
end points.

R2

Propagation
Delay

R1 DestinationSource

End-to-End Packet Delay

Serialisation
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

long distance
link

Table 2 provides propagation delay values according to several distances. The propagation delay is given by the formula:

Propagation
Delay
(in µµµµs)

Distance(in km)

299,300 km x 0.6
= x 1000

Distance Propagation Delay Distance Propagation Delay

 1 km 5.6 µs 700 km 3,898.0 µs

 1 mile 9.0 µs 800 km 4,454.8 µs

 2 km 11.2 µs 500 miles 4,479.9 µs

 3 km 16.8 µs 900 km 5,011.7 µs

 2 miles 18.0 µs 600 miles 5,375.9 µs

 4 km 22.3 µs 1,000 km 5,568.5 µs

 3 miles 26.9 µs 700 miles 6,271.8 µs

 5 km 27.9 µs 800 miles 7,167.8 µs

 6 km 33.5 µs 900 miles 8,063.8 µs

 4 miles 35.9 µs 1,000 miles 8,959.7 µs

 7 km 39.0 µs 2,000 km 11,137.0 µs

 8 km 44.6 µs 3,000 km 16,705.5 µs

 5 miles 44.8 µs 2,000 miles 17,919.4 µs

 9 km 50.2 µs 4,000 km 22,274.0 µs

 6 miles 53.8 µs 3,000 miles 26,879.1 µs

 7 miles 62.8 µs 5,000 km 27,842.5 µs

 8 miles 71.7 µs 6,000 km 33,411.0 µs

 9 miles 80.7 µs 4,000 miles 35,838.8 µs

 100 km 556.9 µs 7,000 km 38,979.5 µs

 100 miles 896.0 µs 8,000 km 44,548.0 µs

 200 km 1,113.7 µs 5,000 miles 44,798.5 µs

 300 km 1,670.6 µs 9,000 km 50,116.5 µs

 200 miles 1,792.0 µs 6,000 miles 53,758.2 µs

 400 km 2,227.4 µs 10,000 km 55,685.0 µs

 300 miles 2,688.0 µs 7,000 miles 62,717.9 µs

 500 km 2,784.3 µs 8,000 miles 71,677.6 µs

 600 km 3,341.1 µs 9,000 miles 80,637.3 µs

 400 miles 3,583.9 µs 10,000 miles 89,597.0 µs

Table 2: Propagation delay according to distances, in km and miles

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 10

2.3 IPVCoSS Trace example
Here is the trace of an IP Flow “A” that is isochronous, at a rate of 20 Mbps and a packet size of 1500 bytes. This flow is
generated at node CE1 on IPORT#1 and is sent on OPORT#51 towards node PE1. The E3 link that connects CE1 to PE1 is 40
km long and it induces a propagation delay of around 223 microseconds. There is no congestion and absolutely no jitter.

E3
(40 km)CE1FE PE1 STM-11 51 61

A

Node name

Port number

Event type

IP packet identifier:
flow letter + serial number
(one '*' per previous hop)

Event-related
parameters

Parameters:
pkln packet length (bytes)
ovhd frame overhead (bytes)
iser input serialization time (µs)
oser output serialization time (µs)
gd global delay (µs)
fd forwarding delay (µs)
qd queuing delay (µs)
pd propagation delay (µs)
j jitter (µs)
ithr input throughput (Mbps)
othr output throughput (Mbps)

Events:
si start input
ei end input
qo queue output
so start output
eo end output

Tick value in microseconds,
Precision: 100 nanoseconds

 0.0 CE1 i1 : si A1 pkln:1500 ovhd:26 iser:122.1
 122.1 CE1 i1 : ei A1 gd:122.1 fd:20.0 remvol:1500
 142.1 CE1 o51 : qo A1 gd:142.1 Q:BE (00.35%)
 CE1 o51 : so A1 pkln:1500 ovhd:9 oser:351.3 qd:0.0
 gd:142.1 Q:BE (00.00%) j:0.0
 493.4 CE1 o51 : eo A1 gd:493.4 pd:222.8 next-hop:PE1
 600.0 CE1 i1 : si A2 pkln:1500 ovhd:26 iser:122.1 ithr:20.00
 716.2 PE1 o61 : ei *A1 gd:716.2 fd:10.0 prev-hop:CE1 up-oport:51
 722.1 CE1 i1 : ei A2 gd:122.1 fd:20.0 remvol:0
 726.2 PE1 o61 : qo *A1 gd:726.2 Q:BE (00.08%)
 PE1 o61 : so *A1 pkln:1500 ovhd:9 oser:80.7 qd:0.0
 gd:726.2 Q:BE (00.00%) j:0.0
 742.1 CE1 o51 : qo A2 gd:142.1 Q:BE (00.35%)
 CE1 o51 : so A2 pkln:1500 ovhd:9 oser:351.3 qd:0.0
 gd:142.1 Q:BE (00.00%) othr:20.00 j:0.0
 806.9 PE1 o61 : eo *A1 gd:806.9
 1093.4 CE1 o51 : eo A2 gd:493.4 pd:222.8 next-hop:PE1
 1316.2 PE1 o61 : ei *A2 gd:716.2 fd:10.0 prev-hop:CE1 up-oport:51
 1326.2 PE1 o61 : qo *A2 gd:726.2 Q:BE (00.08%)
 PE1 o61 : so *A2 pkln:1500 ovhd:9 oser:80.7 qd:0.0
 gd:726.2 Q:BE (00.00%) othr:20.00 j:0.0
 1406.9 PE1 o61 : eo *A2 gd:806.9

Here is a diagram that provides a visual perception of the occupancy of each port. As this can be seen in the trace here above,
the serialization time of the 1500-byte IP packet in its Ethernet frame is 122.1 microseconds, while the same packet in its PPP
frame on an E3 link is 351.3 microseconds, and only 80.7 microseconds on an STM-1 link.

A1

A1

A2

A2

0 122.1

142.1 493.4

600.0 722.1

1093.4742.1

Iport 1
(FE)

µs

0

µs

µsA1

0 726.2 806.9

A2

1326.2 1406.9

Oport 51
(E3)

Oport 61
(STM-1)

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 11

3 IP VPN / CoS Case Study

Figure 6 shows an SP (service provider) network that offers VPN services to 3 customers: Red, Blue and Green. The internal
backbone links connecting the edge routers to the core routers are limited to STM-1 in order to cope with the traffic throughput
used in the context of this case study. The other backbone links between core routers are either STM-1 or STM4, thus creating
the conditions for over-sizing or under-sizing. This core network topology ensures a minimum of resiliency since each PE
(Provider Edge) router is connected to two P (Provider core) routers and each P router is in turn connected to two other P
routers. However, the links in dotted lines will not be considered for this case study, not to complicate the simulation survey. The
distances shown between the backbone routers represent a realistic regional network, either national or international. We
consider primarily MPLS VPN services over this network but other services such as Internet Transit could be offered as well. In
some scenarios we will introduce extra flows crossing the SP network and we can consider that these flows could belong to
traffic related to other VPN, or Internet Transit, services.

We have not considered co-locations of a CE (customer edge) at a PE site. All the VPN sites are connected to the SP network
via access links. This is simply for clarifying the picture of the overall network.

With the Simulator, links are unidirectional but we could easily have traffic in the two directions between two routers. However,
for clarity, traffic will originate in sites on the left side and terminate in sites on the right side, obviously within their respective
VPN.

Green VPN
Site

Red VPN
Site

Blue VPN
Site

Red VPN
Site

Blue VPN
Site B1

Red VPN
Site R1

Green VPN
Site

G1

PE1

PE2Red VPN
Site R2

Blue VPN
Site

B2

Green VPN
Site

G2

Pz

Px

Py
PE3

PE4

R3

G3

B4R4

STM-1
(270 km)

STM-1
(220 km)

STM-4
(390 km)

STM-1
(436 km)

STM-4
(285 km)

STM-1
(250 km)

STM-1
(425 km)

DS3
18 km

FE
6 km

E3
22 km

FE
10 km

E3
14 kmDS3

26 km

STM-1
42 km

STM-1
21 km

FE
9 kmIP/MPLS

SP Network

FE
12 km

Figure 6: VPN Case Study – Topology

The purpose of this case study is to illustrate the CoS (Class of Service) mechanisms ensuring the required QoS, especially
jitter, for EF flows such as MPEG-2 video or VoIP. We will first review in detail the initial scenario where there is some
congestion at a few points but no packet loss, and QoS requirements for each class are fulfilled. Then we will run several
variants and analyze the impact on the traffic flows.

Each scenario represents a snapshot of the same basic offered traffic during a short period, in a given network configuration.
Our observation relates to the traffic forwarding only. IPVCoSS does not handle any signaling function that would enable us to
understand the impact on the traffic flows of transiting from one situation to another, for instance in case of link failure.

It should be noticed that, although the observation period is short (around 50 ms) it is highly meaningful and representative of
live situations. Anyway, the values of parameters such as queue depths are adapted to the case study and lower than they
would be in a real configuration.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 12

3.1 Physical Topology
Figure 7 provides a representation of the physical topology of the network built via IPVCoSS. This is stable information that will
not change for subsequent scenarios. All the CEs (customer edge) have Fast Ethernet ports on the site side. These CEs could
be routers or switch-routers, or even switches.

The access links connecting the sites to the SP network are either leased lines (E3, DS3, STM-1) or Ethernet services with FE
ports.

The rates commonly associated to the physical interfaces are recalled hereunder, but more accurate values of physical and
useful rates are given in Table 1 on page 8.

E3 34 Mbps
DS3 45 Mbps
FE 100 Mbps
STM-1 155 Mbps
STM-4 622 Mbps

Ethernet services may have several possible underlying architectures: switches connected by fiber, ATM bridges over SDH, an
ATM network. Although the physical interfaces are Fast or Giga Ethernet, the service can be subscribed for a throughput lower
than the port capacity. The R2-to-PE2 ingress access link and PE3-to-R3 egress access link will be rate limited down to 60
Mbps in our case study.

IP/MPLS Backbone

FE
6 km

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

DS3
18 km

STM-4
285 km

STM-4
390 km

STM-1
425 km

STM-1
42 km

FE
12 km

STM-1
21 km

FE
9 km

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

E3
14 km

E3
22 km

FE

FE

114

STM-1
270 km

61

STM-1
220 km

STM-1
436 km

STM-1
250 km

51

52

53

54

55

56

FE
10 km

DS3
26 km

91

92

94

62

71

72

81

74

Rate-limited
to 60 Mbps

82

PE1

PE2 PE4

PE3

Py

Px Pz

Px

93
105

Rate-limited
to 60 Mbps

Figure 7: VPN Case Study – Physical Ports

Note 1: It is likely that in a real network, for offering Fast Ethernet accesses, Ethernet switches would be placed in front of PE
routers via Gigabit interfaces, thus adding a node between the CE and the PE.

Note 2: From an MPLS perspective, PE and P nodes are Label Switching Routers (LSRs).

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 13

3.2 Traffic Flows
Figure 8 shows the ingress and egress points of the generated IP flows. We can assimilate them to the source and destination
of each micro-flow by considering that a host (or for instance a video encoder/decoder) is immediately connected to the CE, as
previously illustrated in Figure 5.

The characteristics of the 14 IP flows that will cross the network are summarized in the table placed in the center of Figure 8. In
the context of this case study we have consistently assigned common attributes for all the flows of a same class. in some way,
we have assigned a role to each class. For instance, all AF flows are based on TCP, however this is not to be understood as a
characteristic associated to AF class.

� EF flows are based on UDP transport and are isochronous. They require very low jitter and their initial throughput must
be maintained.

� All our AF flows are based on TCP transport and therefore TCP slow start will be normally applied as well as congestion
avoidance mechanisms if any. These flows have a fixed packet size.

� BE flows are based on UDP transport and generated in several volume occurrences separated by regular gaps, in order
to create traffic bursts (since with IPVCoSS, the throughput required for a variable traffic is ensured for each volume
corresponding to 3 full-sized packets). The packet size vary between 46 bytes and the maximum packet size.

A

V

X

D

E

B

N

P

Y

W

Q

C

O

M

IP/MPLS Backbone

R1

B1

G1

R2

B2

G2

R3

G3

R4

B4

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

ID Class Trsp Pksize Profile Throughput Volume T1 Occ Gap
bytes Mbps n x Pksize ms ms

V EF UDP 1500 isochronous 24 900 30 - -

M AF TCP 500 variable 32 3400 - - -

A BE UDP 900 variable 50 100 40 5 80

N AF TCP 600 variable 24 2000 - - -

B BE UDP 1500 variable 20 100 10 6 12

W EF UDP 1200 isochronous 16 800 - - -

C BE UDP 1000 variable 50 30 - 20 20

X EF UDP 1500 isochronous 12 480 1 - -

O AF TCP 900 variable 24 1500 - - -

D BE UDP 1100 variable 30 100 - 9 25

P AF TCP 1400 variable 32 1200 - - -

E BE UDP 1200 variable 12 60 - 8 15

Y EF UDP 1200 isochronous 18 800 20 - -

Q AF TCP 1200 variable 12 500 - - -

Figure 8: VPN Case Study – Generated Traffic Flows

These VPN flows will be generated in the same way for all the scenarios of this case study. The Save/Replay function
applicable to variable flows will be used for ensuring the same traffic profiles at the ingress ports. However, TCP flows in
congestion cases will behave according to TCP control mechanisms.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 14

3.3 DiffServ Environment
Figure 9 illustrates the typical key components of the SP Network as a DiffServ (DS) domain. At PE1 and PE2 ingress boundary
nodes, incoming traffic streams on each port are classified and, depending on the traffic conditioning specifications agreed
between the VPN customer and the SP, possibly metered and re-marked. The classification at ingress boundary nodes is
potentially more complex than the classification performed for input traffic at interior DS Nodes (Px, Py, Pz) and egress
boundary nodes (PE3 and PE4). BA classification takes simply into account the DS code point (in the IP header DS field or the
MPLS header EXP field) while MF classification discriminates a class from several fields in the IP and transport headers.
Individual IP flows are ignored within a DS domain and only the aggregates resulting of classification are processed for ensuring
the appropriate forwarding behavior at each hop (Per-Hop Behavior or PHB). Typically, the flows eligible to be metered and re-
marked at the edge of the SP network are the AF flows. Single-rate and two-rate three color markers, respectively described in
[19] and [20], will lead to the marking of packets in an AF flow as Green, Yellow or Red depending on some agreed committed
and peak rates. These colors are actually DS code points of a same AF class that can be associated, for example, to three
levels of drop precedence.

The DS domain could be extended to the CEs whenever these CEs would be managed by the SP as CPEs. Anyway, whatever
the entity responsible for the CE (Customer or SP) there is a need for applying a differentiated forwarding treatment over the
access link from CE to PE.

A

V

X

D

E

B

N

P

Y

W

Q

C

O

M

IP/MPLS Backbone

R1

B1

G1

R2

B2

G2

R3

G3

R4

B4

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

PE1

PE2 PE4

PE3

Py

Px Pz

FE

DS3

E3

FE
(60)

DS3

E3

STM-1

STM-1

STM-1

STM-4

STM-1

STM-1

STM-4

FE
(60)

STM-1

STM-1

FE

25%

30%

45%

20%

30%

50%

65%

20%

15%

25%

30%

45%

20%

30%

50%

65%

20%

15%

35%

45%

20%

35%

45%

20%

35%

45%

20%

35%

45%

20%

50%

30%

20%

10%

70%

20%

3
5
%

4
5
%

2
0
%

70%

 0%

30%

50%

30%

20%

10%

60%

30%

10%

60%

30%

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93

MF / BA Classifier +
Traffic Conditioner

BA
Classifier

PHB
Mechanisms

(Queues,
Scheduler...)

Figure 9: VPN Case Study – DiffServ Environment

Actually, with IPVCoSS, the class is statically defined as a parameter of the flow to be generated. We can therefore consider,
although the DS code point (DSCP) itself is not processed, that there is a BA classification in input of each node. Metering of AF
flows is not implemented yet but a potential usage of this capability is outlined in section 9 on page 31.

DiffServ standards do not specify how the Per-Hop Behavior should be implemented and instead only describe an externally
observable forwarding behavior for each aggregate. IPVCoSS uses at each OPORT a classical packet scheduling based on
3 physical queues (EF, AF and BE) for which are defined a percentage of the port capacity and memory in the form of depth
(not shown) expressed in milliseconds. The scheduling mechanism is described and illustrated by a trace in Annex 2:.

Note: In a real world, another queue (and minimum bandwidth) should be dedicated to control traffic (i.e. signaling
protocols) that is crucial for enabling the forwarding of customer traffic.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 15

3.4 TE Traffic Trunks Options
As defined in [21] related to traffic engineering (TE), a traffic trunk (TT) is an aggregation of traffic flows belonging to the same
“class” (forwarding equivalence class, or FEC) which are forwarded through a common path. In practice, a TT may be
characterized by an ingress and egress LSRs, and a set of attributes which determine its behavioral characteristics and
requirements from the network. A TT is unidirectional and it is distinct from the LSP through which it traverses. A TT can be
moved from one LSP onto another whether the network conditions do not meet anymore the TT requirements.

When TE is used
independently of
DiffServ, TTs aggregate
all the VPN flows
between two PEs,
whatever their CoS.

We can see, for each
TT, the maximum
amount of bandwidth
per TT. For information,
the respective amount
of EF, AF and BE traffic
is also shown.

However, only the
global amount is taken
into account for
establishing the LSP
through which the TT
will traverse.

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

R1

B1

G1

R2

B2

G2

R3

G3

R4

B4

PE1

PE2 PE4

PE3

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

90 Mbps
(40+0+50)

72 Mbps
(30+12+30)

136 Mbps
(0+56+70)

68 Mbps
(0+56+12)

Figure 10: VPN Case Study – Aggregate-based Traffic Trunks

With DiffServ-Aware TE
(DS-TE) we could
define two class-types:
- one class-type for EF
traffic
- another class-type for
both AF and BE traffic

The constraint for
Traffic Trunks belonging
to the “EF” class-type,
in terms of resource,
would be under-
allocation for ensuring
bandwidth in any case.

In contrast, Traffic
Trunks belonging to the
“AF-BE” class-type
could remain over-
allocated.

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

R1

B1

G1

R2

B2

G2

R3

G3

R4

B4

PE1

PE2 PE4

PE3

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

136 Mbps
(0+56+70)

68 Mbps
(0+56+12)

50 Mbps
(0+0+50)

42 Mbps
(0+12+30)

30 Mbps
(30+0+0)

40 Mbps
(40+0+0)

Figure 11: VPN Case Study – Class-based Traffic Trunks

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 16

4 VPN Case Study – Initial Run

In the initial situation, traffic trunks are unaware of classes of services and have been mapped on LSPs accordingly. Some
oversubscribing was allowed because of the bursty BE traffic and therefore the shortest path has prevailed. Thus, PE2-to-PE3
TT uses a 906 km-long LSP that goes through STM-1 port#71 instead of an 1145 km-long LSP that would go through STM-4
ports 72 and 74.

Purposely, there is some congestion within this network in order to discuss various situations. For this initial run, it is worth to
have a detailed view of the traffic profile at each internal OPORT and therefore the remainder of this section will successively
review – with graphs and summary reports – the access and backbone links.

As a preview, here are some indications about the traffic load:

� All ingress access links, but port 56, experience some congestion when there are BE traffic bursts

� STM-1 Ports 61 and 62 are heavily loaded, with a little congestion

� Port 72 is an STM-4 and is under loaded

� STM-1 Ports 71 and 81 receive the same flows and are normally loaded

� Port 82 experiences heavy congestion but no packet loss

� All egress links are oversized with the exception of port 91 that is rate-limited to 60 Mbps

� Among the BE flows, flow “C” has many very short bursts

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

90 Mbps
(40+0+50)

72 Mbps
(30+12+30)

136 Mbps
(0+56+70)

68 Mbps
(0+56+12)

Figure 12: VPN Case Study – Initial Run Configuration

With the subsequent runs, we will have the same offered VPN traffic but we will introduce some changes only at port 71 and
port 82. These changes are extra flows, link failure or variation of some configuration parameters.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 17

4.1 Traffic Analysis – Reader’s Guide
Chart 1 illustrates a trial with two consecutive flows per class that successively created strong congestion in each queue; as a
result this graph covers all possible cases. This representation will be used for analyzing the traffic in the subsequent scenarios
of the case study. The information elements are as follows:

� Colors are consistently applied for each class of traffic: red for EF, green for AF and blue for BE.

� The vertical axis is scaled (in Mbps) at the port capacity, and possibly less whenever the port is rate-limited. Besides, the
bandwidth value assigned to each queue is shown by a fixed cursor.

� The horizontal axis for elapsed time is scaled at 10ms per unit, based on the generated traffic volume with this case
study: every 10ms, IPVCoSS collects measurements related to average throughput and queue occupancy.

� Line charts represent traffic throughput for each aggregate (EF, AF, BE) as well as, in dotted line, the global throughput.
It should be noticed that these throughputs, conversely to IP flow throughputs, integrate the frame overhead and
therefore are slightly higher that the sum of the flow throughputs.

� Column charts represent queue occupancy with one unit for 1000 bytes. They are stacked from bottom to top
respectively for EF, AF and BE queues, if any. The vertical axis is primarily scaled for bandwidth and not for queue
volume and whenever queues are very busy the stack can be truncated at the top of the graph. Supplementary
information will be found anyway in the summary report that follows each graph.

� Column charts below the horizontal axis show packet losses when queue capacity overflows, if any.

Chart 1: Example for reader’s guide

Port #

-20

-10

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

EF Queue AF Queue BE Queue EF Packet Loss

AF Packet Loss BE Packet Loss EF Aggregate AF Aggregate

BE Aggregate Physical Port EF Q Bandw idth AF Q Bandw idth

BE Q Bandw idth

Each chart is followed by a summary report that: (1) recalls the characteristics of the port; (2) for each queue, recalls bandwidth
and depth, and provides occupancy ratio as well as the number of dropped packets if any; (3) for each flow crossing this port,
provides the information about jitter experienced at this port as well as, if any, packet loss and retransmitted packets because of
fast retransmit or time-out condition.

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 18

4.2 Traffic Analysis – Ingress Access Links
Chart 2: Case Study Initial Run – Port 51: R1-to-PE1 ingress access link

EF traffic throughput
(24.4) is slightly below
EF bandwidth.
AF traffic throughput
(33.7) is above AF
bandwidth.
When BE traffic uses
its bandwidth and port
capacity is reached,
we can see AF
throughput slow
down, but when BE
burst terminates, it
goes back above its
level because the
traffic in queue is
released.

o51

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

One may observe that the AF
flow, in its initial phase, is not
ascending continuously. However,
this is a normal TCP slow start
and this is not at all related to the
first BE burst. This is due to the
longest possible distance over this
network between the origin and
destination for this “M” flow. A
larger scanning period would have
rendered a gradually ascending
curb.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o51 R1 100 PE1 6 km 33.5 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 25% 25.0 Mbps 3ms 37500 Bytes 4.07% 2.03% 0
 AF 30% 30.0 Mbps 10ms 125000 Bytes 4.63% 0.41% 0
 BE 45% 45.0 Mbps 15ms 187500 Bytes 11.79% 4.74% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 V EF 65.7 4.7 65.7 4.7 0
 M AF 1299.6 89.5 1299.6 89.5 0
 A BE 4098.6 1672.6 4098.6 1672.6 0

Chart 3: Case Study Initial Run – Port 52: B1-to-PE1 ingress access link

On this DS3 port, AF
traffic throughput
(around 24 Mbps) is
well above AF
bandwidth.
However, it can
borrow from EF
bandwidth since there
is no EF flow.
It is therefore little
disturbed when there
are BE traffic bursts
that create some port
congestion.

o52

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o52 B1 45 PE1 18 km 100.3 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 20% 9.0 Mbps 3ms 16578 Bytes 0.00% 0.00% 0
 AF 30% 13.5 Mbps 10ms 55262 Bytes 4.41% 1.07% 0
 BE 50% 22.5 Mbps 15ms 82893 Bytes 8.39% 2.31% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 N AF 759.9 171.8 759.9 171.8 0
 B BE 2441.1 751.3 2441.1 751.3 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 19

Chart 4: Case Study Initial Run – Port 53: G1-to-PE1 ingress access link

On this E3 port, the
EF traffic throughput
is well below EF
bandwidth.
Since there is no AF
flow, BE traffic can
use the remainder of
the port capacity.
We have generated
many short
consecutive BE traffic
bursts, and therefore
short congestions.

o53

0

5

10

15

20

25

30

35

0 10 20 30 40 50

One can observe that the jitter
experienced by the EF flow is
higher than on port 51.
The reason is that we have traffic
entering the router at a rate much
higher (FE ingress ports) than the
rate of this E3 port.
For the same packet size, frames
in output have a much longer
serialization time than in input,
thus input packets will wait more
in queue.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o53 G1 34 PE1 22 km 122.6 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 65% 22.1 Mbps 3ms 12888 Bytes 9.38% 4.69% 0
 AF 20% 6.8 Mbps 10ms 42960 Bytes 0.00% 0.00% 0
 BE 15% 5.1 Mbps 20ms 85920 Bytes 23.32% 11.09% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 W EF 232.8 46.5 232.8 46.5 0
 C BE 8559.7 4055.0 8559.7 4055.0 0

Chart 5: Case Study Initial Run – Port 54: R2-to-PE2 ingress access link

Here we have an FE
port rate-limited to 60
Mbps.
The traffic profile at
this port is similar to
port 51, but more
accentuated.
AF throughput (25
Mbps) is well above
AF bandwidth. It can
borrow a little (3
Mbps) from the
remainder of EF
bandwidth but when
BE bursts occur, AF
packets have to be
queued.

o54

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

When BE bursts terminate, these
packets are immediately sent
because the port is available. This
entails these peaks at around 30
Mbps.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o54 R2 100 60 PE2 10 km 55.7 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 25% 15.0 Mbps 3ms 37500 Bytes 4.07% 2.03% 0
 AF 30% 18.0 Mbps 10ms 125000 Bytes 7.41% 2.32% 0
 BE 45% 27.0 Mbps 15ms 187500 Bytes 16.00% 6.63% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 X EF 129.5 52.3 129.5 52.3 0
 O AF 2973.1 900.9 2973.1 900.9 0
 D BE 10239.9 4155.3 10239.9 4155.3 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 20

Chart 6: Case Study Initial Run – Port 55: B2-to-PE2 ingress access link

On this DS3 access
link, there are only 2
flows.
The BE traffic
throughput is well
under BE bandwidth.
When BE bursts at
12-13 Mbps occur
they can use the port
easily.
When the port is
temporarily
congested, the AF
packets are queued
because AF traffic is
well above the
remaining capacity.

o55

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o55 B2 45 PE2 26 km 144.8 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 20% 9.0 Mbps 3ms 16578 Bytes 0.00% 0.00% 0
 AF 30% 13.5 Mbps 10ms 55262 Bytes 7.65% 2.47% 0
 BE 50% 22.5 Mbps 15ms 82893 Bytes 4.61% 0.66% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 P AF 968.6 289.9 968.6 289.9 0
 E BE 1621.9 217.5 1621.9 217.5 0

Chart 7: Case Study Initial Run – Port 56: G2-to-PE2 ingress access link

On this E3 port, there
is no congestion but
the port is busy at
nearly 90%.
However one can
observe that there is
a little jitter.
This happens for the
same reasons as with
port 53: the FE input
ports are faster than
this output E3 port.,
and the 1200-byte
packets are still being
serialized when input
packets are arrived.

o56

0

5

10

15

20

25

30

35

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o56 G2 34 PE2 14 km 78.0 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 65% 22.1 Mbps 3ms 12888 Bytes 9.38% 4.69% 0
 AF 20% 6.8 Mbps 10ms 42960 Bytes 2.82% 1.41% 0
 BE 15% 5.1 Mbps 20ms 85920 Bytes 0.00% 0.00% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 Y EF 221.3 69.3 221.3 69.3 0
 Q AF 231.9 50.1 231.9 50.1 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 21

4.3 Traffic Analysis – Backbone Links
Chart 8: Case Study Initial Run – Port 61: PE1-to-Px backbone link

At this STM-1
backbone link that
receives traffic flows
from 3 CEs (those at
the top left of our
reference picture) the
situation is sane with
respect to the offered
traffic: EF and AF
traffic aggregates are
below their assigned
bandwidth.
There is only some
little congestion with
BE bursty traffic.

o61

0
10
20

30
40
50
60

70
80
90

100
110

120
130
140
150

0 10 20 30 40 50

There is little jitter added to EF
flows because faster than the
upstream access links.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o61 PE1 155 Px 270 km 1503.5 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 35% 54.3 Mbps 3ms 56160 Bytes 4.87% 1.38% 0
 AF 45% 69.8 Mbps 10ms 187200 Bytes 1.49% 0.34% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 17.84% 3.56% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 V EF 133.1 19.1 134.1 23.9 0
 W EF 115.3 13.0 333.8 59.5 0
 M AF 292.1 66.7 1357.3 156.2 0
 N AF 278.7 45.4 823.9 217.2 0
 A BE 8555.8 2811.9 12045.9 4484.6 0
 B BE 8188.8 1099.5 9296.3 1850.9 0
 C BE 7496.4 928.3 15749.1 4983.4 0

Chart 9: Case Study Initial Run – Port 62: PE2-to-Px backbone link

At this STM-1
backbone link that
receives traffic flows
from the 3 other CEs
(those at the bottom
left of our reference
picture) there is no
congestion.

o62

0
10

20
30
40
50

60
70
80

90
100
110
120

130
140
150

0 10 20 30 40 50

We can see that nearly no jitter
has been added to the flows.
Jitter average values of
respectively EF, AF and BE flows
reflect simply the priority at the
scheduler level. Even if there is
bandwidth, contingency in packet
arrivals entail very transient
queuing but the scheduler selects
EF packets first then AF ones and
BE ones.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o62 PE2 155 Px 220 km 1225.1 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 35% 54.3 Mbps 3ms 56160 Bytes 4.87% 1.32% 0
 AF 45% 69.8 Mbps 10ms 187200 Bytes 1.90% 0.52% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 1.17% 0.27% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 X EF 107.1 16.8 213.2 69.2 0
 Y EF 81.1 20.2 295.6 89.5 0
 O AF 340.5 77.6 3041.7 978.5 0
 P AF 195.5 30.9 1033.7 320.8 0
 Q AF 233.4 59.0 328.1 109.2 0
 D BE 367.0 106.5 10239.9 4261.9 0
 E BE 499.7 93.6 1684.8 311.2 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 22

Chart 10: Case Study Initial Run – Port 71: Px-to-Py backbone link

There is no
congestion at this port
considering the
offered traffic.
However there is a
threat for the EF flows
because the EF
aggregate throughput
is above the EF
bandwidth assigned
at this port.
Run#2 of our case
study will illustrate the
consequences of this
inadequate
configuration.

o71

0

10
20

30

40
50

60

70
80

90

100
110

120

130
140

150

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o71 Px 155 Py 436 km 2427.9 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 35% 54.3 Mbps 3ms 56160 Bytes 5.41% 1.27% 0
 AF 45% 69.8 Mbps 10ms 187200 Bytes 0.65% 0.32% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 1.40% 0.19% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 V EF 115.4 16.9 177.0 40.8 0
 W EF 136.7 17.6 349.8 77.2 0
 X EF 77.4 7.3 268.6 76.5 0
 Y EF 132.4 19.7 392.7 109.2 0
 Q AF 142.0 18.9 352.0 128.1 0
 C BE 534.1 42.5 15789.7 5025.9 0
 D BE 475.5 52.8 10340.3 4314.7 0

Chart 11: Case Study Initial Run – Port 72: Px-to-Pz backbone link

This port is an STM-4
port, oversized for the
current traffic.

o72

0

50

100

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50

It should be noticed that, because
of low port occupancy (30%) and
the very short serialization time of
packets due to the high rate of this
port, there is very little jitter for
each flow.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o72 Px 622 Pz 285 km 1587.1 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 35% 217.7 Mbps 3ms 224640 Bytes 0.00% 0.00% 0
 AF 45% 279.9 Mbps 10ms 748800 Bytes 0.21% 0.05% 0
 BE 20% 124.4 Mbps 15ms 1123200 Bytes 0.18% 0.03% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 M AF 18.8 0.8 1357.3 157.0 0
 N AF 18.9 0.8 823.9 218.1 0
 O AF 18.1 0.5 3041.7 979.1 0
 P AF 14.5 0.5 1033.7 321.3 0
 A BE 23.9 1.1 12045.9 4485.8 0
 B BE 31.7 1.1 9313.0 1852.0 0
 E BE 23.3 1.1 1686.0 312.3 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 23

Chart 12: Case Study Initial Run – Port 81: Py-to-PE3 backbone link

With this initial
scenario, all the flows
at this port arrive from
the same upstream
port (no. 71).
However, conversely
to port 7, aggregated
EF throughput is
below EF bandwidth.
This port is well tuned
with respect to offered
traffic.

o81

0
10
20

30
40
50
60

70
80
90

100
110

120
130
140
150

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o81 Py 155 PE3 250 km 1392.2 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 50% 77.5 Mbps 3ms 56160 Bytes 2.70% 1.20% 0
 AF 30% 46.5 Mbps 10ms 187200 Bytes 0.65% 0.32% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 0.53% 0.17% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 V EF 0.0 0.0 177.0 40.8 0
 W EF 15.8 4.9 365.6 82.2 0
 X EF 0.0 0.0 268.6 76.5 0
 Y EF 15.8 6.7 408.5 116.0 0
 Q AF 15.8 6.1 367.8 134.3 0
 C BE 202.6 35.1 15816.2 5061.1 0
 D BE 198.7 36.6 10401.1 4351.3 0

Chart 13: Case Study Initial Run – Port 82: Pz-to-PE4 backbone link

There is heavy
congestion at this port
but it impacts only BE
traffic bursts.
Actually, AF
throughput is above
AF bandwidth but it
can borrow what is
missing from EF
bandwidth since there
is no EF traffic.

o82

0
10
20

30
40
50
60

70
80
90

100
110

120
130
140
150

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o82 Pz 155 PE4 425 km 2366.7 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 10% 15.5 Mbps 3ms 56160 Bytes 0.00% 0.00% 0
 AF 70% 108.5 Mbps 10ms 187200 Bytes 3.97% 0.61% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 24.35% 7.25% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 M AF 422.9 79.5 1494.7 236.6 0
 N AF 416.5 71.8 1000.7 289.9 0
 O AF 386.9 71.5 3116.3 1050.7 0
 P AF 353.7 39.5 1082.7 360.9 0
 A BE 13706.5 4955.0 24961.7 9440.8 0
 B BE 16949.4 4687.1 22119.1 6539.1 0
 E BE 17170.2 3829.8 17308.1 4142.2 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 24

4.4 Traffic Analysis – Egress Access Links
Chart 14: Case Study Initial Run – Port 91: PE3-to-R3 egress access link

This Ethernet port is
rate-limited to 60
Mbps.
The BE traffic bursts
create some little
congestion.
EF traffic is under EF
bandwidth but there is
some jitter. This is
explained once again
by the fact that the
upstream port is at a
higher rate.

o91

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o91 PE3 100 60 R3 12 km 66.9 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 70% 42.0 Mbps 3ms 37500 Bytes 8.14% 2.09% 0
 BE 30% 18.0 Mbps 15ms 187500 Bytes 5.00% 1.73% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss
 ---- ----- ------- -------- ------- -------- ----
 V EF 249.4 62.0 298.0 102.8 0
 X EF 202.9 37.0 471.5 113.6 0
 D BE 2983.8 1067.1 12158.4 5418.4 0

Chart 15: Case Study Initial Run – Port 92: PE3-to-G3 egress access link

This STM-1 port is
oversized and only
used at around 40%.

o92

0

10
20

30

40
50

60

70
80

90

100
110

120

130
140

150

0 10 20 30 40 50

There is absolutely no jitter at this
port, except a little for the BE flow
simply because its packets are of
variable size.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o92 PE3 155 G3 21 km 117.0 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 50% 77.5 Mbps 3ms 56160 Bytes 2.15% 1.08% 0
 AF 30% 46.5 Mbps 10ms 187200 Bytes 0.65% 0.32% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 0.42% 0.11% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 W EF 0.0 0.0 365.6 82.2 0
 Y EF 0.0 0.0 408.5 116.0 0
 Q AF 0.0 0.0 367.8 134.3 0
 C BE 61.4 15.8 15816.2 5077.0 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 25

Chart 16: Case Study Initial Run – Port 93: PE4-to-B4 egress access link

This STM-1 port is
used at around 60%. o93

0
10
20

30
40
50
60

70
80
90

100
110

120
130
140
150

0 10 20 30 40 50

There is very little jitter, compared
to port 92. This is explained by the
higher percentage of occupancy.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o93 PE4 155 B4 42 km 233.9 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 10% 15.5 Mbps 3ms 56160 Bytes 0.00% 0.00% 0
 AF 60% 93.0 Mbps 10ms 187200 Bytes 0.75% 0.24% 0
 BE 30% 46.5 Mbps 15ms 280800 Bytes 0.54% 0.14% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 N AF 47.9 10.3 1018.7 300.2 0
 P AF 5.2 0.0 1082.7 360.9 0
 B BE 104.7 11.6 22153.8 6550.7 0
 E BE 98.9 11.4 17308.1 4153.6 0

Chart 17: Case Study Initial Run – Port 94: PE4-to-R4 egress access link

This FE port is used
at 60% with AF traffic.
There are some
bursts at 80% due to
the BE traffic.

o94

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

There is more jitter than with ports
92 and 93 but less than with
port 91, because although the
upstream port is at a higher rate
(STM-1) there is heavy load (the
peaks) but no congestion.

Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o94 PE4 100 R4 9 km 50.2 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 10% 10.0 Mbps 3ms 37500 Bytes 0.00% 0.00% 0
 AF 60% 60.0 Mbps 10ms 125000 Bytes 2.00% 0.33% 0
 BE 30% 30.0 Mbps 15ms 187500 Bytes 2.44% 0.29% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 M AF 241.0 29.5 1542.3 266.2 0
 O AF 109.9 9.0 3116.3 1059.7 0
 A BE 870.4 70.9 24971.6 9511.8 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 26

4.5 Traffic Analysis – EF Flows
In the following final reports related to EF flows, we can see for each flow and at each output port along the path, the value of
the QoS parameters: throughput, delay, jitter and packet loss. The stringent QoS requirements associated to EF class of service
have been respected:

� At the ingress IPORT, the flow has been generated at the required throughput and regularly maintained at each internal
OPORT up to the egress OPORT.

� Jitter is acceptable: at the egress OPORT, the max jitter value is under 500 microseconds and the mean jitter around 100
microseconds. We can notice that where there is the more jitter is at OPORTs with an upstream port at a higher rate and
if there was some congestion: e.g. from FE to E3 (100 to 34 Mbps).

� The delay is mainly dependant on the path length and was not impacted by queuing delay since there was very little
jitter.

Flow Trsp Thrpt Type Class maxPKsz T1 Volume Occ Gap Flow total
ID Mbps bytes ms bytes ms elapsed time
---- ---- ----- ---- ----- ------- ---- -------- --- ---- ------------
V UDP 24 CBR EF 1500 30 1350000 1 0 482735.5

 Port Rate Thrput Dmin Dmax Jmin Jmax Jmean Nbpk Loss
 ---- ---- ------ ------- ------- ------ ------- ------- ----- ----
 i1 100 24.00
 o51 100 24.00 264.2 329.9 0.0 65.7 4.7 900 0
 o61 155 24.00 388.8 555.6 0.0 134.1 23.9 900 0
 o71 155 24.00 1983.4 2233.5 0.0 177.0 40.8 900 0
 o81 155 24.00 4502.2 4752.3 0.0 177.0 40.8 900 0
 o91 100 24.00 6110.5 6450.4 0.0 298.0 102.8 900 0
 o101 100 24.00 6252.6 6592.5 0.0 298.0 102.8 900 0

Flow Trsp Thrpt Type Class maxPKsz T1 Volume Occ Gap Flow total
ID Mbps bytes ms bytes ms elapsed time
---- ---- ----- ---- ----- ------- ---- -------- --- ---- ------------
W UDP 16 CBR EF 1200 0 960000 1 0 485821.4

 Port Rate Thrput Dmin Dmax Jmin Jmax Jmean Nbpk Loss
 ---- ---- ------ ------- ------- ------ ------- ------- ----- ----
 i6 100 16.00
 o53 34 16.00 399.6 632.4 0.0 232.8 46.5 800 0
 o61 155 16.00 597.3 931.1 0.0 333.8 59.5 800 0
 o71 155 16.00 2175.9 2525.7 0.0 349.8 77.2 800 0
 o81 155 16.00 4678.6 5044.2 0.0 365.6 82.2 800 0
 o92 155 16.00 6145.4 6511.0 0.0 365.6 82.2 800 0
 o106 100 16.00 6380.5 6746.1 0.0 365.6 82.2 800 0

Flow Trsp Thrpt Type Class maxPKsz T1 Volume Occ Gap Flow total
ID Mbps bytes ms bytes ms elapsed time
---- ---- ----- ---- ----- ------- ---- -------- --- ---- ------------
X UDP 12 CBR EF 1500 1 720000 1 0 485903.7

 Port Rate Thrput Dmin Dmax Jmin Jmax Jmean Nbpk Loss
 ---- ---- ------ ------- ------- ------ ------- ------- ----- ----
 i8 100 12.00
 o54 100 12.00 344.2 473.7 0.0 129.5 52.3 480 0
 o62 155 12.00 435.4 694.5 0.0 213.2 69.2 480 0
 o71 155 12.00 1751.6 2081.0 0.0 268.6 76.5 480 0
 o81 155 12.00 4270.4 4599.8 0.0 268.6 76.5 480 0
 o91 100 12.00 5874.7 6411.0 0.0 471.5 113.6 480 0
 o108 100 12.00 6016.8 6553.1 0.0 471.5 113.6 480 0

Flow Trsp Thrpt Type Class maxPKsz T1 Volume Occ Gap Flow total
ID Mbps bytes ms bytes ms elapsed time
---- ---- ----- ---- ----- ------- ---- -------- --- ---- ------------
Y UDP 18 CBR EF 1200 20 960000 1 0 450358.5

 Port Rate Thrput Dmin Dmax Jmin Jmax Jmean Nbpk Loss
 ---- ---- ------ ------- ------- ------ ------- ------- ----- ----
 i13 100 18.00
 o56 34 18.00 399.6 620.9 0.0 221.3 69.3 800 0
 o62 155 18.00 552.7 887.8 0.0 295.6 89.5 800 0
 o71 155 17.99 1852.9 2283.1 0.0 392.7 109.2 800 0
 o81 155 17.99 4355.6 4801.6 0.0 408.5 116.0 800 0
 o92 155 17.99 5822.4 6268.4 0.0 408.5 116.0 800 0
 o113 100 17.99 6057.5 6503.5 0.0 408.5 116.0 800 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 27

5 VPN Case Study – Run #2 – Disturbance of oversubscribed EF Traffic

Chart 10 on page 22
showed that EF traffic
on port 71 was
oversubscribed,
considering the
bandwidth assigned
to EF aggregate, but
since the port was not
congested EF traffic
flows were not
disturbed. This
situation resulted from
the fact that traffic
engineering was
based on aggregated
traffic.
Here we run the same
VPN flows as
previously but we
introduce in the
middle of the run an
extra flow, at 50Mbps,
that transits from Px
to Py via port 71.

Figure 13:
VPN Case Study –

Run #2
Configuration

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

21 79

R

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

The extra AF flow
(“R”) consumes most
of AF bandwidth and
creates congestion at
the port.
As a result, EF traffic
cannot borrow any
more from other
aggregates, and
especially AF
aggregate. All EF
flows experiment
packet queuing and
therefore jitter and
even packet loss.

Chart 18:
Case Study Run #2

– Port 71

o71

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50

We can notice that AF flows are
well under the assigned
bandwidth and are not
experiencing jitter, although as
TCP slows they have no special
requirements regarding jitter.

Port Node Rate Limit Adjnode Distance Propagation-Delay
o71 Px 155 Py 436 km 2427.9 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 EF 35% 54.3 Mbps 3ms 56160 Bytes 102.34% 11.25% 21
 AF 45% 69.8 Mbps 10ms 187200 Bytes 2.81% 0.63% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 9.86% 0.68% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 V EF 7503.8 650.1 7552.0 673.8 8
 W EF 7567.7 639.6 7584.4 699.0 3
 X EF 7281.4 605.0 7343.4 673.6 4
 Y EF 7543.2 698.5 7552.0 787.1 6
 Q AF 595.7 56.4 799.8 165.6 0
 R AF 630.8 180.6 630.8 180.6 0
 C BE 7902.1 375.5 17345.6 5358.9 0
 D BE 8419.2 515.8 16264.0 4777.7 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 28

6 VPN Case Study – Run #3 – DiffServ Aware Traffic Engineering

With this run case, we
have the same
offered traffic that with
the previous case but
another situation with
respect to TE traffic
trunks and hence flow
paths.

This situation would
result from DiffServ
aware traffic
engineering with two
types of traffic trunks:
those based on EF
traffic class (shown in
yellow) and those
based on other
classes.
Instead of having a
single TT between
PE2 and PE3, there
are two TTs mapped
on MPLS LSPs using
different paths.

Figure 14:
VPN Case Study –

Run #3
Configuration

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

21 79

R

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

At port 71, the EF
traffic (made up of V
and W flows only) is
now below EF
bandwidth and the
extra AF flow does
not disturb EF flows.

Chart 19:
Case Study Run #3

– Port 71

o71

0

10
20

30
40

50

60
70

80
90

100

110
120

130
140

150

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
o71 Px 155 Py 436 km 2427.9 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 EF 35% 54.3 Mbps 3ms 56160 Bytes 2.70% 1.22% 0
 AF 45% 69.8 Mbps 10ms 187200 Bytes 1.19% 0.32% 0
 BE 20% 31.0 Mbps 15ms 280800 Bytes 1.36% 0.17% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss
 V EF 64.7 7.9 161.3 31.8 0
 W EF 76.0 9.6 349.8 69.1 0
 Q AF 186.0 21.4 359.0 132.5 0
 R AF 184.4 31.1 184.4 31.1 0
 C BE 503.7 27.3 15749.1 5010.7 0
 D BE 567.2 48.5 10340.3 4311.0 0

EF flows X and Y have now a
longer path that adds around 1.3
milliseconds to the end-to-end
delay, compared to initial run.
There is also slightly more jitter at
port 81 because we pass from an
STM-4 port to a quite busy STM-1
port.

Flow X
 Port Rate Thrput Dmin Dmax Jmin Jmax Jmean Nbpk Loss
 o62 155 12.00 435.4 694.5 0.0 213.2 69.3 480 0
 o72 622 12.00 1690.8 1949.9 0.0 213.2 69.9 480 0
 o74 622 12.00 3308.2 3567.3 0.0 213.2 69.9 480 0
 o81 155 12.00 5570.9 6044.9 0.0 454.4 107.8 480 0
 o91 100 12.00 7095.2 7580.2 0.0 454.4 123.0 480 0
 o108 100 12.00 7304.2 7789.2 0.0 454.4 123.0 480 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 29

7 VPN Case Study – Run #4 – Link Failure

With the same offered
traffic than with the
initial run, we are here
in a situation that
would result from a
failure of port 71.
The traffic trunks that
crossed port 71 from
Px to Py have now
been rerouted via
STM-4 ports 72 and
74.

Figure 15:
VPN Case Study –

Run #4
Configuration A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

Port 72 that carries all
the flows remains
oversized.
However the path
from Px to Py is
longer via Pz and
hence adds delay (not
shown here).

Chart 20:
Case Study Run #4

– Port 72

o72

0

50

100

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50

 Port Node Rate Limit Adjnode Distance Propagation-Delay
---- ---- ---- ----- ------- -------- -----------------
o72 Px 622 Pz 285 km 1587.1 microsec

 Queue Bandwidth Depth Used: Max Mean Dropped
 ----- -------------- ------------------ ---------------- -------
 EF 35% 217.7 Mbps 3ms 224640 Bytes 0.68% 0.30% 0
 AF 45% 279.9 Mbps 10ms 748800 Bytes 0.21% 0.05% 0
 BE 20% 124.4 Mbps 15ms 1123200 Bytes 0.14% 0.03% 0

 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 ---- ----- ------- -------- ------- -------- ---- --------- ---
 V EF 18.9 1.4 152.6 25.9 0
 W EF 19.8 1.6 302.3 61.4 0
 X EF 18.9 0.9 222.3 69.9 0
 Y EF 20.1 1.4 315.8 96.4 0
 M AF 20.1 1.7 1393.0 177.2 0
 N AF 20.1 1.8 850.2 218.7 0
 O AF 20.1 1.5 3042.9 879.0 0
 P AF 20.2 1.1 978.7 322.5 0
 Q AF 20.1 1.1 317.1 99.1 0
 A BE 25.2 2.1 12046.4 4494.2 0
 B BE 25.1 1.9 9301.1 1870.4 0
 C BE 22.7 2.1 15753.9 4995.9 0
 D BE 32.3 2.4 11239.9 4390.4 0
 E BE 33.3 2.6 1653.4 309.9 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 30

8 VPN Case Study – Run #5 – TCP Congestion

Here is a scenario
similar to the initial
run excepted that we
have tuned slightly
differently the
scheduling
parameters at port 82:
Bandwidth
percentages are
respectively 10,67,23
for EF, AF and BE
classes instead of
10,70,20. Besides AF
queue depth is
increased from 10ms
to 12ms.
This tuning enable us
to overflow the AF
queue when we
introduce an extra EF
flow (“Z”) that crosses
port 82. Congestion
avoidance
mechanisms then
apply to AF TCP
flows.

Figure 16:
VPN Case Study –

Run #5
Configuration

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

22

Z

99

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

Since many packet
discarding occur at
the end of the TCP
sessions, there are
timeouts for the last
packets (the
destinations do not
receive data and
therefore do not send
duplicate ACKs
anymore, that would
trigger fast recovery).
It should be noticed
that this version of
IPVCoSS (as
explained in annex 1)
does not implement
yet Selective ACKs
(RFC2018) nor partial
ACKs (RFC2582 New
Reno) nor timeout
dynamic adaptation
(RFC2988).

Chart 21:
Case Study Run #5

– Port 82

o82

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80

The TCP timeout is fixed and
purposely reduced to 30ms.
Obviously the final throughput of
AF TCP flows dramatically fall
down. It is not shown in these
reports but here are the values, in
Mbps, compared to (between
parenthesis) those obtained with
the initial run:
M: 18 (28.4)
N: 13.2 (21.4)
O: 13.5 (22.2)
P: 18.5 (29.3)

Port Node Rate Limit Adjnode Distance Propagation-Delay
o82 Pz 155 PE4 425 km 2366.7 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 EF 10% 15.5 Mbps 3ms 56160 Bytes 1.80% 0.90% 0
 AF 67% 103.8 Mbps 12ms 224640 Bytes 100.45% 42.12% 21
 BE 23% 35.6 Mbps 15ms 280800 Bytes 60.30% 24.23% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 Z EF 245.8 29.8 245.8 29.8 0
 M AF 16710.0 7323.3 17280.7 7478.1 6 6 204
 N AF 16598.8 7511.5 16728.2 7729.6 2 1 59
 O AF 16576.8 6791.6 17794.3 7703.5 8 7 82
 P AF 16584.4 7422.9 17244.8 7745.0 5 4 55
 A BE 40317.1 17949.7 48179.0 22435.5 0
 B BE 40934.5 16883.4 46578.7 18735.4 0
 E BE 41074.1 15867.5 41240.8 16178.7 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 31

9 VPN Case Study – Run #6 – TCP Congestion Avoidance

Here is a run with the
same tunings and the
same generated
traffic as with the
previous run.
Here we will drop
packet#360 from P
flow in AF queue of
port 82.
This simulates a
random early
detection (RED).
Actually, we have
simplified the RED
mechanism because
we did not apply
traffic conditioning at
ingress nodes for AF
flows, and
discriminated and
marked packets as
low or high profile
according to the flow
throughput.

Figure 17:
VPN Case Study –

Run #6
Configuration

A

V

X

D

E

B

N

P

Y

W

YQ

C

O

M

IP/MPLS Backbone

1
R1

B1

2

3

G1

R2

B2

G2

8

9

10

11

12

13

14

R3

G3

R4

B4

101

108

110

113

106

107

104

111

112

102

109

103

4

5

6

7

114

61

51

52

53

54

55

56

91

92

94

62

71

72

81

74

82

22

Z

99

PE1

PE2 PE4

PE3

Py

Px Pz

V

Y

X

W

M

A

N

B

C

O

D

P

Q

E

Px

93
105

Random
Early
Detection

On this chart we can
see the time when the
packet drop occurs
(rounded by a green
circle). It happens
when the AF queue is
filled at 40%.
This test illustrates
the benefits of
applying RED
mechanisms: by
anticipating
congestion and by
dropping at random a
packet. A single TCP
flow among several
ones will be slightly
impacted.

Chart 22:
Case Study Run #6

– Port 82

o82

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50

The Fast Retransmit & Fast
Recovery congestion avoidance
algorithms will be easily applied
and prevent a further heavy
congestion impacting all the flows.
Only the final throughput of P flow
is impacted:
26.6 compared to 29.3 Mbps with
the initial run (not shown in
adjacent reports).

Port Node Rate Limit Adjnode Distance Propagation-Delay
o82 Pz 155 PE4 425 km 2366.7 microsec
 Queue Bandwidth Depth Used: Max Mean Dropped
 EF 10% 15.5 Mbps 3ms 56160 Bytes 1.80% 0.90% 0
 AF 67% 103.8 Mbps 12ms 224640 Bytes 27.00% 9.35% 1
 BE 23% 35.6 Mbps 15ms 280800 Bytes 59.92% 23.60% 0
 Flow Class hopJmax hopJmean cumJmax cumJmean Loss Retransmitted
 FastRxmit TO
 Z EF 228.1 29.6 228.1 29.6 0
 M AF 4457.0 1603.4 4998.1 1760.4 0
 N AF 4496.8 1579.3 4522.2 1797.4 0
 O AF 4467.7 1495.2 5387.2 2470.5 0
 P AF 4333.4 1392.3 4518.8 1572.4 1 1 0
 A BE 39468.0 17384.6 47975.3 21870.3 0
 B BE 40817.4 16470.9 45678.1 18322.9 0
 E BE 40406.2 15755.9 40689.8 16034.7 0

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 32

10 Jitter Bounds for EF traffic over IP/MPLS

With a statistical multiplexing system such as IP, it is impossible to define absolute bounds to jitter, because of the
unpredictability of the offered traffic. However, here is a stress simulation test that pushes the limits of EF traffic in a realistic
environment, with heavy load but without congestion. Single EF traffic flows are injected at CEs, with various characteristics.
Throughput and packet size are indicated in the table overleaf, but other varying information are the access link rate (E3, DS3,
FE, STM1) and length. Thus, EF packets enter PE1 and PE2 at random, without previous jitter. Besides EF isochronous traffic
flows, we inject variable BE traffic. All these flows converge respectively to STM-4 ports 101 and 102 and load them quite
heavily. From P1, the EF traffic crosses port 111 at a higher rate (GE) still mixed with other BE variable flows and then, from P2
to P3, it crosses port 121 at a lower rate (STM-4) before being split to egress PEs and CEs via lower rate links.

101

102

111 121

131

132

133

134

A

B

a

b

ab

C

D

E

c

d

e

CDE

STM-4

STM-4

GE STM-4

STM-1

STM-1

STM-1

STM-1

PE1

PE2

P1 P2 P3

AB

cde

PE3

GHI

142

143

E3141

JKL

MNOP

DS3

DS3

CE
20Z

CE
1

CE
2

G

H

CE
40z

CE
21

CE
22

g

h

PE4

QRS

145

146

E3144

TUV

WXYZ

DS3

DS3

PE5

ghi

148

149

E3147

jkl

mnop

DS3

DS3

PE6

qrs

151

152

E3150

tuv

wxyz

DS3

DS3
39

41

30

42

37

29

39

35

30

40

39

29

109

109

111

105

528911

520

465

Legend

Link load in Mbpsnnn

Figure 18: Configuration for testing EF jitter bounds

Table 3 shows the average jitter values experienced by individual EF flows at each crossed port, and the average and maximum
jitter from end-to-end. Here are some observations we can derive from this trial about conditions that favor jitter:

� When traffic flows at an output port comes from several upstream ports, as this is the case typically for an edge router,
there is a higher probability of having simultaneous ingress packets and therefore short transient queuing, even if
bandwidth is globally available.

� When the output port is at a lower rate than an upstream port, the serialization time is longer in output than in input and it
is therefore more likely, in case of heavy load, to have a packet waiting for the output port to be free.

� The slower the port rate, the higher the jitter because of a larger serialization time.

� The probability of having jitter increases with port loading, because packet contention in output will occur more often.

All these characteristics of IP traffic can be easily shown and analyzed with the traces associated with short elementary trials
(only a few packets) via IPVCoSS.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 33

 o101-o102

(STM-4)
o111
(GE)

o121
(STM-4)

o131-o134
(STM-1)

o141 - o152
(E3 / DS3 / DS3...)

Flow Thrput PKlen Nb PKs +Jmean Jmax Jmean

G 10 1000 2500 15.4 7.1 30.4 39.3 84.6 622.4 177.0

H 11 1050 2619 15.0 6.2 33.8 42.2 76.4 579.2 173.7

I 8 1100 1819 11.9 5.7 29.4 44.8 90.6 619.5 182.6

J 12 1150 2609 11.9 5.8 31.4 37.0 85.1 614.7 171.4

K 13 1200 2709 10.2 5.5 29.4 35.2 78.9 644.9 159.3

L 14 1250 2800 9.6 5.3 28.7 31.7 70.8 534.1 146.4

M 9 1300 1731 9.2 5.1 26.1 33.7 135.2 756.9 209.5

N 11 1350 2037 7.7 5.0 26.0 27.3 126.1 711.0 192.4

O 13 1400 2322 7.1 4.8 24.3 25.1 115.7 746.8 177.2

P 7 1450 1207 16.8 5.5 32.1 37.9 130.3 700.7 222.7

Q 8 1500 1334 17.4 5.2 29.0 43.5 75.6 607.5 170.9

R 12 1025 2927 14.4 6.1 33.9 42.3 132.0 793.3 228.9

S 10 1075 2326 13.1 6.1 32.8 42.5 129.3 726.0 224.0

T 16 1125 3556 11.2 5.7 30.6 34.3 65.2 610.2 147.3

U 9 1175 1915 10.8 5.7 30.8 39.4 68.0 622.2 154.9

V 10 1225 2041 9.8 5.3 29.5 35.9 60.7 561.5 141.4

W 12 1275 2353 8.4 5.2 27.8 31.9 116.6 718.8 190.0

X 8 1325 1510 8.5 5.2 27.9 33.5 119.2 732.3 194.5

Y 10 1375 1819 7.9 5.2 32.1 25.9 106.4 721.0 177.7

Z 9 1425 1579 16.7 5.6 30.9 38.1 111.8 696.1 203.3

g 6 1000 1500 15.7 6.3 33.2 49.3 199.5 683.9 304.3

h 11 1100 2500 15.4 6.5 56.6 99.6 236.2 699.0 414.5

i 12 1200 2500 10.4 5.9 46.3 62.8 25.2 434.6 150.9

j 13 1300 2500 10.5 6.1 29.6 12.5 53.7 392.7 112.6

k 14 1400 2500 8.8 5.6 32.7 45.8 190.1 563.0 283.2

l 10 1500 1667 9.1 4.7 24.5 33.3 49.1 361.5 121.0

m 12 1000 3000 7.9 5.4 29.5 48.5 149.4 680.4 240.9

n 7 1100 1591 7.2 5.0 29.1 45.0 141.3 732.9 227.7

o 14 1200 2917 5.8 5.0 26.4 32.9 127.3 647.9 197.6

p 9 1300 1731 14.9 6.7 39.1 42.9 117.1 689.4 220.9

q 16 1400 2857 14.0 5.2 29.9 39.8 106.4 662.4 195.5

r 6 1500 1000 16.3 5.8 20.9 51.7 244.0 697.5 339.0

s 8 1000 2000 9.1 5.7 20.2 38.4 108.1 541.7 181.7

t 10 1100 2273 11.4 5.9 33.0 39.9 120.3 642.8 210.6

u 16 1200 3334 8.5 5.2 26.8 37.0 113.1 591.2 190.8

v 15 1300 2885 8.7 5.1 27.9 32.5 95.4 594.1 169.8

w 14 1400 2500 18.5 6.4 40.6 29.3 145.6 553.1 240.6

x 6 1500 1000 9.0 5.1 48.3 30.0 100.8 513.2 193.4

y 8 1000 2000 6.3 5.3 20.6 61.8 114.9 577.8 209.1

z 11 1100 2500 12.4 6.1 23.2 41.2 89.6 496.5 172.8

A 100 1500 31658 36.9

B 200 1500 63222 34.8

a 90 1500 28330 33.2

b 150 1500 47377 32.9

C 100 1500 31590 49.2

D 200 1500 63376 48.2

E 150 1500 47392 48.1

c 20 1500 6302 73.9

d 30 1500 9460 71.0

e 40 1500 12681 70.5

Table 3: Examples of jitter values with numerous EF flows, heavy load but no congestion

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 34

11 Conclusion

This paper has presented a case study, with the simulation of a fairly sophisticated network (SP backbone and VPN
sites). Readers interested in analyzing accurate traces will find various elementary tests via IPVCoSS, with their full
traces, at the web site mentioned on the front page of this document.

Our purpose was to show how jitter could be controlled, to some very acceptable extent, via an IP/MPLS backbone, in
spite of IP flows with different characteristics, especially the variable packet size. Obviously, the real world is more
complex and, for this case study, we did not take into account link redundancy, enabling more alternate paths. We did
not consider techniques such as load balancing, or provider edge’s front-end access equipment such as Ethernet
switches. However, the main principles have been analyzed. Concerning the packet scheduling at a port, the method
itself – in spite of the name defining it – is very dependent on the vendor’s implementation. That is why the class-based
queuing method implemented by this simulator is explained in an annex with the help of traces.

The engineering of the access links between a VPN site and the SP backbone is a major point in the delivery of the most
stringent classes of services to VPN users. Actually, the access link (or the access network) introduces a different set of
parameters for an IP flow’s end-to-end path, compared to the SP network, which can be considered homogeneous in
terms of equipment type and capacity. For economical reasons, the customer will choose the access link at the lowest
possible rate. For example, an E3 leased line will entail an E3 interface for which the serialization time of a packet will be
three times longer than with a Fast Ethernet interface; it will therefore be prone to jitter because of the higher rate
interfaces – upstream or downstream – in the backbone. On the other hand, an Ethernet-based access loop subscribed
at an “E3” rate (say 30 Mbps) will enable a faster packet serialization, but will raise other issues:

� The structure of the access network, which may be shared by several access loop’s customers and which may
introduce several elements to be crossed, such as ATM switches with, for example, a multi-LAN service.

� The capability of the CE and PE equipment’s scheduler to take into account the subscribed rate instead of the
physical interface rate. The simulator in this case study has treated this latter situation.

Even with the best network and access link tuning, jitter is dependent on traffic contingency and network loading. It is
significantly minimized with high-speed interfaces and stay within acceptable limits, considering the de-jittering
capabilities of specialized equipment in reception. We could also imagine some form of traffic shaping in output of each
node along the path, that would totally eliminate jitter, but this seems unnecessary.

Maybe the most important issue is the impact of transiting from one situation to another, that is passing from one path to
another as this is the case with DiffServ Traffic Engineering (DS-TE). This is not treated in this paper because the
simulator itself focuses on the data plane and the performance aspects of pre-established paths. It ignores completely
the control plane. Besides the “throughput”, “jitter”, “packet loss” and “delay” classical QoS parameters, there is a most
important parameter, which is “availability”. Availability can be considerably enhanced by techniques such as DS-TE, but
there will still be the punctual impact, for a real-time video for instance, of the path transition due to a router failure or link
failure within the network.

This network simulator was specifically developed for writing this White Paper, and having the suitable traces, graphs
and reports. There are more elaborated network simulators, such as the famous NS-2 that helped evaluate – on a large
scale – TCP congestion avoidance mechanisms. Network simulation, for an SP, cannot replace real tests on a dedicated
platform representing its network and customers. However, the simulator could certainly supplement it by helping
structure the overall topology of the test platform and find a first level of tuning for the QoS parameters.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 35

Annex 1: IPVCoSS – TCP Congestion Control

Most IP flows are based on TCP transport protocol. These flows are responsive to network load thanks to congestion control
mechanisms. RFC 2581 defines 4 main algorithms:

� Slow Start

� Congestion Avoidance

� Fast Retransmit

� Fast Recovery

One must retain that at any time either "Slow Start" or "Congestion Avoidance" is applied. "Fast Retransmit" and "Fast
Recovery” are tightly related ("Fast Retransmit" is followed by "Fast Recovery") and are an enhancement of "Congestion
Avoidance”.

IPVCoSS takes into account these mechanisms but, for simplification and in order to focus on the essential aspects, the
following hypothesis and restrictions are applied:

1) Only the data phase of a TCP session is considered, and the parameters that would result of the initial establishment
phases are defined when configuring the TCP-based IP flow or forced to some default values.

2) There are no limitations on the receiver side and we assume that:

� The receiver window (rwnd) is very high
� RMSS (receiver maximum segment size) is greater than or equal to SMSS (sender maximum segment size)

3) The segment size (SMSS / RMSS: sender / receiver maximum segment size) does not include the TCP header but in the
context of IPVCoSS, we will ignore the TCP header as well as the IP header and we will assimilate the TCP segment
size to the IP packet size, which itself includes its IP header. For example, if a packet size of 1000 bytes is configured,
we will show in the TCP specific traces a segment size of 1000 bytes, instead of 940 bytes (20 bytes of IP header plus 40
bytes of TCP header). The advantage of this “deviation” is that we can rely on the throughput calculations performed on
IP packets, and that the evolution of the TCP parameters such as cwnd and flightsize shown in the TCP traces will be
more readable. This abstraction does not prevent the application of the congestion control mechanisms we are
examining. Implementing a true TCP layer would be far too complex to reach our goal. Moreover, if it is very likely that
the IP header will have no options field, the TCP header in contrast would include the options required for high-speed
and large-scale environments (larger window size) and would be greater than 40 bytes.

4) The delay back for a TCP “ACK” is calculated at the time of the first TCP segment transmission and is then systematically
applied to all other “ACK” for this flow. This means that we assume that, in addition to having the same path from receiver
to sender, there is no congestion on this path. This is consistent with the main assumptions made for the IPVCoSS
environment: MPLS paths, no unavailability. Moreover, for a clear observation, it is better not to cross flows even if it is
feasible.

5) The initial sequence number (each TCP byte is identified by a sequence number) will always start to 1, conversely to
TCP real implementations. The purpose, once again, is to offer a better readability of the traces.

6) The receiver will send an ACK for each received segment: there is no deferred acknowledgment.

7) The timeout is fixed to 300ms for easing observations.

In contrast, the following key variables, on the sender side, are processed in full conformance with TCP rules:

� cwnd (congestion window)

The number of bytes of this window limits the transmission of TCP data: a TCP sender cannot send any fragment with a
sequence number greater that the sum of the last acknowledged sequence number and this window value. The initial
value of this parameter corresponds to 2 full-size segments. This value is incremented when TCP ACKs are received but
can be reduced when congestion is detected.

� fs (flight size)

The amount of data that has been sent but not yet acknowledged.

� ssthresh (slow start threshold)

The initial value of this threshold may be very high and is reduced when congestion is detected.

At any time, the respective values of ssthresh and cwnd determine which algorithm should be applied: SLOW START or
CONGESTION AVOIDANCE:

cwnd <= ssthresh : SLOW START

cwnd > ssthresh : CONGESTION AVOIDANCE

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 36

The difference between Slow Start and Congestion Avoidance is the evolution of cwnd according to received ACKs, and as a
result controls the amount of data injected in the network:

� With SLOW START: cwnd is incremented by SMSS for each received ACK

� With CONGESTION AVOIDANCE: cwnd is incremented by SMSS at each RTT (round trip time) only; this is given by the
following equation:

cwnd += SMSS * SMSS / cwnd

The following picture shows the evolution of the useful window that governs the injection of data:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

cwnd

fs
(flightsize)Last byte sent and

acknowledged (sent and not acknowledged)

useful window

2
8

2
9

3
0 ...

Window's left edge moves
towards the right side when
packets are acknowledged

Window's intermediate limit
moves towards the right side

when packets are sent
Window's right edge moves
towards the right or the left
side according to cwnd
value

Figure 19: TCP Sender Windows

Congestion detection previously mentioned for cwnd and ssthresh variables is the strong presumption of packet loss in following
cases:

1) Acknowledgement failure

When 3 consecutive duplicate ACKs are received for a segment, the following segment which acknowledgment was
expected by the sender is considered lost.

2) Time-Out for a segment

A time-out indicates a strong congestion in the network that prevents the communication between sender and receiver. A
TCP time-out value is expressed in terms of seconds and is permanently re-negotiated for taking into account the traffic
load.

We will concentrate on the first case only since it is tightly related to the RED (random early detection) queue management
mechanism.

We will use the following configuration for first examining the Slow Start mechanism when applied at the beginning of a TCP
data transfer phase. Then we will see the consequences of a single packet loss with the same traffic profile.

R1 R2 TCP
Destination

TCP
Source 1011 200 kmFE E3 FE51

TCP traces are shown as time-diagrams in order to highlight the exchanges between sender and receiver. The evolution of
cwnd and flightsize (fs) variables appears on the left of the events on the sender side. The IP packet identifier along with the first
and last byte of the segment represents TCP data segments. The “push” event on the receiver side represents the
communication, in the right order, of the segment contents to the application. An acknowledgement conveys the number of the
next byte that the receiver expects to receive.

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 37

A1.1 – Slow Start
Here is a trace of the “slow” start of a TCP session. For clarity, segments have a fixed size of 1000 bytes and targeted at a
steady throughput of 32 Mbps. The ssthresh variable is initialized at a very high value so as to immediately trigger the slow start
algorithm.
 tick TCP Sender TCP Receiver
 cwnd fs

The variable cwnd is
initialized to 2 x SMSS,
i.e. 2000 bytes. Thus,
2 segments (A1, A2)
are sent (and flightsize
is incremented) before
the window is closed.
For each
acknowledged
segment, cwnd is
incremented by 1 x
SMSS, while flightsize
is decremented.
As a result, 4 new
segments will be sent
at 250 microsecond
intervals corresponding
to the 32Mbps
throughput.

 0.0
 250.0
 1552.8

 1802.8

 2689.6

 2939.6

 3189.6
 3439.6
 4242.4

 4492.4

 4742.4

 4992.4

 2000

 3000

 4000

 1000
 2000

 1000
 2000
 1000
 2000
 3000
 4000

ts A1(1-1000) ->
ts A2(1001-2000) ->

 ta A2(1001) <-
ts A3(2001-3000) ->
 ta A3(2001) <-
ts A4(3001-4000) ->
ts A5(4001-5000) ->
ts A6(5001-6000) ->

-> tr A1(1-1000)
<- ta A2(1001)
-> tr A2(1001-2000)
<- ta A3(2001)

-> tr A3(2001-3000)
<- ta A4(3001)
-> tr A4(3001-4000)
<- ta A5(4001)
-> tr A5(4001-5000)
<- ta A6(5001)
-> tr A6(5001-6000)
<- ta A7(6001)

-> push A1

-> push A2

-> push A3

-> push A4

-> push A5

-> push A6

When A3 to A6
segments are
acknowledged, we can
send again 8 new
segments (A7 to A14)

When A8 to A14 are
acknowledged the
window is still wider
and enables TCP
segments to be sent at
the targeted
throughput.

 5379.2

 5629.2

 5879.2

 6129.2

 6379.2
 6629.2
 6879.2
 6932.0

 7129.2
 7182.0

 7432.0

 7682.0

 7932.0

 8068.8

 8182.0

 8318.8

 8432.0

 8568.8

 8682.0

 8818.8

 9068.8

 9318.8

 9568.8

 9621.6

 9818.8

 9871.6

10068.8
10121.6

 5000

 6000

 7000

 8000

 9000

10000

11000

12000

13000

14000

15000

16000

 3000
 4000
 3000
 4000
 3000
 4000
 3000
 4000
 5000
 6000
 7000

 8000

 7000
 8000

 7000
 8000

 7000
 8000

 7000
 8000
 7000
 8000
 7000
 8000
 7000
 8000

 7000
 8000

 9000

 ta A4(3001) <-
ts A7(6001-7000) ->
 ta A5(4001) <-
ts A8(7001-8000) ->
 ta A6(5001) <-
ts A9(8001-9000) ->
 ta A7(6001) <-
ts A10(9001-10000) ->
ts A11(10001-11000) ->
ts A12(11001-12000) ->
ts A13(12001-13000) ->

ts A14(13001-14000) ->

 ta A8(7001) <-
ts A15(14001-15000) ->

 ta A9(8001) <-
ts A16(15001-16000) ->

 ta A10(9001) <-
ts A17(16001-17000) ->

 ta A11(10001) <-
ts A18(17001-18000) ->
 ta A12(11001) <-
ts A19(18001-19000) ->
 ta A13(12001) <-
ts A20(19001-20000) ->
 ta A14(13001) <-
ts A21(20001-21000) ->

 ta A15(14001) <-
ts A22(21001-22000) ->

ts A23(22001-23000) ->

-> tr A7(6001-7000)
<- ta A8(7001)

-> tr A8(7001-8000)
<- ta A9(8001)
-> tr A9(8001-9000)
<- ta A10(9001)
-> tr A10(9001-10000)
<- ta A11(10001)
-> tr A11(10001-11000)
<- ta A12(11001)

-> tr A12(11001-12000)
<- ta A13(12001)

-> tr A13(12001-13000)
<- ta A14(13001)

-> tr A14(13001-14000)
<- ta A15(14001)

-> tr A15(14001-15000)
<- ta A16(15001)

-> tr A16(15001-16000)
<- ta A17(16001)

-> tr A17(16001-17000)
<- ta A18(17001)

-> push A7

-> push A8

-> push A9

-> push A10

-> push A11

-> push A12

-> push A13

-> push A14

-> push A15

-> push A16

-> push A17

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 38

 tick TCP Sender TCP Receiver
 cwnd fs

10318.8
10371.6

10568.8
10621.6

10758.4
10818.8
10871.6

11008.4
11068.8
11121.6

11258.4
11318.8
11371.6

11508.4
11568.8
11621.6

11758.4
11818.8

17000

18000

19000

20000

21000

10000

11000

10000
11000

10000
11000

10000
11000

10000
11000

10000
11000

ts A24(23001-24000) ->

ts A25(24001-25000) ->

 ta A16(15001) <-
ts A26(25001-26000) ->

 ta A17(16001) <-
ts A27(26001-27000) ->

 ta A18(17001) <-
ts A28(27001-28000) ->

 ta A19(18001) <-
ts A29(28001-29000) ->

 ta A20(19001) <-
ts A30(29001-30000) ->

-> tr A18(17001-18000)
<- ta A19(18001)

-> tr A19(18001-19000)
<- ta A20(19001)

-> tr A20(19001-20000)
<- ta A21(20001)

-> tr A21(20001-21000)
<- ta A22(21001)

-> tr A22(21001-22000)
<- ta A23(22001)

-> tr A23(22001-23000)
<- ta A24(23001)

-> push A18

-> push A19

-> push A20

-> push A21

-> push A22

-> push A23

 ...

The first graph with a
short scan-interval of 1
millisecond shows the
successive bursts of
TCP segments due to
the Slow Start
algorithm.

This second graph with
a longer trial and
therefore a larger
scan-interval shows a
line chart more
conventional in regards
to Slow Start
description.

TCP Sender: 100 segments, 1-ms scan intervals

0

10

20

30

40

0 5 10 15 20 25 30

Throughput

TCP Sender: 1000 segments, 6-ms scan intervals

0

10

20

30

40

0 5 10 15 20 25 30 35 40

Throughput

A1.2 – Congestion Avoidance with Fast Retransmit & Fast Recovery
Here is the same trial as previously with the discarding of TCP segment #50. The trace is shown from the packet discarding till a
little after the end of the Fast Recovery procedure. Note that “o-o-o” on the receiver side means “out-of-order”.
 tick TCP Sender TCP Receiver
 cwnd fs

At this stage, cwnd is
still increasing...

16818.8
16871.6

 11000

ts A50(49001-50000) ->

-> tr A44(43001-44000)
<- ta A45(44001)

-> push A44

 16920.9 A50 DISCARD SIMULATION

 17008.4
17068.8
17121.6

17258.4
17318.8
17371.6

17508.4
17568.8
17621.6

42000

43000

44000

10000
11000

10000
11000

10000
11000

 ta A41(40001) <-
ts A51(50001-51000) ->

 ta A42(41001) <-
ts A52(51001-52000) ->

 ta A43(42001) <-
ts A53(52001-53000) ->

-> tr A45(44001-45000)
<- ta A46(45001)

-> tr A46(45001-46000)
<- ta A47(46001)

-> tr A47(46001-47000)

-> push A45

-> push A46

-> push A47

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 39

 tick TCP Sender TCP Receiver
 cwnd fs

17758.4
17818.8
17871.6

45000

10000
11000

 ta A44(43001) <-
ts A54(53001-54000) ->

<- ta A48(47001)

-> tr A48(47001-48000)
<- ta A49(48001)

-> push A48

From now, A50 is
expected by the
receiver...

A51 and subsequent
segments cannot be
delivered to the TCP
user and are stored,
while A50 expectation
is permanently notified
in the ACKs

18008.4
18068.8
18121.6

18258.4
18318.8
18508.4
18568.8
18621.6

18758.4
18818.8
18871.6

19008.4
19068.8
19121.6

19258.4
19318.8
19371.6

19568.8
19621.6

19758.4
19818.8
19871.6

46000

47000

48000

49000

50000

51000

10000
11000

10000
11000
10000
11000

10000
11000

10000
11000

10000
11000

12000

13000

 ta A45(44001) <-
ts A55(54001-55000) ->

 ta A46(45001) <-
ts A56(55001-56000) ->
 ta A47(46001) <-
ts A57(56001-57000) ->

 ta A48(47001) <-
ts A58(57001-58000) ->

 ta A49(48001) <-
ts A59(58001-59000) ->

 ta A50(49001) <-
ts A60(59001-60000) ->

ts A61(60001-61000) ->

 DA(1) ta A50(49001) <-
ts A62(61001-62000) ->

-> tr A49(48001-49000)
<- ta A50(49001)

-> tr A51(50001-51000)
<- ta A50(49001)

-> tr A52(51001-52000)
<- ta A50(49001)

-> tr A53(52001-53000)
<- ta A50(49001)

-> tr A54(53001-54000)
<- ta A50(49001)

-> tr A55(54001-55000)
<- ta A50(49001)

-> tr A56(55001-56000)
<- ta A50(49001)

-> push A49

#o-o-o

#o-o-o

#o-o-o

#o-o-o

#o-o-o

#o-o-o

After the third
Duplicate ACK (DA)
TCP segment A50 is
retransmitted.
Then the Fast
Recovery phase is
entered, with ssthresh
value set down to half
the flightsize value:
14000/2 = 7000

For each additional
duplicate ACK
received, cwnd is
incremented by SSMS.

We can send a TCP
segment...

When A50 is received,
A50 to A63 segments
can be delivered
(pushed) to the TCP
user

20008.4
20068.8
20121.6

20258.4

20371.6

20508.4
20621.6

20758.4
20871.6

21008.4
21121.6

21258.4
21371.6

21508.4

21621.6

21758.4

21856.5

11000

12000

13000

14000

15000

16000

14000

15000

16000

 DA(2) ta A50(49001) <-
ts A63(62001-63000) ->

 DA(3) ta A50(49001) <-
FAST RETRANSMIT
ts A50(49001-50000) ->
ENTER FAST RECOVERY
ssthresh:7000

 DA(4) ta A50(49001) <-

 DA(5) ta A50(49001) <-

 DA(6) ta A50(49001) <-

 DA(7) ta A50(49001) <-

 DA(8) ta A50(49001) <-
ts A64(63001-64000) ->

 DA(9) ta A50(49001) <-
ts A65(64001-65000) ->

-> tr A57(56001-57000)
<- ta A50(49001)

-> tr A58(57001-58000)
<- ta A50(49001)

-> tr A59(58001-59000)
<- ta A50(49001)

-> tr A60(59001-60000)
<- ta A50(49001)

-> tr A61(60001-61000)
<- ta A50(49001)

-> tr A62(61001-62000)
<- ta A50(49001)

-> tr A63(62001-63000)
<- ta A50(49001)

-> tr A50(49001-50000)

<- ta A64(63001)

#o-o-o

#o-o-o

#o-o-o

#o-o-o

#o-o-o

#o-o-o

#o-o-o

-> push
 A50-A63

When the ACK that
acknowledges new
data arrives, the Fast
Recovery phase
terminates.

22008.4

22258.4

22508.4

22758.4

22993.3

23008.4
23061.2

17000

18000

19000

20000

 7000

17000

18000

19000

20000
 6000

 7000

 DA(10) ta A50(49001) <-
ts A66(65001-66000) ->
 DA(11) ta A50(49001) <-
ts A67(66001-67000) ->
 DA(12) ta A50(49001) <-
ts A68(67001-68000) ->
 DA(13) ta A50(49001) <-
ts A69(68001-69000) ->
 ta A64(63001) <-
EXIT FAST RECOVERY
ts A70(69001-70000) ->

-> tr A64(63001-64000)

-> push A64

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 40

 tick TCP Sender TCP Receiver
 cwnd fs

However, since the
ssthresh value is still
set to 7000 bytes, we
have still to apply the
classical congestion
avoidance algorithm:
cwnd is no more
incremented by
1xSMSS for each ACK
received, but it is
incremented by
1xSMSS per RTT
(round-trip time)
according to the
formula mentioned
earlier.

23311.2

23561.2

23811.2

24061.2

24198.0

24311.2

24448.0

24561.2

24698.0

24948.0

25198.0

25448.0

25698.0

25750.8

25948.0
26000.8

26250.8

26500.8

26750.8

26887.6

27000.8

27137.6

 8000

 8125

 8248

 8369

 8488

 8605

 8721

 8835

 8948

 6000
 7000

 6000
 7000

 6000
 7000
 6000
 7000
 6000
 7000
 6000
 7000
 6000
 7000

 8000

 7000
 8000

 7000
 8000

 ta A65(64001) <-
ts A71(70001-71000) ->

 ta A66(65001) <-
ts A72(71001-72000) ->

 ta A67(66001) <-
ts A73(72001-73000) ->
 ta A68(67001) <-
ts A74(73001-74000) ->
 ta A69(68001) <-
ts A75(74001-75000) ->
 ta A70(69001) <-
ts A76(75001-76000) ->
 ta A71(70001) <-
ts A77(76001-77000) ->

ts A78(77001-78000) ->

 ta A72(71001) <-
ts A79(78001-79000) ->

 ta A73(72001) <-
ts A80(79001-80000) ->

<- ta A65(64001)
-> tr A65(64001-65000)
<- ta A66(65001)
-> tr A66(65001-66000)
<- ta A67(66001)
-> tr A67(66001-67000)
<- ta A68(67001)
-> tr A68(67001-68000)
<- ta A69(68001)

-> tr A69(68001-69000)
<- ta A70(69001)

-> tr A70(69001-70000)
<- ta A71(70001)

-> tr A71(70001-71000)
<- ta A72(71001)

-> tr A72(71001-72000)
<- ta A73(72001)
-> tr A73(72001-73000)
<- ta A74(73001)
-> tr A74(73001-74000)
<- ta A75(74001)
-> tr A75(74001-75000)
<- ta A76(75001)

-> tr A76(75001-76000)
<- ta A77(76001)

-> push A65

-> push A66

-> push A67

-> push A68

-> push A69

-> push A70

-> push A71

-> push A72

-> push A73

-> push A74

-> push A75

-> push A76

 ...

The first graph with a
short scan-interval of 1
millisecond shows in
detail the impact of a
packet discard,
represented by a red
circle, in the middle of
the flow.

This second graph with
a longer trial and
therefore a larger
scan-interval provides
a broader view of the
impact of the fast
retransmit and fast
recovery algorithms.

TCP Sender: 100 segments (#50 DISCARDED), 1ms scan-intervals

0

10

20

30

40

0 5 10 15 20 25 30 35

Throughput

TCP Sender: 1000 segments (#50 DISCARDED), 6-ms scan intervals

0

10

20

30

40

0 5 10 15 20 25 30 35 40

Throughput

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 41

Annex 2: IPVCoSS – Scheduling Trace

Here is the simple configuration used to illustrate the scheduling algorithm used by IPVCoSS. This port will be heavily
overloaded with EF traffic just above its assigned bandwidth (because of the frame overhead) and AF and BE traffic well above
their assigned bandwidths. Considering the bandwidth ratios assigned to this FE port, the credits for EF, AF and BE queues will
be respectively 20 000, 30 000 and 50 000 bits. These credits, as shown by ‘q+’ trace events, are refreshed at 1-ms regular
intervals. As soon as the port is free (i.e. there is no current serialization and the interframe gap, for Ethernet frames, is
respected) the Scheduler will select one packet among all the packets, if any, waiting in the queues.

FE
20%

30%

50%

V

M

A

CBR 20 Mbit/s PK size: 1500 bytes

VBR 40 Mbit/s Max PK size: 500 bytes

VBR 90 Mbit/s Max PK size: 1000 bytes

The Scheduler will scan the queues according to their relative priority: EF > AF > BE. In a first step, it will select the first packet
(if any) in the queue only if the credit allows it. Otherwise, if the first pass was unsuccessful, in a second pass it will select the
first packet of the queue, thus basing its choice on priority only. Here is the trace for the first 2 milliseconds of the trial.

Events of interest, besides ‘q+’, are:

� ‘qo’ the packet placed in the queue

� ‘so’ serialization of the packet selected by the scheduler (highlighted in yellow)

� ‘eo’ end of serialization of the packet’s frame

For each queue the following parameters are displayed, when their value changes: the current credit in bits (‘Credit’), the packet
at the head of the queue (‘HdPk’) eligible to selection by the scheduler, its frame size in bits (‘Frlen’), and the number of packets
in the queue (‘Qn’).

Note: The interframe gap with a fast Ethernet is 0.9 microsecond and therefore an ‘eo’ event cannot be immediately
followed by an ‘so’ event.

 Tick Ev Pkid

 EF Queue
Credit HdPk:Frlen Qn

 AF Queue
Credit HdPk:Frlen Qn

 BE Queue
Credit HdPk:Frlen Qn

V1 packet only stays 0.2
microsecond in queue. It arrived
during the interframe gap while
another packet (M2) was waiting
and otherwise would have been
serialized.

 0.0 q+
 28.0 qo M1
 so M1
 36.0 eo M1
 55.0 qo A1
 so A1
 74.0 qo A2
 90.0 eo A1
 90.9 so A2
 106.4 qo A3
 108.9 eo A2
 109.8 so A3
 135.1 qo M2
 141.3 eo A3
 141.9 qo M3
 142.1 qo V1
 142.3 so V1
 158.5 qo A4
 187.6 qo A5
 223.3 qo M4
 259.0 qo A6
 264.4 eo V1
 265.4 so M2
 278.4 qo A7
 300.5 qo M5
 306.0 eo M2
 307.0 so M3
 312.8 eo M3
 313.8 so M4
 319.1 qo M6
 325.8 qo M7
 346.9 eo M4
 347.9 so M5
 349.8 qo A8
 375.5 eo M5
 376.5 so M6
 394.1 eo M6
 395.0 so M7
 398.4 qo A9
 400.8 eo M7

20000

 V1 :12208 1
 7792 0

30000
 M1 :800 1
 29200 0

 M2 :4056 1

 2

 3

 25144 M3 :576 2

 3

 24568 M4 :3304 2

 21264 M5 :2760 1
 2
 3

 18504 M6 :1752 2

 16752 M7 :576 1

 16176 0

50000

 A1 :3496 1
 46504 0
 A2 :1792 1

 44712 0
 A3 :3144 1

 41568 0

 A4 :5120 1
 2

 3

 4

 5

 6

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 42

 Tick Ev Pkid

 EF Queue
Credit HdPk:Frlen Qn

 AF Queue
Credit HdPk:Frlen Qn

 BE Queue
Credit HdPk:Frlen Qn

When V2 is placed in the EF
queue, A8 is being serialized.

 401.7 so A4
 413.9 qo M8
 448.7 qo A10
 452.9 eo A4
 453.9 so M8
 480.3 eo M8
 481.3 so A5
 499.0 qo A11
 503.8 qo M9
 509.4 eo A5
 510.4 so M9
 540.9 eo M9
 541.9 so A6
 559.7 qo M10
 570.6 qo A12
 592.8 qo M11
 606.8 eo A6
 607.8 so M10
 619.0 qo M12
 628.3 qo A13
 633.5 eo M10
 634.5 so M11
 637.2 qo M13
 666.4 eo M11
 667.3 so M12
 675.1 qo A14
 679.7 eo M12
 680.6 so M13
 697.8 eo M13
 698.8 so A7
 711.9 qo M14
 717.2 eo A7
 718.2 so A8
 732.0 qo A15
 742.1 qo V2
 751.2 qo M15

 V2 :12208 1

 M8 :2632 1

 13544 0

 M9 :3048 1

 10496 0

 M10 :2568 1

 2

 7928 M11 :3184 1
 2

 4744 M12 :1240 1
 2

 3504 M13 :1720 1

 1784 0

 M14 :3880 1

 2

 36448 A5 :2808 5

 6

 33640 A6 :6488 5
 6

 27152 A7 :1840 5

 6

 7

 8

 25312 A8 :7040 7

 18272 A9 :4752 6
 7

When the port is free, neither V2
nor M14 are selected because
there is not enough credit for
them while there is enough credit
for A9, and even subsequently for
A10 and A11. In fact BE traffic
takes its share of bandwidth.

Here is an example of a second
scanning of the queues by the
scheduler: No packet (at the
head of each queue) has enough
credit. As a result, V2 takes
advantage of EF priority over
other classes and is serialized.
But V2 has waited 188.1
microseconds in queue, thus
experiencing jitter. This is normal
considering that the IP
throughput is 20Mbps and
therefore the actual throughput a
little higher than the assigned
bandwidth because of the frame
overhead.

Note that at the “1000.0”
millisecond boundary, credits
were refreshed.

 786.4 qo A16
 788.6 eo A8
 789.5 so A9
 817.6 qo A17
 820.0 qo M16
 824.3 qo A18
 837.1 eo A9
 838.1 so A10
 878.9 eo A10
 879.9 so A11
 907.6 qo A19
 929.2 eo A11
 930.2 so V2
 940.2 qo M17
 979.0 qo A20
 986.5 qo M18
 1000.0 q+
 1001.4 qo A21
 1023.2 qo A22
 1052.3 eo V2
 1053.2 so M14
 1077.7 qo A23
 1087.1 qo M19
 1092.0 eo M14
 1093.0 so M15
 1131.3 eo M15
 1131.9 qo A24
 1132.2 so M16
 1142.1 qo M20
 1147.3 qo A25
 1166.3 eo M16
 1167.3 so M17
 1184.8 qo M21
 1187.5 eo M17
 1188.5 so M18
 1194.3 eo M18
 1195.3 so M19
 1212.1 eo M19
 1213.1 so M20
 1216.0 qo M22

 -4416 0

 20000

 3

 4

 5
 30000

26120 M15 :3824 4

 5

 22296 M16 :3408 4

 18888 M17 :2016 3
 4

 16872 M18 :576 3
 4

 16296 M19 :1680 3

 14616 M20 :4080 2

 10536 M21 :3896 1
 2

 8

 13520 A10 :4080 7
 8

 9

 9440 A11 :4928 8

 4512 A12 :7056 7
 8

 9

 50000
 10
 11

 12

 13

 14

 1219.0 qo A26
 1225.8 qo M23

 3

 15

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 43

 Tick Ev Pkid

 EF Queue
Credit HdPk:Frlen Qn

 AF Queue
Credit HdPk:Frlen Qn

 BE Queue
Credit HdPk:Frlen Qn

V3 has enough credit, because of
the previous refresh, and is
serialized as soon as the port is
free.

One can observe that, when
there is no pending EF packets,
AF packets are serialized
because they have enough credit
and a higher priority than BE
packets.
When AF credit is no more
sufficient, BE packets are then
serialized, thus using BE credit.

 1238.8 qo A27
 1253.9 eo M20
 1254.9 so M21
 1293.9 eo M21
 1294.9 so M22
 1304.1 qo A28
 1304.9 eo M22
 1305.8 so M23
 1311.6 eo M23
 1312.5 so A12
 1324.7 qo M24
 1342.1 qo V3
 1348.3 qo A29
 1373.1 qo M25
 1383.1 eo A12
 1384.0 so V3
 1389.1 qo M26
 1419.0 qo A30
 1459.0 qo A31
 1469.0 qo A32
 1491.4 qo M27
 1506.1 eo V3
 1507.1 so M24
 1519.0 qo M28
 1525.8 qo M29
 1526.2 eo M24
 1527.2 so A13
 1546.4 qo M30
 1548.1 qo A33
 1563.8 qo A34
 1579.2 eo A13
 1580.1 so A14
 1582.7 qo A35
 1616.0 qo M31
 1626.0 eo A14
 1627.0 so A15
 1653.2 qo M32
 1654.7 qo A36

 V3 :12208 1

 7792 0

 6640 M22 :1000 2

 5640 M23 :576 1

 5064 0

 M24 :1904 1

 2

 3

 4

 3160 M25 :4040 3
 4
 5

 6

 7

 8

 16

 17

 42944 A13 :5192 16

 17

 18
 19
 20

 37752 A14 :4584 19

 20
 21

 33168 A15 :5600 20
 21

 27568 A16 :4632 20

 21

Here is another example of the
selection of a packet although its
credit becomes negative. This
happens actually close to the
refresh time, and is due to the
contingency of offered load and
packet sizes.

 1683.0 eo A15
 1684.0 so A16
 1699.0 qo A37
 1705.3 qo M33
 1730.4 eo A16
 1731.4 so A17
 1742.0 qo M34
 1746.5 qo A38
 1760.7 qo M35
 1761.7 eo A17
 1762.7 so A18
 1768.5 eo A18
 1769.5 so A19
 1819.1 qo M36
 1823.5 qo A39
 1843.2 eo A19
 1844.2 so A20
 1858.0 qo M37
 1868.7 qo M38
 1879.7 qo A40
 1914.6 eo A20
 1915.6 so A21
 1937.0 eo A21
 1938.0 so A22
 1939.1 qo A41
 1942.1 qo V4
 1942.7 qo M39
 1958.8 eo A22
 1959.8 so V4
 1986.5 qo M40
 1990.3 qo A42
 1997.0 qo A43
 2000.0 q+
...

 V4 :12208 1

 -4416 0

 20000

 9

 10

 11

 12

 13
 14

 15

 16

 30000

 22936 A17 :3024 20
 21

 19912 A18 :576 20

 21

 19336 A19 :7368 20

 11968 A20 :7040 19

 20

 4928 A21 :2136 19

 20

 2792 A22 :2072 19

 720 A23 :4808 18
 19

 20
 21
 50000

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 44

List of abbreviations

AF Assured Forwarding

ATM Asynchronous Transfer Mode

BA Behavior Aggregate

BE Best Effort

CE Customer Edge equipment

CoS Class of Service

CPE Customer Premises Equipment

CRC Cyclic Redundancy Check

CT Class-Type

DS Differentiated Services
(DiffServ)

DSCP DS Code Point

DS-TE DS Traffic Engineering

EF Expedited Forwarding

E-LSP EXP-Inferred-PSC LSP

FCS Frame Check Sequence

FE Fast Ethernet

FEC Forwarding Equivalence Class

FR Frame Relay

GE Gigabit Ethernet

L-LSP Label-Only-Inferred-PSC LSP

LSP Label Switched Path

LSR Label Switching Router

Mbps Megabits per second

MPLS Multi Protocol Label Switching

MTU Maximum Transfer Unit

OA Ordered Aggregate

P Provider core equipment

PDB Per-Domain Behavior

PDH Plesiochronous Digital
Hierarchy (E1, E3, DS3)

PE Provider Edge equipment

PHB Per Hop Behavior

PPP Point-to-Point Protocol

PSC PHB Scheduling Class

QoS Quality of Service

RED Random Early Detection

RFC Request for Comments

RTO Retransmission Time-Out

RTT Round Trip Time

SDH Synchronous Digital Hierarchy
(STM-1, STM-4, STM-16...)

SFD Start Frame Delimiter

SLS Service Level Specification

TCP Transmission Control Protocol

TE Traffic Engineering

TOS Type Of Service field

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VPN Virtual Private Network

References
White Papers
[1] QoS Support in MPLS Networks (Victoria Fineberg, MPLS/Frame Relay Alliance)

[2] Supporting differentiated service classes in Large IP Networks (Chuck Semeria, Juniper)

[3] Supporting differentiated service classes: Queue Scheduling Disciplines (Chuck Semeria, Juniper)

[4] Supporting differentiated service classes: Active Queue Memory Management (Chuck Semeria, Juniper)

[5] Supporting differentiated service classes: TCP Congestion Control Mechanisms (Chuck Semeria, Juniper)

[6] Supporting differentiated service classes: MPLS (Chuck Semeria, Juniper)

[7] DiffServ – The Scalable End-to-End QoS Model (Cisco)

[8] Advanced Topics in MPLS-TE Deployment (Cisco)

[9] Virtual Leased Line Services Using Cisco MPLS DiffServ-Aware Traffic Engineering (Cisco)

[10] Voice Trunking and Toll-Bypass Trunking Using Cisco MPLS DiffServ-Aware Traffic Engineering (Cisco)

URLs
[11] NS-2 Network Simulator – http://www.isi.edu/nsnam/ns/

RFCs
[12] RFC 2018 – TCP selective Acknowledgment Options (Mathis, et al.)

[13] RFC 2309 – Recommendations on Queue Management and Congestion Avoidance in the Internet (Braden, et al.)

[14] RFC 2474 – Definition of the DS Field (Nichols, et al.)

[15] RFC 2475 – An Architecture for Differentiated Services (Blake, et al.)

[16] RFC 2581 – TCP Congestion Control (Allman, et al.)

[17] RFC 2582 – NewReno modification to TCP’s Fast Recovery algorithm (Floyd & Henderson)

[18] RFC 2597 – Assured Forwarding PHB Group (Heinanen)

[19] RFC 2697 – A Single Rate Three Color Marker (Heinanen & Guerin)

[20] RFC 2698 – A Two Rate Three Color Marker (Heinanen & Guerin)

[21] RFC 2702 – Requirements for Traffic Engineering over MPLS (Awduche, et al.)

[22] RFC 3031 – MPLS Architecture (Rosen, et al.)

[23] RFC 3086 – Definition of Differentiated Services Per Domain Behaviors (Nichols & Carpenter)

[24] RFC 3246 – An Expedited Forwarding PHB (Davie, et al.)

[25] RFC 3260 – New Terminology and Clarifications for Diffserv (Grossman)

[26] RFC 3270 – MPLS Support of Differentiated Services (Le Faucheur, et al.)

 Copyright © 2005 Joël Repiquet. All Rights Reserved.

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 45

[27] RFC 3272 – Overview and Principles of Internet Traffic Engineering (Awduche, et al.)

[28] RFC 3290 – An Informal Management Model for Diffserv Routers (Bernet, et al.)

[29] RFC 3564 – Requirements for Support of Diffserv Aware MPLS Traffic Engineering (Le Faucheur & Lai)

Books
[30] “TCP/IP Illustrated, Volume 1: The Protocols” W. Richard Stevens

Glossary

Frame – A frame is the unit of transmission in a link layer protocol,
and consists of a link-layer header followed by a packet.

IP Datagram – An IP datagram is the unit of end-to-end
transmission in the IP protocol. An IP datagram consists of an IP
header followed by transport layer data.

Packet – A packet is the unit of data passed across the interface
between the internet layer and the link layer. It includes an IP
header and data. A packet may be a complete IP datagram or a
fragment of an IP datagram.

Segment – a segment is the unit of end-to-end transmission in the
TCP protocol. A segment consists of a TCP header followed by
application data. A segment is transmitted by encapsulation inside
an IP datagram.

Traffic Trunk (TT) – an aggregation of traffic flows of the same
class which are placed inside an LSP.

DS Field – the 6 most significant bits of the (former) IPV4 TOS
octet or the (former) IPV6 Traffic Class octet.

DS code point (DSCP) – a value which is encoded in the DS field,
and which each DS Node MUST use to select the PHB which is to
be experienced by each packet it forwards.

Microflow – a single instance of an application-to-application flow
of packets which is identified by source address, destination
address, protocol id, and source port, destination port (where
applicable).

Behavior Aggregate (BA) – a collection of packets with the same
DS code point crossing a link in a particular direction.

Per Hop Behavior (PHB) – the externally observable forwarding
behavior applied at a DS-compliant node to a behavior aggregate.

Traffic Aggregate (TA) – a collection of packets with a codepoint
that maps to the same PHB, usually in a DS domain or some
subset of a DS domain. A traffic aggregate marked for the foo PHB
is referred to as the "foo traffic aggregate" or "foo aggregate"
interchangeably. This generalizes the concept of Behavior
Aggregate from a link to a network.

Per-Domain Behavior (PDB) – the expected treatment that an
identifiable or target group of packets will receive from "edge-to-
edge" of a DS domain. A particular PHB (or, if applicable, list of
PHBs) and traffic conditioning requirements are associated with
each PDB.

Ordered Aggregate (OA) – a set of Behavior Aggregates that
share an ordering constraint. The set of PHBs that are applied to
this set of Behavior Aggregates constitutes a PHB scheduling
class.

PHB Group – a set of one or more PHBs that can only be
meaningfully specified and implemented simultaneously, due to a
common constraint applying to all PHBs in the set such as a queue
servicing or queue management policy.

PHB Scheduling Class (PSC) – a PHB group for which a common
constraint is that, ordering of at least those packets belonging to
the same microflow must be preserved.

DS Domain – a contiguous portion of the Internet over which a
consistent set of differentiated services policies are administered in
a coordinated fashion. A DS domain can represent different
administrative domains or autonomous systems, different trust
regions, different network technologies (e.g., cell/frame), hosts and
routers, etc.

Service Level Specification (SLS) – a set of parameters and their
values which together define the service offered to a traffic stream
by a DS domain.

Traffic Conditioning Specification (TCS) – a set of parameters and
their values which together specify a set of classifier rules and a
traffic profile; a TCS is an integral element of an SLS.

BA classifier – a classifier that selects packets based only on the
contents of the DS field.

MF Classifier – a multi-field (MF) classifier which selects packets
based on the content of some arbitrary number of header fields;
typically some combination of source address, destination
address, DS field, protocol ID, source port and destination port.

Traffic conditioner – an entity which performs traffic conditioning
functions and which may contain meters, markers, droppers, and
shapers. Traffic conditioners are typically deployed in DS boundary
nodes only. A traffic conditioner may re-mark a traffic stream or
may discard or shape packets to alter the temporal characteristics
of the stream and bring it into compliance with a traffic profile.

Traffic profile – a description of the temporal properties of a traffic
stream such as rate and burst size.

Metering – the process of measuring the temporal properties (e.g.,
rate) of a traffic stream selected by a classifier. The instantaneous
state of this process may be used to affect the operation of a
marker, shaper, or dropper, and/or may be used for accounting
and measurement purposes.

Marking – the process of setting the DS codepoint in a packet
based on defined rules; pre- marking, re-marking.

Shaping – the process of delaying packets within a traffic stream to
cause it to conform to some defined traffic profile.

Policing – the process of discarding packets (by a dropper) within
a traffic stream in accordance with the state of a corresponding
meter enforcing a traffic profile.

Assured Forwarding (AF) – PHB group which is a means for a
provider DS domain to offer different levels of forwarding
assurances. Within each AF class (an instance of the AF PHB
group) IP packets are marked with one of three possible drop
precedence values.

Expedited Forwarding (EF) – PHB intended to provide a building
block for low delay, low jitter and low loss services by ensuring that
the EF aggregate is served at a certain configured rate.

Class-Type (CT) – The set of traffic trunks crossing a link, that is
governed by a specific set of bandwidth constraints. CT is used for
the purposes of link bandwidth allocation, constraint based routing
and admission control. A given traffic trunk belongs to the same
CT on all links.

