
White Paper 
 

Joël Repiquet
01/2005

http://www.joelrepiquet.com

Simulating Classes of Services over an 

IP/MPLS Backbone

VPN Case Study



  Copyright © 2005 Joël Repiquet. All Rights Reserved. 

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 2 

 

Contents 

1 Introduction ........................................................................................................................................................4 
2 IPVCoSS Simulation Tool ..................................................................................................................................5 

2.1 Serialization delay samples.....................................................................................................................8 
2.2 Propagation delay samples.....................................................................................................................9 
2.3 IPVCoSS Trace example ......................................................................................................................10 

3 IP VPN / CoS Case Study ................................................................................................................................11 

3.1 Physical Topology.................................................................................................................................12 
3.2 Traffic Flows..........................................................................................................................................13 
3.3 DiffServ Environment ............................................................................................................................14 
3.4 TE Traffic Trunks Options .....................................................................................................................15 

4 VPN Case Study – Initial Run ..........................................................................................................................16 
4.1 Traffic Analysis – Reader’s Guide.........................................................................................................17 
4.2 Traffic Analysis – Ingress Access Links ................................................................................................18 
4.3 Traffic Analysis – Backbone Links ........................................................................................................21 
4.4 Traffic Analysis – Egress Access Links.................................................................................................24 
4.5 Traffic Analysis – EF Flows...................................................................................................................26 

5 VPN Case Study – Run #2 – Disturbance of oversubscribed EF Traffic ..........................................................27 
6 VPN Case Study – Run #3 – DiffServ Aware Traffic Engineering ....................................................................28 
7 VPN Case Study – Run #4 – Link Failure ........................................................................................................29 
8 VPN Case Study – Run #5 – TCP Congestion.................................................................................................30 
9 VPN Case Study – Run #6 – TCP Congestion Avoidance ...............................................................................31 
10 Jitter Bounds for EF traffic over IP/MPLS.........................................................................................................32 
11 Conclusion .......................................................................................................................................................34 
Annex 1: IPVCoSS – TCP Congestion Control............................................................................................................35 

A1.1 – Slow Start..............................................................................................................................................37 
A1.2 – Congestion Avoidance with Fast Retransmit & Fast Recovery .............................................................38 

Annex 2: IPVCoSS – Scheduling Trace ......................................................................................................................41 
List of abbreviations.....................................................................................................................................................44 
References ..................................................................................................................................................................44 
Glossary ......................................................................................................................................................................45 

 

List of Figures 

Figure 1: IPVCoSS basic principles...............................................................................................................................5 

Figure 2: IPVCoSS – Nodes and Ports..........................................................................................................................5 

Figure 3: Ethernet framing.............................................................................................................................................6 

Figure 4: PPP HDLC framing.........................................................................................................................................6 

Figure 5: End-to End IP Flow chain ...............................................................................................................................6 

Figure 6: VPN Case Study – Topology........................................................................................................................11 

Figure 7: VPN Case Study – Physical Ports................................................................................................................12 

Figure 8: VPN Case Study – Generated Traffic Flows ................................................................................................13 

Figure 9: VPN Case Study – DiffServ Environment.....................................................................................................14 



  Copyright © 2005 Joël Repiquet. All Rights Reserved. 

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 3 

Figure 10: VPN Case Study – Aggregate-based Traffic Trunks ..................................................................................15 

Figure 11: VPN Case Study – Class-based Traffic Trunks..........................................................................................15 

Figure 12: VPN Case Study – Initial Run Configuration ..............................................................................................16 

Figure 13: VPN Case Study – Run #2 Configuration...................................................................................................27 

Figure 14: VPN Case Study – Run #3 Configuration...................................................................................................28 

Figure 15: VPN Case Study – Run #4 Configuration...................................................................................................29 

Figure 16: VPN Case Study – Run #5 Configuration...................................................................................................30 

Figure 17: VPN Case Study – Run #6 Configuration...................................................................................................31 

Figure 18: Configuration for testing EF jitter bounds ...................................................................................................32 

Figure 19: TCP Sender Windows ................................................................................................................................36 
 

List of Tables 

Table 1: Serialization time according to port rate and packet size.................................................................................8 
Table 2: Propagation delay according to distances, in km and miles ............................................................................9 
Table 3: Examples of jitter values with numerous EF flows, heavy load but no congestion ........................................33 

 

List of Charts 

Chart 1: Example for reader’s guide ............................................................................................................................17 
Chart 2: Case Study Initial Run – Port 51: R1-to-PE1 ingress access link ..................................................................18 
Chart 3: Case Study Initial Run – Port 52: B1-to-PE1 ingress access link ..................................................................18 
Chart 4: Case Study Initial Run – Port 53: G1-to-PE1 ingress access link ..................................................................19 
Chart 5: Case Study Initial Run – Port 54: R2-to-PE2 ingress access link ..................................................................19 
Chart 6: Case Study Initial Run – Port 55: B2-to-PE2 ingress access link ..................................................................20 
Chart 7: Case Study Initial Run – Port 56: G2-to-PE2 ingress access link ..................................................................20 
Chart 8: Case Study Initial Run – Port 61: PE1-to-Px backbone link...........................................................................21 
Chart 9: Case Study Initial Run – Port 62: PE2-to-Px backbone link...........................................................................21 
Chart 10: Case Study Initial Run – Port 71: Px-to-Py backbone link ...........................................................................22 
Chart 11: Case Study Initial Run – Port 72: Px-to-Pz backbone link ...........................................................................22 
Chart 12: Case Study Initial Run – Port 81: Py-to-PE3 backbone link.........................................................................23 
Chart 13: Case Study Initial Run – Port 82: Pz-to-PE4 backbone link.........................................................................23 
Chart 14: Case Study Initial Run – Port 91: PE3-to-R3 egress access link .................................................................24 
Chart 15: Case Study Initial Run – Port 92: PE3-to-G3 egress access link.................................................................24 
Chart 16: Case Study Initial Run – Port 93: PE4-to-B4 egress access link .................................................................25 
Chart 17: Case Study Initial Run – Port 94: PE4-to-R4 egress access link .................................................................25 
Chart 18: Case Study Run #2 – Port 71 ......................................................................................................................27 
Chart 19: Case Study Run #3 – Port 71 ......................................................................................................................28 
Chart 20: Case Study Run #4 – Port 72 ......................................................................................................................29 
Chart 21: Case Study Run #5 – Port 82 ......................................................................................................................30 
Chart 22: Case Study Run #6 – Port 82 ......................................................................................................................31 

 



  Copyright © 2005 Joël Repiquet. All Rights Reserved. 

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 4 

1 Introduction 

The object of this paper is to present a case study based on a simulation in order to provide a practical perception of how a VPN 
Service Provider runs and maintains delay-sensitive applications, such as video or voice, over its IP/MPLS network. Besides 
potentially many forms of layer-2 and layer-3 VPN services, it is likely that an SP network also would offer Internet transit and/or 
access services. The key information for an SP regarding the traffic entering its network at each access point are, as part of the 
service level agreement with the customer, the class of service along with possibly the committed and peak rates. Bandwidth 
availability is a necessary condition for ensuring QoS and could also be a sufficient one for an SP network that would be strictly 
oversized, at any time, with respect to the offered traffic. Unfortunately, this situation is very unlikely, even with an SP that would 
totally control its fiber and transmission infrastructure. Here are some reasons: 

� Links or nodes become unavailable during some time, either for planned maintenance, or due to unexpected failures. 

� Services are increasingly proposed with lower-priced burst rates well above the committed rate and even up to the 
access port capacity, especially with Ethernet interfaces. 

� There is a minimum time needed for planning and realizing the capacity upgrade of the network. 

There is definitely a need for differentiating the services across an SP backbone. We will refer to DiffServ terminology for 
defining the three “classes of service” or “aggregates” that are commonly used. The class with the most stringent requirements 
in terms of QoS, Expedited Forwarding or “EF”, is associated with services proposing a committed rate only, and very low delay 
variation – i.e., jitter. Packets belonging to this EF class are served with the highest priority and EF traffic should not be 
overbooked in order to ensure bandwidth availability, and therefore no queue delaying, at any time. The Assured Forwarding or 
“AF” class is associated to services that propose different levels of quality (and pricing) based on the rate. Typically, a 
committed rate is offered along with one or two peak rates, or burst sizes. AF flows are less sensitive to jitter, but they should 
have their throughput maintained from end-to-end whenever the committed rate is respected. In case they exceed this 
committed rate, they are eligible to packet dropping, even prior to congestion. Packet dropping at an opportune time is the basis 
of congestion avoidance mechanisms for TCP flows. There can be several instances of AF class. Finally, the Best Effort or “BE” 
class is the default one and has no specific requirements. 

DiffServ (DS) and MPLS, especially traffic engineering (TE), are the main technologies that enable QoS with IP. We are not 
reviewing in detail DS and MPLS TE in this paper but our case study, focused on the forwarding performance aspects, assume 
situations that result in their application, either separately or in a combined way. 

As a DiffServ domain, the Service Provider (SP) backbone controls the ingress customer traffic at its edges by classifying the IP 
flows into aggregates and, depending on the service level agreement with the customer, possibly conditioning this traffic by a 
metering function potentially followed by policing, shaping or re-marking functions. The appropriate forwarding treatment is then 
applied throughout the domain up to the egress point. Classes are typically associated with queues at each port in the network. 
These queues share the port capacity under the control of a scheduler, whose role is to select the next packet to be sent over 
the link. Each class is assigned a percentage of the port capacity and as a result it should be noticed that the BE class, in spite 
of its lowest priority, will be able to use its part preferably to any excess traffic from other classes. Memory attached to each 
queue is also managed according to congestion detection mechanisms that anticipate and prevent a full congestion. In practice, 
there is also another class, sometimes referred to as network control or “NC”, reserved for signaling traffic but this has not been 
simulated, for alleviating the analysis. 

As an MPLS domain, the SP assigns paths to IP flows and is therefore able to manage bandwidth consistently inside its 
backbone. Traffic engineering enables the SP to gather individual flows in traffic trunks (TTs) between an ingress and egress 
nodes and have them dynamically routed depending on a number of constraints, essentially related to bandwidth. DiffServ 
Traffic Engineering is an emerging solution that combines the benefits of both well-established DS and TE technologies, and will 
be considered in our case study. 

Simulations based on software programs stay in the theoretical domain and present the advantage of offering extremely 
accurate results, on a short but representative time period. In effect, the simulator does not need to be real-time by itself and as 
much information as necessary can be easily gathered at each time unit. Nevertheless, the real-time nature of traffic can be 
reproduced a posteriori thanks to samples collected at regular intervals that can lead to graphs or even an animation. 

This paper is organized as follows: 

� First the IPVCoSS simulator is presented shortly. It is a proprietary tool that was preferred to other available simulators 
such as NS2, just to have the full control of options, traces and any output data. 

� Then the case study consisting of 10 sites for 3 VPNs over a backbone made up of 7 routers is presented under various 
aspects, followed by an in-depth analysis of a first run with 14 flows. This initial run is then followed by 5 variants. 

� A specific trial completes the case study. Its purpose is to highlight the conditions that create jitter in a statistically-
multiplexed environment such as IP, and show that jitter for EF flows remains in largely acceptable limits. 

� Finally, two annexes illustrate with traces the implementation by IPVCoSS of fundamental mechanisms: TCP congestion 
control and packet scheduling. 
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2 IPVCoSS Simulation Tool 

IPVCoSS (IP VPN CoS Simulator) is a stand-alone program, written in C and without any prerequisites, that enables you to set 
up a network topology and inject traffic at ingress points. IPVCoSS is focused on IP data forwarding performance and assumes 
that data paths are pre-established. It can be configured to handle classes of service and to simulate one or more IP VPNs over 
a Service Provider backbone. The network configuration is based on a data model and the data structures are built at 
initialization time. During its active phase, IPVCoSS runs a loop fictitiously cadenced at 100 nanoseconds (one tenth of 
microsecond) and at each tick, it analyses and ensures the progression of IP packets at each node and port. The transfer 
activity is triggered by the generation of IP flows, according to parameters such as volume, throughput and packet size. In 
output, IPVCoSS produces QoS final reports, QoS regular samples and, if required, a chronological trace of events. 

IPVCoSS

 Configuration:
 - Nodes
 - Ports
 - Queues
 - Flows
 - Paths
 - Trace options

 Traces

 Final Reports:
 - per port/queue
 - per flow

 Per-port Tables

 

Figure 1: IPVCoSS basic principles 

The key elements of a network configuration are the ports. Ports are unidirectional and belong to a node. They are identified by 
a number, and their main attribute is the interface type, determining the rate. The 100-nanosecond clock accuracy enables 
IPVCoSS to process correctly IP interfaces ranging from E1 (2 Mbps) to STM-16 (2.5 Gbps). There is no explicit notion of links 
between nodes and the network topology is defined by the mapping between ports: 

� An input port (IPORT) is a traffic ingress point at which a single IP flow, identified by a letter, is generated. An IPORT 
maps to an output port within the same node. 

� An output port (OPORT) is an internal OPORT when it maps to one or more OPORTs in another node. The distance to 
this adjacent node is a key parameter of an internal OPORT. 

� An output port is an egress OPORT when it does not map to another OPORT. 

The conventional IP routing scheme is not used and paths are pre-determined by simple filtering, at OPORT level, based on 
flow identifiers. These paths represent MPLS label switched paths (LSP) in a core network. 
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Figure 2: IPVCoSS – Nodes and Ports 
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For simplification and clarity, we have avoided having multiple logical interfaces per physical interface. ATM, Frame Relay and 
VLAN layer-2 framing is therefore not considered and the encapsulation type is automatically derived from the interface type: 

� PPP HDLC framing for PDH and SDH interfaces: E1, E3, DS3 and STM-1, STM-4, STM-16. 

� Ethernet (without VLAN) framing for Ethernet interfaces: FE, GE. 

Figure 3 and Figure 4 show respectively the framing structures with Ethernet and PPP. With Ethernet the overhead reaches 
26 bytes, with a minimum interframe gap of 12 bytes. With PPP HDLC framing, the overhead is only 9 bytes, assuming a frame 
check sequence (FCS) field of 4 bytes, and there is no interframe gap. 

Preamble FCS

6 6 2 4

Type
0800

S
F
D

7 1 12

IP packet

 46 - 1500 bytes

Destination
Address

Source
Address interFrameGap

 
Figure 3: Ethernet framing 

Flag Addr Control

FCS

2 or 42111

7EFF 03 0021

Protocol

IP packet

 
Figure 4: PPP HDLC framing 

 

The end-to-end chain of an IP packet from source to destination is shown in Figure 5. The equipment that host the IP source or 
destination are not modeled by IPVCoSS but they are supposed to be co-located respectively with the ingress IPORT and the 
egress OPORT, which are IPVCoSS reference end-points for an IP flow. At each OPORT along the flow path, and eventually at 
the egress OPORT, the delay, jitter and throughput QoS parameters related to any IP packet are measured, and can be 
compared to their initial value when generated at the ingress IPORT. These measurements are summarized in per-flow final 
reports.  

When an IP packet (that includes the IP header) crosses a port, it is encapsulated in a frame that depends on the interface type. 
Besides, according to BGP/MPLS VPN architecture, one or two 4-byte MPLS shim headers may be inserted before the IP 
header, depending on the role of the service provider node. 
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Figure 5: End-to End IP Flow chain 
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Here are the attributes that define an IP flow. Some attributes characterize the IP flow and are permanent from end to end, while 
the other ones are used at generation time only. 
 

Name Value Description 

Identifier Single printable 
character 

Besides identifying the IP flow, this character is combined (in traces) with the 
packet serial number for identifying an IP packet. By convention, and 
although this is not a constraint, in a configuration using classes of services, 
the following ranges of letters will be used: 

� A - L for BE flows 

� M - U for AF flows 

� V - Z for EF flows 

Class of Service  Based on DiffServ “aggregate” terminology and assuming 3 physical queues 
per OPORT: 

 EF Expedited Forwarding low delay, low jitter, no loss, and highest priority 
(but not strict priority) 

 AF Assured Forwarding guaranteed rate while throughput respects the 
committed rate, but lower probability whenever 
excess traffic; this class enables several levels 
of service while preserving per-flow packet 
ordering (it is an Ordered Aggregate) 

 BE Best Effort the default class 

Transport Protocol UDP 

TCP 

UDP flows have no specific processing. 

TCP-based flows are responsive to traffic load and congestion. TCP 
congestion control mechanisms, normally handled at host system level, are 
simulated at ingress and egress ports level. IPVCoSS supports slow start 
and congestion avoidance mechanisms according to RFC 2581 ([16]). 

Packet Size 46 - 1500 bytes The packet size includes the IP header, and the allowed values are based on 
conventional Ethernet limits. This parameter specifies a fixed size for an 
isochronous flow, or a maximum size for a variable-rate flow. 

Traffic Profile CBR Isochronous flow with fixed length packets generated at regular intervals, 
depending on the required throughput 

 VBR Packets are generated at random with a variable size and at irregular 
intervals. The size varies between 46 bytes and the value specified in 
“packet size”. There is also an option for having fixed size packets. The 
interval times are irregular but are constrained by the required throughput 
that is ensured, by adjustment, for each 3-full-sized-packet volume. With this 
profile, a SAVE / REPLAY option is offered for enabling the reproduction of 
the same variable flow from one run to another. 

Throughput in Mbps The throughput determines the interval between packets. Depending on 
whether this interval value is rounded, or not, the throughput will be strictly 
respected or very closely approached. 

Volume Number of full-sized 
packets 

For an isochronous traffic, IPVCoSS will generate the required number of 
packets while with a variable traffic, a larger number of packets will be 
effectively generated. 

Number of Occurrences  This optional attribute enables you to generate the required volume several 
times, with a fixed gap interval between two consecutive occurrences. This is 
useful for generating traffic bursts, instead of a continuous flow. The required 
throughput is ensured for each occurrence. 

Gap Interval in milliseconds Time interval between two consecutive volumes of traffic. 

Initial Tick in milliseconds Starting time for the generation of the first bit of the first packet of the IP flow.
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2.1 Serialization delay samples 
The delay experienced by an IP packet for a flow 
crossing a single node consists in the serialization 
delays at the ingress IPORT and egress OPORT as 
well as the processing delay (a fixed value configured 
at node level) and the queuing delay, which is 
examined in more detail later in the case study. The 
serialization time is dependent on the interface rate 
and the packet size, more exactly the size of the 
packet’s frame. 

R1 DestinationSource

End-to-End Packet Delay

Serialisation
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

 

Table 1 mainly provides the serialization times in microseconds – with a precision of 100 nanoseconds – for some typical packet 
size values, according to PDH, SDH and Ethernet interface types. The real and useful rates are also provided for each interface 
type. As already mentioned, we do not consider multiple logical interfaces and assume a PPP encapsulation mode for PDH and 
SDH interfaces. For information, the maximum reachable IP throughput is shown, taking into account the frame overhead and 
the possible minimum gap interval between frames. 

 

Interface 
Type 

Physical 
Rate 

in b/s 

Useful 
Rate 

in b/s 

Packet
Length 

in bytes

Frame
Length

in bytes

Frame
Length
in bits

Serialization 
Time 

in microseconds 

Maximum IP 
Throughput

 in Mbit/s

    

E1 2,048 2,048 1,500 1,509 12,072 5894.6 2.04

   1,000 1,009 8,072 3941.5 2.03

   500 509 4,072 1988.3 2.01

   46 55 440 214.9 1.71

    

E3 34,368 34,368 1,500 1,509 12,072 351.3 34.16

   1,000 1,009 8,072 234.9 34.06

   500 509 4,072 118.5 33.76

   46 55 440 12.9 28.53

    

DS3 44,736 44,210 1,500 1,509 12,072 273.1 43.94

   1,000 1,009 8,072 182.6 43.81

   500 509 4,072 92.2 43.38

   46 55 440 10.0 36.80

    

FE 100,000 100,000 1,500 1,526 12,208 122.1 97.48

   1,000 1,026 8,208 82.1 96.27

   500 526 4,208 42.1 92.81

   46 72 576 5.8 54.12

    

STM-1 155,520 149,760 1,500 1,509 12,072 80.7 148.70

   1,000 1,009 8,072 53.9 148.42

   500 509 4,072 27.2 147.06

   46 55 440 3.0 122.67

    

STM-4 622,080 599,040 1,500 1,509 12,072 20.2 594.06

   1,000 1,009 8,072 13.5 592.59

   500 509 4,072 6.8 588.24

   46 55 440 0.8 460.00

    

GE 1,000,000 1,000,000 1,500 1,526 12,208 12.3 967.74

   1,000 1,026 8,208 8.3 952.38

   500 526 4,208 4.3 909.09

   46 72 576 0.6 525.71

    

STM-16 2,488,320 2,396,160 1,500 1,509 12,072 5.1 2352.94

   1,000 1,009 8,072 3.4 2352.94

   500 509 4,072 1.7 2352.94

   46 55 440 0.2 1840.00

Table 1: Serialization time according to port rate and packet size 
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2.2 Propagation delay samples 
When an IP packet crosses 2 nodes, the serialization delay on the output port must not be accounted in input of the adjacent 
node. The distance of the link between the two nodes induces a propagation delay that is directly tied to the distance and is 
independent of both packet size and interface capacity. This delay cannot be avoided when the source and destination are 
located at far distant sites. It then depends on the topology of the SP network that might not be optimal with respect to these 
end points.  

R2

Propagation
Delay

R1 DestinationSource

End-to-End Packet Delay

Serialisation
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

Processing
Delay

Serialisation
Delay

Queuing
Delay

long distance
link

 
Table 2 provides propagation delay values according to several distances. The propagation delay is given by the formula: 

Propagation
Delay
(in µµµµs)

Distance(in km)

299,300 km  x  0.6
= x  1000

 
 

Distance Propagation Delay Distance Propagation Delay

 1 km 5.6 µs  700 km  3,898.0 µs

  1 mile 9.0 µs  800 km  4,454.8 µs

 2 km 11.2 µs  500 miles 4,479.9 µs

 3 km 16.8 µs  900 km  5,011.7 µs

  2 miles 18.0 µs  600 miles 5,375.9 µs

 4 km 22.3 µs  1,000 km  5,568.5 µs

  3 miles 26.9 µs  700 miles 6,271.8 µs

 5 km 27.9 µs  800 miles 7,167.8 µs

 6 km 33.5 µs  900 miles 8,063.8 µs

  4 miles 35.9 µs  1,000 miles 8,959.7 µs

 7 km 39.0 µs  2,000 km  11,137.0 µs

 8 km 44.6 µs  3,000 km  16,705.5 µs

  5 miles 44.8 µs  2,000 miles 17,919.4 µs

 9 km 50.2 µs  4,000 km  22,274.0 µs

  6 miles 53.8 µs  3,000 miles 26,879.1 µs

  7 miles 62.8 µs  5,000 km  27,842.5 µs

  8 miles 71.7 µs  6,000 km  33,411.0 µs

  9 miles 80.7 µs  4,000 miles 35,838.8 µs

 100 km 556.9 µs  7,000 km  38,979.5 µs

  100 miles 896.0 µs  8,000 km  44,548.0 µs

 200 km 1,113.7 µs  5,000 miles 44,798.5 µs

 300 km 1,670.6 µs  9,000 km  50,116.5 µs

  200 miles 1,792.0 µs  6,000 miles 53,758.2 µs

 400 km 2,227.4 µs 10,000 km  55,685.0 µs

  300 miles 2,688.0 µs  7,000 miles 62,717.9 µs

 500 km 2,784.3 µs  8,000 miles 71,677.6 µs

 600 km 3,341.1 µs  9,000 miles 80,637.3 µs

  400 miles 3,583.9 µs 10,000 miles 89,597.0 µs

 
Table 2: Propagation delay according to distances, in km and miles 
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2.3 IPVCoSS Trace example 
Here is the trace of an IP Flow “A” that is isochronous, at a rate of 20 Mbps and a packet size of 1500 bytes. This flow is 
generated at node CE1 on IPORT#1 and is sent on OPORT#51 towards node PE1. The E3 link that connects CE1 to PE1 is 40 
km long and it induces a propagation delay of around 223 microseconds. There is no congestion and absolutely no jitter. 

 

E3
(40 km)CE1FE PE1 STM-11 51 61

A

 
 

Node name

Port number

Event type

IP packet identifier:
flow letter + serial number
(one '*' per previous hop)

Event-related
parameters

Parameters:
pkln packet length (bytes)
ovhd frame overhead (bytes)
iser input serialization time (µs)
oser output serialization time (µs)
gd global delay (µs)
fd forwarding delay (µs)
qd queuing delay (µs)
pd propagation delay (µs)
j jitter (µs)
ithr input throughput (Mbps)
othr output throughput (Mbps)

Events:
si start input
ei end input
qo queue output
so start output
eo end output

Tick value in microseconds,
Precision: 100 nanoseconds

 
       0.0  CE1  i1  : si     A1     pkln:1500  ovhd:26 iser:122.1  
     122.1  CE1  i1  : ei     A1     gd:122.1   fd:20.0       remvol:1500 
     142.1  CE1  o51 : qo     A1     gd:142.1   Q:BE (00.35%) 
            CE1  o51 : so     A1     pkln:1500  ovhd:9  oser:351.3  qd:0.0    
                                     gd:142.1   Q:BE (00.00%)                  j:0.0    
     493.4  CE1  o51 : eo     A1     gd:493.4   pd:222.8   next-hop:PE1  
     600.0  CE1  i1  : si     A2     pkln:1500  ovhd:26 iser:122.1  ithr:20.00 
     716.2  PE1  o61 : ei    *A1     gd:716.2   fd:10.0    prev-hop:CE1  up-oport:51  
     722.1  CE1  i1  : ei     A2     gd:122.1   fd:20.0       remvol:0 
     726.2  PE1  o61 : qo    *A1     gd:726.2   Q:BE (00.08%) 
            PE1  o61 : so    *A1     pkln:1500  ovhd:9  oser:80.7   qd:0.0    
                                     gd:726.2   Q:BE (00.00%)                  j:0.0    
     742.1  CE1  o51 : qo     A2     gd:142.1   Q:BE (00.35%) 
            CE1  o51 : so     A2     pkln:1500  ovhd:9  oser:351.3  qd:0.0    
                                     gd:142.1   Q:BE (00.00%)       othr:20.00 j:0.0    
     806.9  PE1  o61 : eo    *A1     gd:806.9    
    1093.4  CE1  o51 : eo     A2     gd:493.4   pd:222.8   next-hop:PE1  
    1316.2  PE1  o61 : ei    *A2     gd:716.2   fd:10.0    prev-hop:CE1  up-oport:51  
    1326.2  PE1  o61 : qo    *A2     gd:726.2   Q:BE (00.08%) 
            PE1  o61 : so    *A2     pkln:1500  ovhd:9  oser:80.7   qd:0.0    
                                     gd:726.2   Q:BE (00.00%)       othr:20.00 j:0.0    
    1406.9  PE1  o61 : eo    *A2     gd:806.9    

 

Here is a diagram that provides a visual perception of the occupancy of each port. As this can be seen in the trace here above, 
the serialization time of the 1500-byte IP packet in its Ethernet frame is 122.1 microseconds, while the same packet in its PPP 
frame on an E3 link is 351.3 microseconds, and only 80.7 microseconds on an STM-1 link. 
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3 IP VPN / CoS Case Study 

Figure 6 shows an SP (service provider) network that offers VPN services to 3 customers: Red, Blue and Green. The internal 
backbone links connecting the edge routers to the core routers are limited to STM-1 in order to cope with the traffic throughput 
used in the context of this case study. The other backbone links between core routers are either STM-1 or STM4, thus creating 
the conditions for over-sizing or under-sizing. This core network topology ensures a minimum of resiliency since each PE 
(Provider Edge) router is connected to two P (Provider core) routers and each P router is in turn connected to two other P 
routers. However, the links in dotted lines will not be considered for this case study, not to complicate the simulation survey. The 
distances shown between the backbone routers represent a realistic regional network, either national or international. We 
consider primarily MPLS VPN services over this network but other services such as Internet Transit could be offered as well. In 
some scenarios we will introduce extra flows crossing the SP network and we can consider that these flows could belong to 
traffic related to other VPN, or Internet Transit, services. 

We have not considered co-locations of a CE (customer edge) at a PE site. All the VPN sites are connected to the SP network 
via access links. This is simply for clarifying the picture of the overall network. 

With the Simulator, links are unidirectional but we could easily have traffic in the two directions between two routers. However, 
for clarity, traffic will originate in sites on the left side and terminate in sites on the right side, obviously within their respective 
VPN. 
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Figure 6: VPN Case Study – Topology 

 

The purpose of this case study is to illustrate the CoS (Class of Service) mechanisms ensuring the required QoS, especially 
jitter, for EF flows such as MPEG-2 video or VoIP. We will first review in detail the initial scenario where there is some 
congestion at a few points but no packet loss, and QoS requirements for each class are fulfilled. Then we will run several 
variants and analyze the impact on the traffic flows. 

Each scenario represents a snapshot of the same basic offered traffic during a short period, in a given network configuration. 
Our observation relates to the traffic forwarding only. IPVCoSS does not handle any signaling function that would enable us to 
understand the impact on the traffic flows of transiting from one situation to another, for instance in case of link failure. 

It should be noticed that, although the observation period is short (around 50 ms) it is highly meaningful and representative of 
live situations. Anyway, the values of parameters such as queue depths are adapted to the case study and lower than they 
would be in a real configuration. 



  Copyright © 2005 Joël Repiquet. All Rights Reserved. 

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 12 

3.1 Physical Topology 
Figure 7 provides a representation of the physical topology of the network built via IPVCoSS. This is stable information that will 
not change for subsequent scenarios. All the CEs (customer edge) have Fast Ethernet ports on the site side. These CEs could 
be routers or switch-routers, or even switches. 

The access links connecting the sites to the SP network are either leased lines (E3, DS3, STM-1) or Ethernet services with FE 
ports. 

The rates commonly associated to the physical interfaces are recalled hereunder, but more accurate values of physical and 
useful rates are given in Table 1 on page 8. 

E3 34 Mbps 
DS3 45 Mbps 
FE 100 Mbps 
STM-1 155 Mbps 
STM-4 622 Mbps 

Ethernet services may have several possible underlying architectures: switches connected by fiber, ATM bridges over SDH, an 
ATM network. Although the physical interfaces are Fast or Giga Ethernet, the service can be subscribed for a throughput lower 
than the port capacity. The R2-to-PE2 ingress access link and PE3-to-R3 egress access link will be rate limited down to 60 
Mbps in our case study. 
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Figure 7: VPN Case Study – Physical Ports 

 

Note 1: It is likely that in a real network, for offering Fast Ethernet accesses, Ethernet switches would be placed in front of PE 
routers via Gigabit interfaces, thus adding a node between the CE and the PE. 

Note 2: From an MPLS perspective, PE and P nodes are Label Switching Routers (LSRs). 
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3.2 Traffic Flows 
Figure 8 shows the ingress and egress points of the generated IP flows. We can assimilate them to the source and destination 
of each micro-flow by considering that a host (or for instance a video encoder/decoder) is immediately connected to the CE, as 
previously illustrated in Figure 5. 

The characteristics of the 14 IP flows that will cross the network are summarized in the table placed in the center of Figure 8. In 
the context of this case study we have consistently assigned common attributes for all the flows of a same class. in some way, 
we have assigned a role to each class. For instance, all AF flows are based on TCP, however this is not to be understood as a 
characteristic associated to AF class. 

� EF flows are based on UDP transport and are isochronous. They require very low jitter and their initial throughput must 
be maintained. 

� All our AF flows are based on TCP transport and therefore TCP slow start will be normally applied as well as congestion 
avoidance mechanisms if any. These flows have a fixed packet size. 

� BE flows are based on UDP transport and generated in several volume occurrences separated by regular gaps, in order 
to create traffic bursts (since with IPVCoSS, the throughput required for a variable traffic is ensured for each volume 
corresponding to 3 full-sized packets). The packet size vary between 46 bytes and the maximum packet size. 
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ID Class Trsp Pksize Profile Throughput Volume T1 Occ Gap
bytes Mbps n x Pksize ms ms

V EF UDP 1500 isochronous 24 900 30 - -

M AF TCP 500 variable 32 3400 - - -

A BE UDP 900 variable 50 100 40 5 80

N AF TCP 600 variable 24 2000 - - -

B BE UDP 1500 variable 20 100 10 6 12

W EF UDP 1200 isochronous 16 800 - - -

C BE UDP 1000 variable 50 30 - 20 20

X EF UDP 1500 isochronous 12 480 1 - -

O AF TCP 900 variable 24 1500 - - -

D BE UDP 1100 variable 30 100 - 9 25

P AF TCP 1400 variable 32 1200 - - -

E BE UDP 1200 variable 12 60 - 8 15

Y EF UDP 1200 isochronous 18 800 20 - -

Q AF TCP 1200 variable 12 500 - - -

 

Figure 8: VPN Case Study – Generated Traffic Flows 

 

These VPN flows will be generated in the same way for all the scenarios of this case study. The Save/Replay function 
applicable to variable flows will be used for ensuring the same traffic profiles at the ingress ports. However, TCP flows in 
congestion cases will behave according to TCP control mechanisms. 
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3.3 DiffServ Environment 
Figure 9 illustrates the typical key components of the SP Network as a DiffServ (DS) domain. At PE1 and PE2 ingress boundary 
nodes, incoming traffic streams on each port are classified and, depending on the traffic conditioning specifications agreed 
between the VPN customer and the SP, possibly metered and re-marked. The classification at ingress boundary nodes is 
potentially more complex than the classification performed for input traffic at interior DS Nodes (Px, Py, Pz) and egress 
boundary nodes (PE3 and PE4). BA classification takes simply into account the DS code point (in the IP header DS field or the 
MPLS header EXP field) while MF classification discriminates a class from several fields in the IP and transport headers. 
Individual IP flows are ignored within a DS domain and only the aggregates resulting of classification are processed for ensuring 
the appropriate forwarding behavior at each hop (Per-Hop Behavior or PHB). Typically, the flows eligible to be metered and re-
marked at the edge of the SP network are the AF flows. Single-rate and two-rate three color markers, respectively described in 
[19] and [20], will lead to the marking of packets in an AF flow as Green, Yellow or Red depending on some agreed committed 
and peak rates. These colors are actually DS code points of a same AF class that can be associated, for example, to three 
levels of drop precedence. 

The DS domain could be extended to the CEs whenever these CEs would be managed by the SP as CPEs. Anyway, whatever 
the entity responsible for the CE (Customer or SP) there is a need for applying a differentiated forwarding treatment over the 
access link from CE to PE. 
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Figure 9: VPN Case Study – DiffServ Environment 

Actually, with IPVCoSS, the class is statically defined as a parameter of the flow to be generated. We can therefore consider, 
although the DS code point (DSCP) itself is not processed, that there is a BA classification in input of each node. Metering of AF 
flows is not implemented yet but a potential usage of this capability is outlined in section 9 on page 31. 

DiffServ standards do not specify how the Per-Hop Behavior should be implemented and instead only describe an externally 
observable forwarding behavior for each aggregate. IPVCoSS uses at each OPORT a classical packet scheduling based on 
3 physical queues (EF, AF and BE) for which are defined a percentage of the port capacity and memory in the form of depth 
(not shown) expressed in milliseconds. The scheduling mechanism is described and illustrated by a trace in Annex 2:. 

Note: In a real world, another queue (and minimum bandwidth) should be dedicated to control traffic (i.e. signaling 
protocols) that is crucial for enabling the forwarding of customer traffic. 
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3.4 TE Traffic Trunks Options 
As defined in [21] related to traffic engineering (TE), a traffic trunk (TT) is an aggregation of traffic flows belonging to the same 
“class” (forwarding equivalence class, or FEC) which are forwarded through a common path. In practice, a TT may be 
characterized by an ingress and egress LSRs, and a set of attributes which determine its behavioral characteristics and 
requirements from the network. A TT is unidirectional and it is distinct from the LSP through which it traverses. A TT can be 
moved from one LSP onto another whether the network conditions do not meet anymore the TT requirements. 
 
When TE is used 
independently of 
DiffServ, TTs aggregate 
all the VPN flows 
between two PEs, 
whatever their CoS. 
 
We can see, for each 
TT, the maximum 
amount of bandwidth 
per TT. For information, 
the respective amount 
of EF, AF and BE traffic 
is also shown. 
 
However, only the 
global amount is taken 
into account for 
establishing the LSP 
through which the TT 
will traverse. 
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Figure 10: VPN Case Study – Aggregate-based Traffic Trunks 

 

With DiffServ-Aware TE 
(DS-TE) we could 
define two class-types: 
- one class-type for EF 
traffic 
- another class-type for 
both AF and BE traffic 
 
The constraint for 
Traffic Trunks belonging 
to the “EF” class-type, 
in terms of resource, 
would be under-
allocation for ensuring 
bandwidth in any case. 
 
In contrast, Traffic 
Trunks belonging to the 
“AF-BE” class-type 
could remain over-
allocated. 
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Figure 11: VPN Case Study – Class-based Traffic Trunks 
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4 VPN Case Study – Initial Run 

In the initial situation, traffic trunks are unaware of classes of services and have been mapped on LSPs accordingly. Some 
oversubscribing was allowed because of the bursty BE traffic and therefore the shortest path has prevailed. Thus, PE2-to-PE3 
TT uses a 906 km-long LSP that goes through STM-1 port#71 instead of an 1145 km-long LSP that would go through STM-4 
ports 72 and 74. 

Purposely, there is some congestion within this network in order to discuss various situations. For this initial run, it is worth to 
have a detailed view of the traffic profile at each internal OPORT and therefore the remainder of this section will successively 
review – with graphs and summary reports – the access and backbone links. 

As a preview, here are some indications about the traffic load: 

� All ingress access links, but port 56, experience some congestion when there are BE traffic bursts 

� STM-1 Ports 61 and 62 are heavily loaded, with a little congestion 

� Port 72 is an STM-4 and is under loaded 

� STM-1 Ports 71 and 81 receive the same flows and are normally loaded 

� Port 82 experiences heavy congestion but no packet loss 

� All egress links are oversized with the exception of port 91 that is rate-limited to 60 Mbps 

� Among the BE flows, flow “C” has many very short bursts 
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Figure 12: VPN Case Study – Initial Run Configuration 

 

With the subsequent runs, we will have the same offered VPN traffic but we will introduce some changes only at port 71 and 
port 82. These changes are extra flows, link failure or variation of some configuration parameters. 
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4.1 Traffic Analysis – Reader’s Guide 
Chart 1 illustrates a trial with two consecutive flows per class that successively created strong congestion in each queue; as a 
result this graph covers all possible cases. This representation will be used for analyzing the traffic in the subsequent scenarios 
of the case study. The information elements are as follows: 

� Colors are consistently applied for each class of traffic: red for EF, green for AF and blue for BE. 

� The vertical axis is scaled (in Mbps) at the port capacity, and possibly less whenever the port is rate-limited. Besides, the 
bandwidth value assigned to each queue is shown by a fixed cursor. 

� The horizontal axis for elapsed time is scaled at 10ms per unit, based on the generated traffic volume with this case 
study: every 10ms, IPVCoSS collects measurements related to average throughput and queue occupancy. 

� Line charts represent traffic throughput for each aggregate (EF, AF, BE) as well as, in dotted line, the global throughput. 
It should be noticed that these throughputs, conversely to IP flow throughputs, integrate the frame overhead and 
therefore are slightly higher that the sum of the flow throughputs. 

� Column charts represent queue occupancy with one unit for 1000 bytes. They are stacked from bottom to top 
respectively for EF, AF and BE queues, if any. The vertical axis is primarily scaled for bandwidth and not for queue 
volume and whenever queues are very busy the stack can be truncated at the top of the graph. Supplementary 
information will be found anyway in the summary report that follows each graph. 

� Column charts below the horizontal axis show packet losses when queue capacity overflows, if any. 

Chart 1: Example for reader’s guide 
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Each chart is followed by a summary report that: (1) recalls the characteristics of the port; (2) for each queue, recalls bandwidth 
and depth, and provides occupancy ratio as well as the number of dropped packets if any; (3) for each flow crossing this port, 
provides the information about jitter experienced at this port as well as, if any, packet loss and retransmitted packets because of 
fast retransmit or time-out condition. 

 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  ----------------- 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
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4.2 Traffic Analysis – Ingress Access Links 
Chart 2: Case Study Initial Run – Port 51: R1-to-PE1 ingress access link 

EF traffic throughput 
(24.4) is slightly below 
EF bandwidth. 
AF traffic throughput 
(33.7) is above AF 
bandwidth. 
When BE traffic uses 
its bandwidth and port 
capacity is reached, 
we can see AF 
throughput slow 
down, but when BE 
burst terminates, it 
goes back above its 
level because the 
traffic in queue is 
released. 
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One may observe that the AF 
flow, in its initial phase, is not 
ascending continuously. However, 
this is a normal TCP slow start 
and this is not at all related to the 
first BE burst. This is due to the 
longest possible distance over this 
network between the origin and 
destination for this “M” flow. A 
larger scanning period would have 
rendered a gradually ascending 
curb. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o51   R1     100         PE1          6 km      33.5 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     25%  25.0 Mbps   3ms   37500 Bytes        4.07%  2.03%        0 
  AF     30%  30.0 Mbps  10ms  125000 Bytes        4.63%  0.41%        0 
  BE     45%  45.0 Mbps  15ms  187500 Bytes       11.79%  4.74%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    V     EF         65.7       4.7     65.7       4.7      0 
    M     AF       1299.6      89.5   1299.6      89.5      0 
    A     BE       4098.6    1672.6   4098.6    1672.6      0 

 

Chart 3: Case Study Initial Run – Port 52: B1-to-PE1 ingress access link 

On this DS3 port, AF 
traffic throughput 
(around 24 Mbps) is 
well above AF 
bandwidth. 
However, it can 
borrow from EF 
bandwidth since there 
is no EF flow. 
It is therefore little 
disturbed when there 
are BE traffic bursts 
that create some port 
congestion. 

o52

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o52   B1      45         PE1         18 km     100.3 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     20%   9.0 Mbps   3ms   16578 Bytes        0.00%  0.00%        0 
  AF     30%  13.5 Mbps  10ms   55262 Bytes        4.41%  1.07%        0 
  BE     50%  22.5 Mbps  15ms   82893 Bytes        8.39%  2.31%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    N     AF        759.9     171.8    759.9     171.8      0  
    B     BE       2441.1     751.3   2441.1     751.3      0 
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Chart 4: Case Study Initial Run – Port 53: G1-to-PE1 ingress access link 

On this E3 port, the 
EF traffic throughput 
is well below EF 
bandwidth. 
Since there is no AF 
flow, BE traffic can 
use the remainder of 
the port capacity. 
We have generated 
many short 
consecutive BE traffic 
bursts, and therefore 
short congestions. 
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One can observe that the jitter 
experienced by the EF flow is 
higher than on port 51. 
The reason is that we have traffic 
entering the router at a rate much 
higher (FE ingress ports) than the 
rate of this E3 port. 
For the same packet size, frames 
in output have a much longer 
serialization time than in input, 
thus input packets will wait more 
in queue. 
 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o53   G1      34         PE1         22 km     122.6 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     65%  22.1 Mbps   3ms   12888 Bytes        9.38%  4.69%        0 
  AF     20%   6.8 Mbps  10ms   42960 Bytes        0.00%  0.00%        0 
  BE     15%   5.1 Mbps  20ms   85920 Bytes       23.32% 11.09%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    W     EF        232.8      46.5    232.8      46.5      0  
    C     BE       8559.7    4055.0   8559.7    4055.0      0 

 
 

Chart 5: Case Study Initial Run – Port 54: R2-to-PE2 ingress access link 

Here we have an FE 
port rate-limited to 60 
Mbps. 
The traffic profile at 
this port is similar to 
port 51, but more 
accentuated. 
AF throughput (25 
Mbps) is well above 
AF bandwidth. It can 
borrow a little (3 
Mbps) from the 
remainder of EF 
bandwidth but when 
BE bursts occur, AF 
packets have to be 
queued. 
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When BE bursts terminate, these 
packets are immediately sent 
because the port is available. This 
entails these peaks at around 30 
Mbps. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o54   R2     100     60  PE2         10 km      55.7 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     25%  15.0 Mbps   3ms   37500 Bytes        4.07%  2.03%        0 
  AF     30%  18.0 Mbps  10ms  125000 Bytes        7.41%  2.32%        0 
  BE     45%  27.0 Mbps  15ms  187500 Bytes       16.00%  6.63%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    X     EF        129.5      52.3    129.5      52.3      0  
    O     AF       2973.1     900.9   2973.1     900.9      0  
    D     BE      10239.9    4155.3  10239.9    4155.3      0 

 



  Copyright © 2005 Joël Repiquet. All Rights Reserved. 

White Paper – Simulating Classes of Services over an IP/MPLS Backbone VPN Case Study Page 20 

Chart 6: Case Study Initial Run – Port 55: B2-to-PE2 ingress access link 

On this DS3 access 
link, there are only 2 
flows. 
The BE traffic 
throughput is well 
under BE bandwidth. 
When BE bursts at 
12-13 Mbps occur 
they can use the port 
easily. 
When the port is 
temporarily 
congested, the AF 
packets are queued 
because AF traffic is 
well above the 
remaining capacity. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o55   B2      45         PE2         26 km     144.8 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     20%   9.0 Mbps   3ms   16578 Bytes        0.00%  0.00%        0 
  AF     30%  13.5 Mbps  10ms   55262 Bytes        7.65%  2.47%        0 
  BE     50%  22.5 Mbps  15ms   82893 Bytes        4.61%  0.66%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    P     AF        968.6     289.9    968.6     289.9      0  
    E     BE       1621.9     217.5   1621.9     217.5      0 
 

 

Chart 7: Case Study Initial Run – Port 56: G2-to-PE2 ingress access link 

On this E3 port, there 
is no congestion but 
the port is busy at 
nearly 90%. 
However one can 
observe that there is 
a little jitter. 
This happens for the 
same reasons as with 
port 53: the FE input 
ports are faster than 
this output E3 port., 
and the 1200-byte 
packets are still being 
serialized when input 
packets are arrived. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o56   G2      34         PE2         14 km      78.0 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     65%  22.1 Mbps   3ms   12888 Bytes        9.38%  4.69%        0 
  AF     20%   6.8 Mbps  10ms   42960 Bytes        2.82%  1.41%        0 
  BE     15%   5.1 Mbps  20ms   85920 Bytes        0.00%  0.00%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    Y     EF        221.3      69.3    221.3      69.3      0  
    Q     AF        231.9      50.1    231.9      50.1      0 
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4.3 Traffic Analysis – Backbone Links 
Chart 8: Case Study Initial Run – Port 61: PE1-to-Px backbone link 

At this STM-1 
backbone link that 
receives traffic flows 
from 3 CEs (those at 
the top left of our 
reference picture) the 
situation is sane with 
respect to the offered 
traffic: EF and AF 
traffic aggregates are 
below their assigned 
bandwidth. 
There is only some 
little congestion with 
BE bursty traffic. 
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There is little jitter added to EF 
flows because faster than the 
upstream access links. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o61   PE1    155         Px         270 km    1503.5 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     35%  54.3 Mbps   3ms   56160 Bytes        4.87%  1.38%        0 
  AF     45%  69.8 Mbps  10ms  187200 Bytes        1.49%  0.34%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes       17.84%  3.56%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    V     EF        133.1      19.1    134.1      23.9      0  
    W     EF        115.3      13.0    333.8      59.5      0  
    M     AF        292.1      66.7   1357.3     156.2      0  
    N     AF        278.7      45.4    823.9     217.2      0  
    A     BE       8555.8    2811.9  12045.9    4484.6      0  
    B     BE       8188.8    1099.5   9296.3    1850.9      0  
    C     BE       7496.4     928.3  15749.1    4983.4      0 

Chart 9: Case Study Initial Run – Port 62: PE2-to-Px backbone link 

At this STM-1 
backbone link that 
receives traffic flows 
from the 3 other CEs 
(those at the bottom 
left of our reference 
picture) there is no 
congestion. 
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We can see that nearly no jitter 
has been added to the flows. 
Jitter average values of 
respectively EF, AF and BE flows 
reflect simply the priority at the 
scheduler level. Even if there is 
bandwidth, contingency in packet 
arrivals entail very transient 
queuing but the scheduler selects 
EF packets first then AF ones and 
BE ones. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o62   PE2    155         Px         220 km    1225.1 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     35%  54.3 Mbps   3ms   56160 Bytes        4.87%  1.32%        0 
  AF     45%  69.8 Mbps  10ms  187200 Bytes        1.90%  0.52%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        1.17%  0.27%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    X     EF        107.1      16.8    213.2      69.2      0  
    Y     EF         81.1      20.2    295.6      89.5      0  
    O     AF        340.5      77.6   3041.7     978.5      0  
    P     AF        195.5      30.9   1033.7     320.8      0  
    Q     AF        233.4      59.0    328.1     109.2      0  
    D     BE        367.0     106.5  10239.9    4261.9      0  
    E     BE        499.7      93.6   1684.8     311.2      0 
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Chart 10: Case Study Initial Run – Port 71: Px-to-Py backbone link 

There is no 
congestion at this port 
considering the 
offered traffic. 
However there is a 
threat for the EF flows 
because the EF 
aggregate throughput 
is above the EF 
bandwidth assigned 
at this port. 
Run#2 of our case 
study will illustrate the 
consequences of this 
inadequate 
configuration. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o71   Px     155         Py         436 km    2427.9 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     35%  54.3 Mbps   3ms   56160 Bytes        5.41%  1.27%        0 
  AF     45%  69.8 Mbps  10ms  187200 Bytes        0.65%  0.32%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        1.40%  0.19%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    V     EF        115.4      16.9    177.0      40.8      0  
    W     EF        136.7      17.6    349.8      77.2      0  
    X     EF         77.4       7.3    268.6      76.5      0  
    Y     EF        132.4      19.7    392.7     109.2      0  
    Q     AF        142.0      18.9    352.0     128.1      0  
    C     BE        534.1      42.5  15789.7    5025.9      0  
    D     BE        475.5      52.8  10340.3    4314.7      0 

Chart 11: Case Study Initial Run – Port 72: Px-to-Pz backbone link 

This port is an STM-4 
port, oversized for the 
current traffic. 
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It should be noticed that, because 
of low port occupancy (30%) and 
the very short serialization time of 
packets due to the high rate of this 
port, there is very little jitter for 
each flow. 
 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o72   Px     622         Pz         285 km    1587.1 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     35% 217.7 Mbps   3ms  224640 Bytes        0.00%  0.00%        0 
  AF     45% 279.9 Mbps  10ms  748800 Bytes        0.21%  0.05%        0 
  BE     20% 124.4 Mbps  15ms 1123200 Bytes        0.18%  0.03%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    M     AF         18.8       0.8   1357.3     157.0      0  
    N     AF         18.9       0.8    823.9     218.1      0  
    O     AF         18.1       0.5   3041.7     979.1      0  
    P     AF         14.5       0.5   1033.7     321.3      0  
    A     BE         23.9       1.1  12045.9    4485.8      0  
    B     BE         31.7       1.1   9313.0    1852.0      0  
    E     BE         23.3       1.1   1686.0     312.3      0 
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Chart 12: Case Study Initial Run – Port 81: Py-to-PE3 backbone link 

With this initial 
scenario, all the flows 
at this port arrive from 
the same upstream 
port (no. 71). 
However, conversely 
to port 7, aggregated 
EF throughput is 
below EF bandwidth. 
This port is well tuned 
with respect to offered 
traffic. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o81   Py     155         PE3        250 km    1392.2 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     50%  77.5 Mbps   3ms   56160 Bytes        2.70%  1.20%        0 
  AF     30%  46.5 Mbps  10ms  187200 Bytes        0.65%  0.32%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        0.53%  0.17%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    V     EF          0.0       0.0    177.0      40.8      0  
    W     EF         15.8       4.9    365.6      82.2      0  
    X     EF          0.0       0.0    268.6      76.5      0  
    Y     EF         15.8       6.7    408.5     116.0      0  
    Q     AF         15.8       6.1    367.8     134.3      0  
    C     BE        202.6      35.1  15816.2    5061.1      0  
    D     BE        198.7      36.6  10401.1    4351.3      0 

 

Chart 13: Case Study Initial Run – Port 82: Pz-to-PE4 backbone link 

There is heavy 
congestion at this port 
but it impacts only BE 
traffic bursts. 
Actually, AF 
throughput is above 
AF bandwidth but it 
can borrow what is 
missing from EF 
bandwidth since there 
is no EF traffic. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o82   Pz     155         PE4        425 km    2366.7 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     10%  15.5 Mbps   3ms   56160 Bytes        0.00%  0.00%        0 
  AF     70% 108.5 Mbps  10ms  187200 Bytes        3.97%  0.61%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes       24.35%  7.25%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    M     AF        422.9      79.5   1494.7     236.6      0  
    N     AF        416.5      71.8   1000.7     289.9      0  
    O     AF        386.9      71.5   3116.3    1050.7      0  
    P     AF        353.7      39.5   1082.7     360.9      0  
    A     BE      13706.5    4955.0  24961.7    9440.8      0  
    B     BE      16949.4    4687.1  22119.1    6539.1      0  
    E     BE      17170.2    3829.8  17308.1    4142.2      0 
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4.4 Traffic Analysis – Egress Access Links 
Chart 14: Case Study Initial Run – Port 91: PE3-to-R3 egress access link 
 
This Ethernet port is 
rate-limited to 60 
Mbps. 
The BE traffic bursts 
create some little 
congestion. 
EF traffic is under EF 
bandwidth but there is 
some jitter. This is 
explained once again 
by the fact that the 
upstream port is at a 
higher rate. 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o91   PE3    100     60  R3          12 km      66.9 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     70%  42.0 Mbps   3ms   37500 Bytes        8.14%  2.09%        0 
  BE     30%  18.0 Mbps  15ms  187500 Bytes        5.00%  1.73%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss 
    ----  -----   -------  --------  -------  --------   ---- 
    V     EF        249.4      62.0    298.0     102.8      0  
    X     EF        202.9      37.0    471.5     113.6      0  
    D     BE       2983.8    1067.1  12158.4    5418.4      0 

 

Chart 15: Case Study Initial Run – Port 92: PE3-to-G3 egress access link 

This STM-1 port is 
oversized and only 
used at around 40%. 
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There is absolutely no jitter at this 
port, except a little for the BE flow 
simply because its packets are of 
variable size. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o92   PE3    155         G3          21 km     117.0 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     50%  77.5 Mbps   3ms   56160 Bytes        2.15%  1.08%        0 
  AF     30%  46.5 Mbps  10ms  187200 Bytes        0.65%  0.32%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        0.42%  0.11%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    W     EF          0.0       0.0    365.6      82.2      0  
    Y     EF          0.0       0.0    408.5     116.0      0  
    Q     AF          0.0       0.0    367.8     134.3      0  
    C     BE         61.4      15.8  15816.2    5077.0      0 
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Chart 16: Case Study Initial Run – Port 93: PE4-to-B4 egress access link 

This STM-1 port is 
used at around 60%. o93
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There is very little jitter, compared 
to port 92. This is explained by the 
higher percentage of occupancy. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o93   PE4    155         B4          42 km     233.9 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     10%  15.5 Mbps   3ms   56160 Bytes        0.00%  0.00%        0 
  AF     60%  93.0 Mbps  10ms  187200 Bytes        0.75%  0.24%        0 
  BE     30%  46.5 Mbps  15ms  280800 Bytes        0.54%  0.14%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    N     AF         47.9      10.3   1018.7     300.2      0  
    P     AF          5.2       0.0   1082.7     360.9      0  
    B     BE        104.7      11.6  22153.8    6550.7      0  
    E     BE         98.9      11.4  17308.1    4153.6      0 

 

Chart 17: Case Study Initial Run – Port 94: PE4-to-R4 egress access link 

This FE port is used 
at 60% with AF traffic. 
There are some 
bursts at 80% due to 
the BE traffic. 
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There is more jitter than with ports 
92 and 93 but less than with 
port 91, because although the 
upstream port is at a higher rate 
(STM-1) there is heavy load (the 
peaks) but no congestion. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o94   PE4    100         R4           9 km      50.2 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     10%  10.0 Mbps   3ms   37500 Bytes        0.00%  0.00%        0 
  AF     60%  60.0 Mbps  10ms  125000 Bytes        2.00%  0.33%        0 
  BE     30%  30.0 Mbps  15ms  187500 Bytes        2.44%  0.29%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    M     AF        241.0      29.5   1542.3     266.2      0  
    O     AF        109.9       9.0   3116.3    1059.7      0  
    A     BE        870.4      70.9  24971.6    9511.8      0 
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4.5 Traffic Analysis – EF Flows 
In the following final reports related to EF flows, we can see for each flow and at each output port along the path, the value of 
the QoS parameters: throughput, delay, jitter and packet loss. The stringent QoS requirements associated to EF class of service 
have been respected: 

� At the ingress IPORT, the flow has been generated at the required throughput and regularly maintained at each internal 
OPORT up to the egress OPORT. 

� Jitter is acceptable: at the egress OPORT, the max jitter value is under 500 microseconds and the mean jitter around 100 
microseconds. We can notice that where there is the more jitter is at OPORTs with an upstream port at a higher rate and 
if there was some congestion: e.g. from FE to E3 (100 to 34 Mbps). 

� The delay is mainly dependant on the path length and was not impacted by queuing delay since there was very little 
jitter. 

 
 

Flow Trsp Thrpt Type Class maxPKsz   T1   Volume Occ  Gap        Flow total 
ID        Mbps               bytes   ms    bytes       ms      elapsed time 
---- ---- ----- ---- ----- ------- ---- -------- --- ----      ------------ 
V    UDP  24    CBR  EF       1500   30  1350000   1    0          482735.5 
 
  Port Rate Thrput    Dmin    Dmax   Jmin    Jmax   Jmean  Nbpk Loss 
  ---- ---- ------ ------- ------- ------ ------- ------- ----- ---- 
  i1    100  24.00 
  o51   100  24.00   264.2   329.9    0.0    65.7     4.7   900    0  
  o61   155  24.00   388.8   555.6    0.0   134.1    23.9   900    0  
  o71   155  24.00  1983.4  2233.5    0.0   177.0    40.8   900    0  
  o81   155  24.00  4502.2  4752.3    0.0   177.0    40.8   900    0  
  o91   100  24.00  6110.5  6450.4    0.0   298.0   102.8   900    0  
  o101  100  24.00  6252.6  6592.5    0.0   298.0   102.8   900    0 
 
Flow Trsp Thrpt Type Class maxPKsz   T1   Volume Occ  Gap        Flow total 
ID        Mbps               bytes   ms    bytes       ms      elapsed time 
---- ---- ----- ---- ----- ------- ---- -------- --- ----      ------------ 
W    UDP  16    CBR  EF       1200    0   960000   1    0          485821.4 
 
  Port Rate Thrput    Dmin    Dmax   Jmin    Jmax   Jmean  Nbpk Loss 
  ---- ---- ------ ------- ------- ------ ------- ------- ----- ---- 
  i6    100  16.00 
  o53    34  16.00   399.6   632.4    0.0   232.8    46.5   800    0  
  o61   155  16.00   597.3   931.1    0.0   333.8    59.5   800    0  
  o71   155  16.00  2175.9  2525.7    0.0   349.8    77.2   800    0  
  o81   155  16.00  4678.6  5044.2    0.0   365.6    82.2   800    0  
  o92   155  16.00  6145.4  6511.0    0.0   365.6    82.2   800    0  
  o106  100  16.00  6380.5  6746.1    0.0   365.6    82.2   800    0  
 
Flow Trsp Thrpt Type Class maxPKsz   T1   Volume Occ  Gap        Flow total 
ID        Mbps               bytes   ms    bytes       ms      elapsed time 
---- ---- ----- ---- ----- ------- ---- -------- --- ----      ------------ 
X    UDP  12    CBR  EF       1500    1   720000   1    0          485903.7 
 
  Port Rate Thrput    Dmin    Dmax   Jmin    Jmax   Jmean  Nbpk Loss 
  ---- ---- ------ ------- ------- ------ ------- ------- ----- ---- 
  i8    100  12.00 
  o54   100  12.00   344.2   473.7    0.0   129.5    52.3   480    0  
  o62   155  12.00   435.4   694.5    0.0   213.2    69.2   480    0  
  o71   155  12.00  1751.6  2081.0    0.0   268.6    76.5   480    0  
  o81   155  12.00  4270.4  4599.8    0.0   268.6    76.5   480    0  
  o91   100  12.00  5874.7  6411.0    0.0   471.5   113.6   480    0  
  o108  100  12.00  6016.8  6553.1    0.0   471.5   113.6   480    0 
 
Flow Trsp Thrpt Type Class maxPKsz   T1   Volume Occ  Gap        Flow total 
ID        Mbps               bytes   ms    bytes       ms      elapsed time 
---- ---- ----- ---- ----- ------- ---- -------- --- ----      ------------ 
Y    UDP  18    CBR  EF       1200   20   960000   1    0          450358.5 
 
  Port Rate Thrput    Dmin    Dmax   Jmin    Jmax   Jmean  Nbpk Loss 
  ---- ---- ------ ------- ------- ------ ------- ------- ----- ---- 
  i13   100  18.00 
  o56    34  18.00   399.6   620.9    0.0   221.3    69.3   800    0  
  o62   155  18.00   552.7   887.8    0.0   295.6    89.5   800    0  
  o71   155  17.99  1852.9  2283.1    0.0   392.7   109.2   800    0  
  o81   155  17.99  4355.6  4801.6    0.0   408.5   116.0   800    0  
  o92   155  17.99  5822.4  6268.4    0.0   408.5   116.0   800    0  
  o113  100  17.99  6057.5  6503.5    0.0   408.5   116.0   800    0 
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5 VPN Case Study – Run #2 – Disturbance of oversubscribed EF Traffic 

Chart 10 on page 22 
showed that EF traffic 
on port 71 was 
oversubscribed, 
considering the 
bandwidth assigned 
to EF aggregate, but 
since the port was not 
congested EF traffic 
flows were not 
disturbed. This 
situation resulted from 
the fact that traffic 
engineering was 
based on aggregated 
traffic. 
Here we run the same 
VPN flows as 
previously but we 
introduce in the 
middle of the run an 
extra flow, at 50Mbps, 
that transits from Px 
to Py via port 71. 
 

Figure 13: 
VPN Case Study – 

Run #2 
Configuration 
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The extra AF flow 
(“R”) consumes most 
of AF bandwidth and 
creates congestion at 
the port. 
As a result, EF traffic 
cannot borrow any 
more from other 
aggregates, and 
especially AF 
aggregate. All EF 
flows experiment 
packet queuing and 
therefore jitter and 
even packet loss. 
 
 
 

Chart 18: 
Case Study Run #2 

– Port 71 
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We can notice that AF flows are 
well under the assigned 
bandwidth and are not 
experiencing jitter, although as 
TCP slows they have no special 
requirements regarding jitter. 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
o71   Px     155         Py         436 km    2427.9 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  EF     35%  54.3 Mbps   3ms   56160 Bytes      102.34% 11.25%       21 
  AF     45%  69.8 Mbps  10ms  187200 Bytes        2.81%  0.63%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        9.86%  0.68%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
    V     EF       7503.8     650.1   7552.0     673.8      8  
    W     EF       7567.7     639.6   7584.4     699.0      3  
    X     EF       7281.4     605.0   7343.4     673.6      4  
    Y     EF       7543.2     698.5   7552.0     787.1      6  
    Q     AF        595.7      56.4    799.8     165.6      0  
    R     AF        630.8     180.6    630.8     180.6      0  
    C     BE       7902.1     375.5  17345.6    5358.9      0  
    D     BE       8419.2     515.8  16264.0    4777.7      0 
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6 VPN Case Study – Run #3 – DiffServ Aware Traffic Engineering 

With this run case, we 
have the same 
offered traffic that with 
the previous case but 
another situation with 
respect to TE traffic 
trunks and hence flow 
paths. 
 
This situation would 
result from DiffServ 
aware traffic 
engineering with two 
types of traffic trunks: 
those based on EF 
traffic class (shown in 
yellow) and those 
based on other 
classes. 
Instead of having a 
single TT between 
PE2 and PE3, there 
are two TTs mapped 
on MPLS LSPs using 
different paths. 
 

Figure 14: 
VPN Case Study – 

Run #3 
Configuration 
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At port 71, the EF 
traffic (made up of V 
and W flows only) is 
now below EF 
bandwidth and the 
extra AF flow does 
not disturb EF flows. 
 
 
 
 

Chart 19: 
Case Study Run #3 

– Port 71 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
o71   Px     155         Py         436 km    2427.9 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  EF     35%  54.3 Mbps   3ms   56160 Bytes        2.70%  1.22%        0 
  AF     45%  69.8 Mbps  10ms  187200 Bytes        1.19%  0.32%        0 
  BE     20%  31.0 Mbps  15ms  280800 Bytes        1.36%  0.17%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss   
    V     EF         64.7       7.9    161.3      31.8      0  
    W     EF         76.0       9.6    349.8      69.1      0  
    Q     AF        186.0      21.4    359.0     132.5      0  
    R     AF        184.4      31.1    184.4      31.1      0  
    C     BE        503.7      27.3  15749.1    5010.7      0  
    D     BE        567.2      48.5  10340.3    4311.0      0 

EF flows X and Y have now a 
longer path that adds around 1.3 
milliseconds to the end-to-end 
delay, compared to initial run. 
There is also slightly more jitter at 
port 81 because we pass from an 
STM-4 port to a quite busy STM-1 
port. 

 
Flow X 
  Port Rate Thrput    Dmin    Dmax   Jmin    Jmax   Jmean  Nbpk Loss 
  o62   155  12.00   435.4   694.5    0.0   213.2    69.3   480    0  
  o72   622  12.00  1690.8  1949.9    0.0   213.2    69.9   480    0  
  o74   622  12.00  3308.2  3567.3    0.0   213.2    69.9   480    0  
  o81   155  12.00  5570.9  6044.9    0.0   454.4   107.8   480    0  
  o91   100  12.00  7095.2  7580.2    0.0   454.4   123.0   480    0  
  o108  100  12.00  7304.2  7789.2    0.0   454.4   123.0   480    0 
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7 VPN Case Study – Run #4 – Link Failure 

With the same offered 
traffic than with the 
initial run, we are here 
in a situation that 
would result from a 
failure of port 71. 
The traffic trunks that 
crossed port 71 from 
Px to Py have now 
been rerouted via 
STM-4 ports 72 and 
74. 
 
 
 
 
 
 
 
 
 
 

Figure 15: 
VPN Case Study – 
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Port 72 that carries all 
the flows remains 
oversized. 
However the path 
from Px to Py is 
longer via Pz and 
hence adds delay (not 
shown here). 
 
 
 

Chart 20: 
Case Study Run #4 

– Port 72 
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 Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
----  ----  ----  -----  -------  --------  -----------------  
o72   Px     622         Pz         285 km    1587.1 microsec 
 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  -----  --------------  ------------------    ----------------  ------- 
  EF     35% 217.7 Mbps   3ms  224640 Bytes        0.68%  0.30%        0 
  AF     45% 279.9 Mbps  10ms  748800 Bytes        0.21%  0.05%        0 
  BE     20% 124.4 Mbps  15ms 1123200 Bytes        0.14%  0.03%        0 
 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    ----  -----   -------  --------  -------  --------   ----  --------- --- 
    V     EF         18.9       1.4    152.6      25.9      0  
    W     EF         19.8       1.6    302.3      61.4      0  
    X     EF         18.9       0.9    222.3      69.9      0  
    Y     EF         20.1       1.4    315.8      96.4      0  
    M     AF         20.1       1.7   1393.0     177.2      0  
    N     AF         20.1       1.8    850.2     218.7      0  
    O     AF         20.1       1.5   3042.9     879.0      0  
    P     AF         20.2       1.1    978.7     322.5      0  
    Q     AF         20.1       1.1    317.1      99.1      0  
    A     BE         25.2       2.1  12046.4    4494.2      0  
    B     BE         25.1       1.9   9301.1    1870.4      0  
    C     BE         22.7       2.1  15753.9    4995.9      0  
    D     BE         32.3       2.4  11239.9    4390.4      0  
    E     BE         33.3       2.6   1653.4     309.9      0 
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8 VPN Case Study – Run #5 – TCP Congestion 

Here is a scenario 
similar to the initial 
run excepted that we 
have tuned slightly 
differently the 
scheduling 
parameters at port 82: 
Bandwidth 
percentages are 
respectively 10,67,23 
for EF, AF and BE 
classes instead of 
10,70,20. Besides AF 
queue depth is 
increased from 10ms 
to 12ms. 
This tuning enable us 
to overflow the AF 
queue when we 
introduce an extra EF 
flow (“Z”) that crosses 
port 82. Congestion 
avoidance 
mechanisms then 
apply to AF TCP 
flows. 

Figure 16: 
VPN Case Study – 

Run #5 
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Since many packet 
discarding occur at 
the end of the TCP 
sessions, there are 
timeouts for the last 
packets (the 
destinations do not 
receive data and 
therefore do not send 
duplicate ACKs 
anymore, that would 
trigger fast recovery). 
It should be noticed 
that this version of 
IPVCoSS (as 
explained in annex 1) 
does not implement 
yet Selective ACKs 
(RFC2018) nor partial 
ACKs (RFC2582 New 
Reno) nor timeout 
dynamic adaptation 
(RFC2988). 

Chart 21: 
Case Study Run #5 

– Port 82 
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The TCP timeout is fixed and 
purposely reduced to 30ms. 
Obviously the final throughput of 
AF TCP flows dramatically fall 
down. It is not shown in these 
reports but here are the values, in 
Mbps, compared to (between 
parenthesis) those obtained with 
the initial run: 
M: 18 (28.4) 
N: 13.2 (21.4) 
O: 13.5 (22.2) 
P: 18.5 (29.3) 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
o82   Pz     155         PE4        425 km    2366.7 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  EF     10%  15.5 Mbps   3ms   56160 Bytes        1.80%  0.90%        0 
  AF     67% 103.8 Mbps  12ms  224640 Bytes      100.45% 42.12%       21 
  BE     23%  35.6 Mbps  15ms  280800 Bytes       60.30% 24.23%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    Z     EF        245.8      29.8    245.8      29.8      0  
    M     AF      16710.0    7323.3  17280.7    7478.1      6      6     204 
    N     AF      16598.8    7511.5  16728.2    7729.6      2      1      59 
    O     AF      16576.8    6791.6  17794.3    7703.5      8      7      82 
    P     AF      16584.4    7422.9  17244.8    7745.0      5      4      55 
    A     BE      40317.1   17949.7  48179.0   22435.5      0 
    B     BE      40934.5   16883.4  46578.7   18735.4      0 
    E     BE      41074.1   15867.5  41240.8   16178.7      0 
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9 VPN Case Study – Run #6 – TCP Congestion Avoidance 

Here is a run with the 
same tunings and the 
same generated 
traffic as with the 
previous run. 
Here we will drop 
packet#360 from P 
flow in AF queue of 
port 82. 
This simulates a 
random early 
detection (RED). 
Actually, we have 
simplified the RED 
mechanism because 
we did not apply 
traffic conditioning at 
ingress nodes for AF 
flows, and 
discriminated and 
marked packets as 
low or high profile 
according to the flow 
throughput. 
 

Figure 17: 
VPN Case Study – 

Run #6 
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On this chart we can 
see the time when the 
packet drop occurs 
(rounded by a green 
circle). It happens 
when the AF queue is 
filled at 40%. 
This test illustrates 
the benefits of 
applying RED 
mechanisms: by 
anticipating 
congestion and by 
dropping at random a 
packet. A single TCP 
flow among several 
ones will be slightly 
impacted. 
 
 
 

Chart 22: 
Case Study Run #6 

– Port 82 
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The Fast Retransmit & Fast 
Recovery congestion avoidance 
algorithms will be easily applied 
and prevent a further heavy 
congestion impacting all the flows. 
Only the final throughput of P flow 
is impacted: 
26.6 compared to 29.3 Mbps with 
the initial run (not shown in 
adjacent reports). 

Port  Node  Rate  Limit  Adjnode  Distance  Propagation-Delay 
o82   Pz     155         PE4        425 km    2366.7 microsec 
  Queue  Bandwidth       Depth                 Used: Max   Mean  Dropped 
  EF     10%  15.5 Mbps   3ms   56160 Bytes        1.80%  0.90%        0 
  AF     67% 103.8 Mbps  12ms  224640 Bytes       27.00%  9.35%        1 
  BE     23%  35.6 Mbps  15ms  280800 Bytes       59.92% 23.60%        0 
    Flow  Class   hopJmax  hopJmean  cumJmax  cumJmean   Loss  Retransmitted 
                                                               FastRxmit  TO 
    Z     EF        228.1      29.6    228.1      29.6      0  
    M     AF       4457.0    1603.4   4998.1    1760.4      0  
    N     AF       4496.8    1579.3   4522.2    1797.4      0  
    O     AF       4467.7    1495.2   5387.2    2470.5      0  
    P     AF       4333.4    1392.3   4518.8    1572.4      1      1       0 
    A     BE      39468.0   17384.6  47975.3   21870.3      0  
    B     BE      40817.4   16470.9  45678.1   18322.9      0  
    E     BE      40406.2   15755.9  40689.8   16034.7      0 
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10 Jitter Bounds for EF traffic over IP/MPLS 

With a statistical multiplexing system such as IP, it is impossible to define absolute bounds to jitter, because of the 
unpredictability of the offered traffic. However, here is a stress simulation test that pushes the limits of EF traffic in a realistic 
environment, with heavy load but without congestion. Single EF traffic flows are injected at CEs, with various characteristics. 
Throughput and packet size are indicated in the table overleaf, but other varying information are the access link rate (E3, DS3, 
FE, STM1) and length. Thus, EF packets enter PE1 and PE2 at random, without previous jitter. Besides EF isochronous traffic 
flows, we inject variable BE traffic. All these flows converge respectively to STM-4 ports 101 and 102 and load them quite 
heavily. From P1, the EF traffic crosses port 111 at a higher rate (GE) still mixed with other BE variable flows and then, from P2 
to P3, it crosses port 121 at a lower rate (STM-4) before being split to egress PEs and CEs via lower rate links. 
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Figure 18: Configuration for testing EF jitter bounds 

 

Table 3 shows the average jitter values experienced by individual EF flows at each crossed port, and the average and maximum 
jitter from end-to-end. Here are some observations we can derive from this trial about conditions that favor jitter: 

� When traffic flows at an output port comes from several upstream ports, as this is the case typically for an edge router, 
there is a higher probability of having simultaneous ingress packets and therefore short transient queuing, even if 
bandwidth is globally available. 

� When the output port is at a lower rate than an upstream port, the serialization time is longer in output than in input and it 
is therefore more likely, in case of heavy load, to have a packet waiting for the output port to be free. 

� The slower the port rate, the higher the jitter because of a larger serialization time. 

� The probability of having jitter increases with port loading, because packet contention in output will occur more often. 

All these characteristics of IP traffic can be easily shown and analyzed with the traces associated with short elementary trials 
(only a few packets) via IPVCoSS. 
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    o101-o102

(STM-4) 
o111 
(GE) 

o121 
(STM-4) 

o131-o134
(STM-1) 

o141 - o152 
(E3 / DS3 / DS3...) 

Flow Thrput PKlen Nb PKs +Jmean Jmax Jmean
           
G 10 1000 2500 15.4 7.1 30.4 39.3 84.6 622.4 177.0

H 11 1050 2619 15.0 6.2 33.8 42.2 76.4 579.2 173.7

I 8 1100 1819 11.9 5.7 29.4 44.8 90.6 619.5 182.6

J 12 1150 2609 11.9 5.8 31.4 37.0 85.1 614.7 171.4

K 13 1200 2709 10.2 5.5 29.4 35.2 78.9 644.9 159.3

L 14 1250 2800 9.6 5.3 28.7 31.7 70.8 534.1 146.4

M 9 1300 1731 9.2 5.1 26.1 33.7 135.2 756.9 209.5

N 11 1350 2037 7.7 5.0 26.0 27.3 126.1 711.0 192.4

O 13 1400 2322 7.1 4.8 24.3 25.1 115.7 746.8 177.2

P 7 1450 1207 16.8 5.5 32.1 37.9 130.3 700.7 222.7

           
Q 8 1500 1334 17.4 5.2 29.0 43.5 75.6 607.5 170.9

R 12 1025 2927 14.4 6.1 33.9 42.3 132.0 793.3 228.9

S 10 1075 2326 13.1 6.1 32.8 42.5 129.3 726.0 224.0

T 16 1125 3556 11.2 5.7 30.6 34.3 65.2 610.2 147.3

U 9 1175 1915 10.8 5.7 30.8 39.4 68.0 622.2 154.9

V 10 1225 2041 9.8 5.3 29.5 35.9 60.7 561.5 141.4

W 12 1275 2353 8.4 5.2 27.8 31.9 116.6 718.8 190.0

X 8 1325 1510 8.5 5.2 27.9 33.5 119.2 732.3 194.5

Y 10 1375 1819 7.9 5.2 32.1 25.9 106.4 721.0 177.7

Z 9 1425 1579 16.7 5.6 30.9 38.1 111.8 696.1 203.3

           
g 6 1000 1500 15.7 6.3 33.2 49.3 199.5 683.9 304.3

h 11 1100 2500 15.4 6.5 56.6 99.6 236.2 699.0 414.5

i 12 1200 2500 10.4 5.9 46.3 62.8 25.2 434.6 150.9

j 13 1300 2500 10.5 6.1 29.6 12.5 53.7 392.7 112.6

k 14 1400 2500 8.8 5.6 32.7 45.8 190.1 563.0 283.2

l 10 1500 1667 9.1 4.7 24.5 33.3 49.1 361.5 121.0

m 12 1000 3000 7.9 5.4 29.5 48.5 149.4 680.4 240.9

n 7 1100 1591 7.2 5.0 29.1 45.0 141.3 732.9 227.7

o 14 1200 2917 5.8 5.0 26.4 32.9 127.3 647.9 197.6

p 9 1300 1731 14.9 6.7 39.1 42.9 117.1 689.4 220.9

           
q 16 1400 2857 14.0 5.2 29.9 39.8 106.4 662.4 195.5

r 6 1500 1000 16.3 5.8 20.9 51.7 244.0 697.5 339.0

s 8 1000 2000 9.1 5.7 20.2 38.4 108.1 541.7 181.7

t 10 1100 2273 11.4 5.9 33.0 39.9 120.3 642.8 210.6

u 16 1200 3334 8.5 5.2 26.8 37.0 113.1 591.2 190.8

v 15 1300 2885 8.7 5.1 27.9 32.5 95.4 594.1 169.8

w 14 1400 2500 18.5 6.4 40.6 29.3 145.6 553.1 240.6

x 6 1500 1000 9.0 5.1 48.3 30.0 100.8 513.2 193.4

y 8 1000 2000 6.3 5.3 20.6 61.8 114.9 577.8 209.1

z 11 1100 2500 12.4 6.1 23.2 41.2 89.6 496.5 172.8

     

A 100 1500 31658 36.9  

B 200 1500 63222 34.8  

a 90 1500 28330 33.2  

b 150 1500 47377 32.9  

C 100 1500 31590 49.2  

D 200 1500 63376 48.2  

E 150 1500 47392 48.1  

c 20 1500 6302 73.9  

d 30 1500 9460 71.0  

e 40 1500 12681 70.5  

 
Table 3: Examples of jitter values with numerous EF flows, heavy load but no congestion 
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11 Conclusion 

This paper has presented a case study, with the simulation of a fairly sophisticated network (SP backbone and VPN 
sites). Readers interested in analyzing accurate traces will find various elementary tests via IPVCoSS, with their full 
traces, at the web site mentioned on the front page of this document. 

 

Our purpose was to show how jitter could be controlled, to some very acceptable extent, via an IP/MPLS backbone, in 
spite of IP flows with different characteristics, especially the variable packet size. Obviously, the real world is more 
complex and, for this case study, we did not take into account link redundancy, enabling more alternate paths. We did 
not consider techniques such as load balancing, or provider edge’s front-end access equipment such as Ethernet 
switches. However, the main principles have been analyzed. Concerning the packet scheduling at a port, the method 
itself – in spite of the name defining it – is very dependent on the vendor’s implementation. That is why the class-based 
queuing method implemented by this simulator is explained in an annex with the help of traces. 

 

The engineering of the access links between a VPN site and the SP backbone is a major point in the delivery of the most 
stringent classes of services to VPN users. Actually, the access link (or the access network) introduces a different set of 
parameters for an IP flow’s end-to-end path, compared to the SP network, which can be considered homogeneous in 
terms of equipment type and capacity. For economical reasons, the customer will choose the access link at the lowest 
possible rate. For example, an E3 leased line will entail an E3 interface for which the serialization time of a packet will be 
three times longer than with a Fast Ethernet interface; it will therefore be prone to jitter because of the higher rate 
interfaces – upstream or downstream – in the backbone. On the other hand, an Ethernet-based access loop subscribed 
at an “E3” rate (say 30 Mbps) will enable a faster packet serialization, but will raise other issues: 

� The structure of the access network, which may be shared by several access loop’s customers and which may 
introduce several elements to be crossed, such as ATM switches with, for example, a multi-LAN service. 

� The capability of the CE and PE equipment’s scheduler to take into account the subscribed rate instead of the 
physical interface rate. The simulator in this case study has treated this latter situation. 

 

Even with the best network and access link tuning, jitter is dependent on traffic contingency and network loading. It is 
significantly minimized with high-speed interfaces and stay within acceptable limits, considering the de-jittering 
capabilities of specialized equipment in reception. We could also imagine some form of traffic shaping in output of each 
node along the path, that would totally eliminate jitter, but this seems unnecessary. 

 

Maybe the most important issue is the impact of transiting from one situation to another, that is passing from one path to 
another as this is the case with DiffServ Traffic Engineering (DS-TE). This is not treated in this paper because the 
simulator itself focuses on the data plane and the performance aspects of pre-established paths. It ignores completely 
the control plane. Besides the “throughput”, “jitter”, “packet loss” and “delay” classical QoS parameters, there is a most 
important parameter, which is “availability”. Availability can be considerably enhanced by techniques such as DS-TE, but 
there will still be the punctual impact, for a real-time video for instance, of the path transition due to a router failure or link 
failure within the network. 

 

This network simulator was specifically developed for writing this White Paper, and having the suitable traces, graphs 
and reports. There are more elaborated network simulators, such as the famous NS-2 that helped evaluate – on a large 
scale – TCP congestion avoidance mechanisms. Network simulation, for an SP, cannot replace real tests on a dedicated 
platform representing its network and customers. However, the simulator could certainly supplement it by helping 
structure the overall topology of the test platform and find a first level of tuning for the QoS parameters. 
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Annex 1: IPVCoSS – TCP Congestion Control 

Most IP flows are based on TCP transport protocol. These flows are responsive to network load thanks to congestion control 
mechanisms. RFC 2581 defines 4 main algorithms: 

� Slow Start 

� Congestion Avoidance 

� Fast Retransmit 

� Fast Recovery 

One must retain that at any time either "Slow Start" or "Congestion Avoidance" is applied. "Fast Retransmit" and "Fast 
Recovery” are tightly related ("Fast Retransmit" is followed by "Fast Recovery") and are an enhancement of "Congestion 
Avoidance”. 

IPVCoSS takes into account these mechanisms but, for simplification and in order to focus on the essential aspects, the 
following hypothesis and restrictions are applied: 

1) Only the data phase of a TCP session is considered, and the parameters that would result of the initial establishment 
phases are defined when configuring the TCP-based IP flow or forced to some default values. 

2) There are no limitations on the receiver side and we assume that: 

� The receiver window (rwnd) is very high 
� RMSS (receiver maximum segment size) is greater than or equal to SMSS (sender maximum segment size) 

3) The segment size (SMSS / RMSS: sender / receiver maximum segment size) does not include the TCP header but in the 
context of IPVCoSS, we will ignore the TCP header as well as the IP header and we will assimilate the TCP segment 
size to the IP packet size, which itself includes its IP header. For example, if a packet size of 1000 bytes is configured, 
we will show in the TCP specific traces a segment size of 1000 bytes, instead of 940 bytes (20 bytes of IP header plus 40 
bytes of TCP header). The advantage of this “deviation” is that we can rely on the throughput calculations performed on 
IP packets, and that the evolution of the TCP parameters such as cwnd and flightsize shown in the TCP traces will be 
more readable. This abstraction does not prevent the application of the congestion control mechanisms we are 
examining. Implementing a true TCP layer would be far too complex to reach our goal. Moreover, if it is very likely that 
the IP header will have no options field, the TCP header in contrast would include the options required for high-speed 
and large-scale environments (larger window size) and would be greater than 40 bytes. 

4) The delay back for a TCP “ACK” is calculated at the time of the first TCP segment transmission and is then systematically 
applied to all other “ACK” for this flow. This means that we assume that, in addition to having the same path from receiver 
to sender, there is no congestion on this path. This is consistent with the main assumptions made for the IPVCoSS 
environment: MPLS paths, no unavailability. Moreover, for a clear observation, it is better not to cross flows even if it is 
feasible. 

5) The initial sequence number (each TCP byte is identified by a sequence number) will always start to 1, conversely to 
TCP real implementations. The purpose, once again, is to offer a better readability of the traces. 

6) The receiver will send an ACK for each received segment: there is no deferred acknowledgment. 

7) The timeout is fixed to 300ms for easing observations. 

 

In contrast, the following key variables, on the sender side, are processed in full conformance with TCP rules: 

� cwnd (congestion window) 

The number of bytes of this window limits the transmission of TCP data: a TCP sender cannot send any fragment with a 
sequence number greater that the sum of the last acknowledged sequence number and this window value. The initial 
value of this parameter corresponds to 2 full-size segments. This value is incremented when TCP ACKs are received but 
can be reduced when congestion is detected. 

� fs (flight size) 

The amount of data that has been sent but not yet acknowledged. 

� ssthresh (slow start threshold) 

The initial value of this threshold may be very high and is reduced when congestion is detected. 

At any time, the respective values of ssthresh and cwnd determine which algorithm should be applied: SLOW START or 
CONGESTION AVOIDANCE: 

cwnd <= ssthresh : SLOW START 

cwnd >  ssthresh : CONGESTION AVOIDANCE 
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The difference between Slow Start and Congestion Avoidance is the evolution of cwnd according to received ACKs, and as a 
result controls the amount of data injected in the network: 

� With SLOW START: cwnd is incremented by SMSS for each received ACK 

� With CONGESTION AVOIDANCE: cwnd is incremented by SMSS at each RTT (round trip time) only; this is given by the 
following equation: 

cwnd += SMSS * SMSS / cwnd 

The following picture shows the evolution of the useful window that governs the injection of data: 
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Figure 19: TCP Sender Windows 

Congestion detection previously mentioned for cwnd and ssthresh variables is the strong presumption of packet loss in following 
cases: 

1) Acknowledgement failure 

When 3 consecutive duplicate ACKs are received for a segment, the following segment which acknowledgment was 
expected by the sender is considered lost. 

2) Time-Out for a segment 

A time-out indicates a strong congestion in the network that prevents the communication between sender and receiver. A 
TCP time-out value is expressed in terms of seconds and is permanently re-negotiated for taking into account the traffic 
load. 

We will concentrate on the first case only since it is tightly related to the RED (random early detection) queue management 
mechanism. 

We will use the following configuration for first examining the Slow Start mechanism when applied at the beginning of a TCP 
data transfer phase. Then we will see the consequences of a single packet loss with the same traffic profile. 

R1 R2 TCP
Destination

TCP
Source 1011 200 kmFE E3 FE51

 
 

TCP traces are shown as time-diagrams in order to highlight the exchanges between sender and receiver. The evolution of 
cwnd and flightsize (fs) variables appears on the left of the events on the sender side. The IP packet identifier along with the first 
and last byte of the segment represents TCP data segments. The “push” event on the receiver side represents the 
communication, in the right order, of the segment contents to the application. An acknowledgement conveys the number of the 
next byte that the receiver expects to receive. 
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A1.1 – Slow Start 
Here is a trace of the “slow” start of a TCP session. For clarity, segments have a fixed size of 1000 bytes and targeted at a 
steady throughput of 32 Mbps. The ssthresh variable is initialized at a very high value so as to immediately trigger the slow start 
algorithm. 
    tick   TCP Sender  TCP Receiver  
   cwnd    fs     

The variable cwnd is 
initialized to 2 x SMSS, 
i.e. 2000 bytes. Thus, 
2 segments (A1, A2) 
are sent (and flightsize 
is incremented) before 
the window is closed. 
For each 
acknowledged 
segment, cwnd is 
incremented by 1 x 
SMSS, while flightsize 
is decremented. 
As a result, 4 new 
segments will be sent 
at 250 microsecond 
intervals corresponding 
to the 32Mbps 
throughput. 
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ts A1(1-1000)         -> 
ts A2(1001-2000)      -> 
 
 
 
 
          ta A2(1001) <- 
ts A3(2001-3000)      -> 
          ta A3(2001) <- 
ts A4(3001-4000)      -> 
ts A5(4001-5000)      -> 
ts A6(5001-6000)      -> 
 
 
 
 
 
 
 
 

  
 
 
-> tr A1(1-1000) 
<- ta A2(1001) 
-> tr A2(1001-2000) 
<- ta A3(2001) 
 
 
 
 
 
 
-> tr A3(2001-3000) 
<- ta A4(3001) 
-> tr A4(3001-4000)      
<- ta A5(4001) 
-> tr A5(4001-5000)      
<- ta A6(5001) 
-> tr A6(5001-6000)      
<- ta A7(6001) 

 
 
 
-> push A1 
 
-> push A2 
 
 
 
 
 
 
 
-> push A3 
  
-> push A4 
  
-> push A5 
  
-> push A6 
 

When A3 to A6 
segments are 
acknowledged, we can 
send again 8 new 
segments (A7 to A14) 
 
 
 
 
 
 
 
 
 
 
 
 
When A8 to A14 are 
acknowledged the 
window is still wider 
and enables TCP 
segments to be sent at 
the targeted 
throughput.  
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          ta A4(3001) <- 
ts A7(6001-7000)      -> 
          ta A5(4001) <- 
ts A8(7001-8000)      -> 
          ta A6(5001) <- 
ts A9(8001-9000)      -> 
          ta A7(6001) <- 
ts A10(9001-10000)    -> 
ts A11(10001-11000)   -> 
ts A12(11001-12000)   -> 
ts A13(12001-13000)   -> 
 
 
ts A14(13001-14000)   -> 
 
 
 
 
 
 
 
 
          ta A8(7001) <- 
ts A15(14001-15000)   -> 
 
 
          ta A9(8001) <- 
ts A16(15001-16000)   -> 
 
 
         ta A10(9001) <- 
ts A17(16001-17000)   -> 
 
 
        ta A11(10001) <- 
ts A18(17001-18000)   -> 
        ta A12(11001) <- 
ts A19(18001-19000)   -> 
        ta A13(12001) <- 
ts A20(19001-20000)   -> 
        ta A14(13001) <- 
ts A21(20001-21000)   -> 
 
 
        ta A15(14001) <- 
ts A22(21001-22000)   -> 
 
 
ts A23(22001-23000)   -> 
 
 

  
  
  
  
  
  
  
  
  
  
  
-> tr A7(6001-7000)      
<- ta A8(7001) 
  
-> tr A8(7001-8000)      
<- ta A9(8001) 
-> tr A9(8001-9000)      
<- ta A10(9001) 
-> tr A10(9001-10000)    
<- ta A11(10001) 
-> tr A11(10001-11000)   
<- ta A12(11001) 
  
  
-> tr A12(11001-12000)   
<- ta A13(12001) 
  
  
-> tr A13(12001-13000)   
<- ta A14(13001) 
  
  
-> tr A14(13001-14000)   
<- ta A15(14001) 
  
  
  
  
  
  
  
  
-> tr A15(14001-15000)   
<- ta A16(15001) 
  
  
-> tr A16(15001-16000)   
<- ta A17(16001) 
  
-> tr A17(16001-17000)   
<- ta A18(17001) 

 
  
  
  
  
  
  
  
  
  
  
-> push A7 
  
  
-> push A8 
  
-> push A9 
  
-> push A10 
  
-> push A11 
  
  
  
-> push A12 
  
  
  
-> push A13 
  
  
  
-> push A14 
  
  
  
  
  
  
  
  
  
-> push A15 
  
  
  
-> push A16 
  
  
-> push A17 
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    tick   TCP Sender  TCP Receiver  
   cwnd    fs     
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ts A24(23001-24000)   -> 
 
 
ts A25(24001-25000)   -> 
 
 
        ta A16(15001) <- 
ts A26(25001-26000)   -> 
 
 
        ta A17(16001) <- 
ts A27(26001-27000)   -> 
 
 
        ta A18(17001) <- 
ts A28(27001-28000)   -> 
 
 
        ta A19(18001) <- 
ts A29(28001-29000)   -> 
 
 
        ta A20(19001) <- 
ts A30(29001-30000)   -> 

  
-> tr A18(17001-18000)   
<- ta A19(18001) 
  
-> tr A19(18001-19000)   
<- ta A20(19001) 
  
  
-> tr A20(19001-20000)   
<- ta A21(20001) 
  
  
-> tr A21(20001-21000)   
<- ta A22(21001) 
  
  
-> tr A22(21001-22000)   
<- ta A23(22001) 
  
  
-> tr A23(22001-23000)   
<- ta A24(23001) 
  
 

  
-> push A18 
  
  
-> push A19 
  
  
  
-> push A20 
  
  
  
-> push A21 
  
  
  
-> push A22 
  
  
  
-> push A23 
  
  
 

 ...       
        

 
The first graph with a 
short scan-interval of 1 
millisecond shows the 
successive bursts of 
TCP segments due to 
the Slow Start 
algorithm. 
 
 
 
 
This second graph with 
a longer trial and 
therefore a larger 
scan-interval shows a 
line chart more 
conventional in regards 
to Slow Start 
description. 
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TCP Sender: 1000 segments, 6-ms scan intervals
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A1.2 – Congestion Avoidance with Fast Retransmit & Fast Recovery 
Here is the same trial as previously with the discarding of TCP segment #50. The trace is shown from the packet discarding till a 
little after the end of the Fast Recovery procedure. Note that “o-o-o” on the receiver side means “out-of-order”. 
    tick   TCP Sender  TCP Receiver  
   cwnd    fs     
        

At this stage, cwnd is 
still increasing... 

16818.8 
16871.6 
  

 11000 
 
 

ts A50(49001-50000)   -> 
  
  

 
 

 
-> tr A44(43001-44000)   
<- ta A45(44001) 

 
-> push A44 
  

 16920.9   A50 DISCARD SIMULATION  
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43000 
  
  
  
44000 
  
  

10000 
11000 
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        ta A41(40001) <- 
ts A51(50001-51000)   -> 
 
 
        ta A42(41001) <- 
ts A52(51001-52000)   -> 
  
  
        ta A43(42001) <- 
ts A53(52001-53000)   -> 
  

  
 
-> tr A45(44001-45000)   
<- ta A46(45001) 
  
  
-> tr A46(45001-46000)   
<- ta A47(46001) 
  
  
-> tr A47(46001-47000)   

 
 
-> push A45 
  
  
  
-> push A46 
  
  
  
-> push A47 
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    tick   TCP Sender  TCP Receiver  
   cwnd    fs     
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45000 
  
  
  

  
10000 
11000 
  
  

  
        ta A44(43001) <- 
ts A54(53001-54000)   -> 
  
  

<- ta A48(47001) 
  
  
-> tr A48(47001-48000)   
<- ta A49(48001) 

  
  
  
-> push A48 
  

 
 
From now, A50 is 
expected by the 
receiver... 
 
A51 and subsequent 
segments cannot be 
delivered to the TCP 
user and are stored, 
while A50 expectation 
is permanently notified 
in the ACKs 

18008.4 
18068.8 
18121.6 
  
18258.4 
18318.8 
18508.4 
18568.8 
18621.6 
  
18758.4 
18818.8 
18871.6 
  
19008.4 
19068.8 
19121.6 
  
19258.4 
19318.8 
19371.6 
  
19568.8 
19621.6 
  
19758.4 
19818.8 
19871.6 
  

46000 
  
  
  
47000 
  
48000 
  
  
  
49000 
  
  
  
50000 
  
  
  
51000 
  
  
  
  
  
  
  
  
  
  

10000 
11000 
  
  
10000 
11000 
10000 
11000 
  
  
10000 
11000 
  
  
10000 
11000 
  
  
10000 
11000 
  
  
12000 
  
  
  
13000 
  
  

        ta A45(44001) <- 
ts A55(54001-55000)   -> 
  
  
        ta A46(45001) <- 
ts A56(55001-56000)   -> 
        ta A47(46001) <- 
ts A57(56001-57000)   -> 
  
  
        ta A48(47001) <- 
ts A58(57001-58000)   -> 
  
  
        ta A49(48001) <- 
ts A59(58001-59000)   -> 
  
  
        ta A50(49001) <- 
ts A60(59001-60000)   -> 
  
  
ts A61(60001-61000)   -> 
  
  
  DA(1) ta A50(49001) <- 
ts A62(61001-62000)   -> 
  
  

   
  
-> tr A49(48001-49000)   
<- ta A50(49001) 
  
  
  
  
-> tr A51(50001-51000)   
<- ta A50(49001) 
  
  
-> tr A52(51001-52000)   
<- ta A50(49001) 
  
  
-> tr A53(52001-53000)   
<- ta A50(49001) 
  
  
-> tr A54(53001-54000)   
<- ta A50(49001) 
  
-> tr A55(54001-55000)   
<- ta A50(49001) 
  
  
-> tr A56(55001-56000)   
<- ta A50(49001) 

  
  
-> push A49 
  
  
  
  
  
#o-o-o 
  
  
  
#o-o-o 
  
  
  
#o-o-o 
  
  
  
#o-o-o 
  
  
#o-o-o 
  
  
  
#o-o-o 
  

 
After the third 
Duplicate ACK (DA) 
TCP segment A50 is 
retransmitted. 
Then the Fast 
Recovery phase is 
entered, with ssthresh 
value set down to half 
the flightsize value: 
14000/2 = 7000 
 
For each additional 
duplicate ACK 
received, cwnd is 
incremented by SSMS. 
 
 
 
We can send a TCP 
segment... 
 
When A50 is received, 
A50 to A63 segments 
can be delivered 
(pushed) to the TCP 
user 
 

20008.4 
20068.8 
20121.6 
  
20258.4 
   
  
  
 
20371.6 
  
20508.4 
20621.6 
  
20758.4 
20871.6 
  
21008.4 
21121.6 
  
21258.4 
21371.6 
  
21508.4 
   
21621.6 
  
21758.4 
   
21856.5 
  
 

  
  
  
  
  
  
  
  
  
 
  
11000 
  
  
12000 
  
  
13000 
  
  
14000 
  
  
15000 
  
  
  
16000 
  
  
  
 

  
14000 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
15000 
  
  
  
16000 
  
  
 
 

  DA(2) ta A50(49001) <- 
ts A63(62001-63000)   -> 
  
  
  DA(3) ta A50(49001) <- 
FAST RETRANSMIT 
ts A50(49001-50000)   -> 
ENTER FAST RECOVERY 
ssthresh:7000 
  
  
  DA(4) ta A50(49001) <- 
  
  
  DA(5) ta A50(49001) <- 
  
  
  DA(6) ta A50(49001) <- 
  
  
  DA(7) ta A50(49001) <- 
  
  
  DA(8) ta A50(49001) <- 
ts A64(63001-64000)   -> 
  
  
  DA(9) ta A50(49001) <- 
ts A65(64001-65000)   -> 
  
  
 

   
  
-> tr A57(56001-57000)   
<- ta A50(49001) 
  
  
  
  
 
-> tr A58(57001-58000)   
<- ta A50(49001) 
  
-> tr A59(58001-59000)   
<- ta A50(49001) 
  
-> tr A60(59001-60000)   
<- ta A50(49001) 
  
-> tr A61(60001-61000)   
<- ta A50(49001) 
  
-> tr A62(61001-62000)   
<- ta A50(49001) 
  
  
-> tr A63(62001-63000)   
<- ta A50(49001) 
  
  
-> tr A50(49001-50000)   
 
<- ta A64(63001) 

  
  
#o-o-o 
  
  
  
  
  
 
#o-o-o 
  
  
#o-o-o 
  
  
#o-o-o 
  
  
#o-o-o 
  
  
#o-o-o 
  
  
  
#o-o-o 
  
  
  
-> push 
    A50-A63 
  

 
 
 
When the ACK that 
acknowledges new 
data arrives, the Fast 
Recovery phase 
terminates. 
 
 

22008.4 
   
22258.4 
   
22508.4 
   
22758.4 
   
22993.3 
  
23008.4 
23061.2 

17000 
  
18000 
  
19000 
  
20000 
  
 7000 
  
  
  

  
17000 
  
18000 
  
19000 
  
20000 
 6000 
  
 7000 
  

 DA(10) ta A50(49001) <- 
ts A66(65001-66000)   -> 
 DA(11) ta A50(49001) <- 
ts A67(66001-67000)   -> 
 DA(12) ta A50(49001) <- 
ts A68(67001-68000)   -> 
 DA(13) ta A50(49001) <- 
ts A69(68001-69000)   -> 
        ta A64(63001) <- 
EXIT FAST RECOVERY 
ts A70(69001-70000)   -> 
  

    
  
  
  
  
  
  
  
  
  
 
-> tr A64(63001-64000)   

  
  
  
  
  
  
  
  
  
  
 
-> push A64 
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    tick   TCP Sender  TCP Receiver  
   cwnd    fs     
        

However, since the 
ssthresh value is still 
set to 7000 bytes, we 
have still to apply the 
classical congestion 
avoidance algorithm: 
cwnd is no more 
incremented by 
1xSMSS for each ACK 
received, but it is 
incremented by 
1xSMSS per RTT 
(round-trip time) 
according to the 
formula mentioned 
earlier. 
 

  
23311.2 
  
23561.2 
  
23811.2 
  
24061.2 
  
24198.0 
   
24311.2 
  
24448.0 
   
24561.2 
  
24698.0 
   
24948.0 
   
25198.0 
   
25448.0 
   
25698.0 
   
25750.8 
  
25948.0 
26000.8 
  
26250.8 
  
26500.8 
  
26750.8 
  
26887.6 
   
27000.8 
  
27137.6 
   

  
  
  
  
  
  
  
  
  
 8000 
  
  
  
 8125 
  
  
  
 8248 
  
 8369 
  
 8488 
  
 8605 
  
 8721 
  
  
  
  
  
  
  
  
  
  
  
  
 8835 
  
  
  
 8948 
  

  
  
  
  
  
  
  
  
  
 6000 
 7000 
  
  
 6000 
 7000 
  
  
 6000 
 7000 
 6000 
 7000 
 6000 
 7000 
 6000 
 7000 
 6000 
 7000 
  
  
 8000 
  
  
  
  
  
  
  
  
 7000 
 8000 
  
  
 7000 
 8000 

  
  
  
  
  
  
  
  
  
        ta A65(64001) <- 
ts A71(70001-71000)   -> 
  
  
        ta A66(65001) <- 
ts A72(71001-72000)   -> 
  
  
        ta A67(66001) <- 
ts A73(72001-73000)   -> 
        ta A68(67001) <- 
ts A74(73001-74000)   -> 
        ta A69(68001) <- 
ts A75(74001-75000)   -> 
        ta A70(69001) <- 
ts A76(75001-76000)   -> 
        ta A71(70001) <- 
ts A77(76001-77000)   -> 
  
  
ts A78(77001-78000)   -> 
  
  
  
  
  
  
  
  
        ta A72(71001) <- 
ts A79(78001-79000)   -> 
  
  
        ta A73(72001) <- 
ts A80(79001-80000)   -> 

<- ta A65(64001) 
-> tr A65(64001-65000)   
<- ta A66(65001) 
-> tr A66(65001-66000)   
<- ta A67(66001) 
-> tr A67(66001-67000)   
<- ta A68(67001) 
-> tr A68(67001-68000)   
<- ta A69(68001) 
  
  
-> tr A69(68001-69000)   
<- ta A70(69001) 
  
  
-> tr A70(69001-70000)   
<- ta A71(70001) 
  
  
  
  
  
  
  
  
  
  
-> tr A71(70001-71000)   
<- ta A72(71001) 
  
-> tr A72(71001-72000)   
<- ta A73(72001) 
-> tr A73(72001-73000)   
<- ta A74(73001) 
-> tr A74(73001-74000)   
<- ta A75(74001) 
-> tr A75(74001-75000)   
<- ta A76(75001) 
  
  
-> tr A76(75001-76000)   
<- ta A77(76001) 
  
  

  
-> push A65 
  
-> push A66 
  
-> push A67 
  
-> push A68 
  
  
  
-> push A69 
  
  
  
-> push A70 
  
  
  
  
  
  
  
  
  
  
  
-> push A71 
  
  
-> push A72 
  
-> push A73 
  
-> push A74 
  
-> push A75 
  
  
  
-> push A76 
  
  
  

 ...       

 
The first graph with a 
short scan-interval of 1 
millisecond shows in 
detail the impact of a 
packet discard, 
represented by a red 
circle, in the middle of 
the flow. 
 
 
 
 
This second graph with 
a longer trial and 
therefore a larger 
scan-interval provides 
a broader view of the 
impact of the fast 
retransmit and fast 
recovery algorithms. 

TCP Sender: 100 segments (#50 DISCARDED), 1ms scan-intervals
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TCP Sender: 1000 segments (#50 DISCARDED), 6-ms scan intervals
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Annex 2: IPVCoSS – Scheduling Trace 

Here is the simple configuration used to illustrate the scheduling algorithm used by IPVCoSS. This port will be heavily 
overloaded with EF traffic just above its assigned bandwidth (because of the frame overhead) and AF and BE traffic well above 
their assigned bandwidths. Considering the bandwidth ratios assigned to this FE port, the credits for EF, AF and BE queues will 
be respectively 20 000, 30 000 and 50 000 bits. These credits, as shown by ‘q+’ trace events, are refreshed at 1-ms regular 
intervals. As soon as the port is free (i.e. there is no current serialization and the interframe gap, for Ethernet frames, is 
respected) the Scheduler will select one packet among all the packets, if any, waiting in the queues. 

FE
20%

30%

50%

V

M

A

CBR 20 Mbit/s PK size: 1500 bytes

VBR 40 Mbit/s Max PK size: 500 bytes

VBR 90 Mbit/s Max PK size: 1000 bytes
 

The Scheduler will scan the queues according to their relative priority: EF > AF > BE. In a first step, it will select the first packet 
(if any) in the queue only if the credit allows it. Otherwise, if the first pass was unsuccessful, in a second pass it will select the 
first packet of the queue, thus basing its choice on priority only. Here is the trace for the first 2 milliseconds of the trial. 

Events of interest, besides ‘q+’, are: 

� ‘qo’ the packet placed in the queue 

� ‘so’ serialization of the packet selected by the scheduler (highlighted in yellow) 

� ‘eo’ end of serialization of the packet’s frame 

For each queue the following parameters are displayed, when their value changes: the current credit in bits (‘Credit’), the packet 
at the head of the queue (‘HdPk’) eligible to selection by the scheduler, its frame size in bits (‘Frlen’), and the number of packets 
in the queue (‘Qn’). 

Note: The interframe gap with a fast Ethernet is 0.9 microsecond and therefore an ‘eo’ event cannot be immediately 
followed by an ‘so’ event. 

 
  

   Tick Ev Pkid 
 

     EF Queue 
Credit HdPk:Frlen Qn 
 

     AF Queue 
Credit HdPk:Frlen Qn 
 

     BE Queue 
Credit HdPk:Frlen Qn 
 

 
 
 
 
 
 
 
 
 
 
 
V1 packet only stays 0.2 
microsecond in queue. It arrived 
during the interframe gap while 
another packet (M2) was waiting 
and otherwise would have been 
serialized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    0.0 q+ 
   28.0 qo M1 
        so M1 
   36.0 eo M1 
   55.0 qo A1 
        so A1 
   74.0 qo A2 
   90.0 eo A1 
   90.9 so A2 
  106.4 qo A3 
  108.9 eo A2 
  109.8 so A3 
  135.1 qo M2 
  141.3 eo A3 
  141.9 qo M3 
  142.1 qo V1 
  142.3 so V1 
  158.5 qo A4 
  187.6 qo A5 
  223.3 qo M4 
  259.0 qo A6 
  264.4 eo V1 
  265.4 so M2 
  278.4 qo A7 
  300.5 qo M5 
  306.0 eo M2 
  307.0 so M3 
  312.8 eo M3 
  313.8 so M4 
  319.1 qo M6 
  325.8 qo M7 
  346.9 eo M4 
  347.9 so M5 
  349.8 qo A8 
  375.5 eo M5 
  376.5 so M6 
  394.1 eo M6 
  395.0 so M7 
  398.4 qo A9 
  400.8 eo M7 

20000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       V1  :12208  1 
  7792             0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30000 
       M1  :800    1 
 29200             0 
 
 
 
 
 
 
 
 
 
       M2  :4056   1 
 
                   2 
 
 
 
 
                   3 
 
 
 25144 M3  :576    2 
 
                   3 
 
 24568 M4  :3304   2 
 
 21264 M5  :2760   1 
                   2 
                   3 
 
 18504 M6  :1752   2 
 
 
 16752 M7  :576    1 
 
 16176             0 
 
 

50000 
 
 
 
       A1  :3496   1 
 46504             0 
       A2  :1792   1 
 
 44712             0 
       A3  :3144   1 
 
 41568             0 
 
 
 
 
 
       A4  :5120   1 
                   2 
 
                   3 
 
 
                   4 
 
 
 
 
 
 
 
 
 
                   5 
 
 
 
 
                   6 
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   Tick Ev Pkid 
 

     EF Queue 
Credit HdPk:Frlen Qn 
 

     AF Queue 
Credit HdPk:Frlen Qn 
 

     BE Queue 
Credit HdPk:Frlen Qn 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When V2 is placed in the EF 
queue, A8 is being serialized. 

  401.7 so A4 
  413.9 qo M8 
  448.7 qo A10 
  452.9 eo A4 
  453.9 so M8 
  480.3 eo M8 
  481.3 so A5 
  499.0 qo A11 
  503.8 qo M9 
  509.4 eo A5 
  510.4 so M9 
  540.9 eo M9 
  541.9 so A6 
  559.7 qo M10 
  570.6 qo A12 
  592.8 qo M11 
  606.8 eo A6 
  607.8 so M10 
  619.0 qo M12 
  628.3 qo A13 
  633.5 eo M10 
  634.5 so M11 
  637.2 qo M13 
  666.4 eo M11 
  667.3 so M12 
  675.1 qo A14 
  679.7 eo M12 
  680.6 so M13 
  697.8 eo M13 
  698.8 so A7 
  711.9 qo M14 
  717.2 eo A7 
  718.2 so A8 
  732.0 qo A15 
  742.1 qo V2 
  751.2 qo M15  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       V2  :12208  1 
 

 
       M8  :2632   1 
 
 
 13544             0 
 
 
 
       M9  :3048   1 
 
 10496             0 
 
 
       M10 :2568   1 
 
                   2 
 
  7928 M11 :3184   1 
                   2 
 
 
  4744 M12 :1240   1 
                   2 
 
  3504 M13 :1720   1 
 
 
  1784             0 
 
 
       M14 :3880   1 
 
 
 
 
                   2 

 36448 A5  :2808   5 
 
                   6 
 
 
 
 33640 A6  :6488   5 
                   6 
 
 
 
 
 27152 A7  :1840   5 
 
                   6 
 
 
 
 
                   7 
 
 
 
 
 
                   8 
 
 
 
 25312 A8  :7040   7 
 
 
 18272 A9  :4752   6 
                   7 
 
 

 
When the port is free, neither V2 
nor M14 are selected because 
there is not enough credit for 
them while there is enough credit 
for A9, and even subsequently for 
A10 and A11. In fact BE traffic 
takes its share of bandwidth. 
 
Here is an example of a second  
scanning of the queues by the 
scheduler: No packet (at the 
head of each queue) has enough 
credit. As a result, V2 takes 
advantage of EF priority over 
other classes and is serialized. 
But V2 has waited 188.1 
microseconds in queue, thus 
experiencing jitter. This is normal 
considering that the IP 
throughput is 20Mbps and 
therefore the actual throughput a 
little higher than the assigned 
bandwidth because of the frame 
overhead. 
 
Note that at the “1000.0” 
millisecond boundary, credits 
were refreshed. 

  786.4 qo A16 
  788.6 eo A8 
  789.5 so A9 
  817.6 qo A17 
  820.0 qo M16 
  824.3 qo A18 
  837.1 eo A9 
  838.1 so A10 
  878.9 eo A10 
  879.9 so A11 
  907.6 qo A19 
  929.2 eo A11 
  930.2 so V2 
  940.2 qo M17 
  979.0 qo A20 
  986.5 qo M18 
 1000.0 q+ 
 1001.4 qo A21 
 1023.2 qo A22 
 1052.3 eo V2 
 1053.2 so M14 
 1077.7 qo A23 
 1087.1 qo M19 
 1092.0 eo M14 
 1093.0 so M15 
 1131.3 eo M15 
 1131.9 qo A24 
 1132.2 so M16 
 1142.1 qo M20 
 1147.3 qo A25 
 1166.3 eo M16 
 1167.3 so M17 
 1184.8 qo M21 
 1187.5 eo M17 
 1188.5 so M18 
 1194.3 eo M18 
 1195.3 so M19 
 1212.1 eo M19 
 1213.1 so M20 
 1216.0 qo M22  

 
 
 
 
 
 
 
 
 
 
 
 
 -4416             0 
 
 
 
 20000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                   3 
 
 
 
 
 
 
 
 
                   4 
 
                   5 
 30000 
 
 
 
26120 M15 :3824   4 
 
                   5 
 
 22296 M16 :3408   4 
 
 
 18888 M17 :2016   3 
                   4 
 
 
 16872 M18 :576    3 
                   4 
 
 16296 M19 :1680   3 
 
 14616 M20 :4080   2 
 
 10536 M21 :3896   1 
                   2 

                   8 
 
 13520 A10 :4080   7 
                   8 
 
                   9 
 
  9440 A11 :4928   8 
 
  4512 A12 :7056   7 
                   8 
 
 
 
                   9 
 
 50000 
                  10 
                  11 
 
 
                  12 
 
 
 
 
                  13 
 
 
                  14 
 
 
 
 
 
 
 
 
 
 

 
 

 1219.0 qo A26 
 1225.8 qo M23 

 
 

 
                   3 

                  15 
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   Tick Ev Pkid 
 

     EF Queue 
Credit HdPk:Frlen Qn 
 

     AF Queue 
Credit HdPk:Frlen Qn 
 

     BE Queue 
Credit HdPk:Frlen Qn 
 

 
 
 
 
 
 
 
 
V3 has enough credit, because of 
the previous refresh, and is 
serialized as soon as the port is 
free. 
 
One can observe that, when 
there is no pending EF packets, 
AF packets are serialized 
because they have enough credit 
and a higher priority than BE 
packets. 
When AF credit is no more 
sufficient, BE packets are then 
serialized, thus using BE credit. 

 1238.8 qo A27 
 1253.9 eo M20 
 1254.9 so M21 
 1293.9 eo M21 
 1294.9 so M22 
 1304.1 qo A28 
 1304.9 eo M22 
 1305.8 so M23 
 1311.6 eo M23 
 1312.5 so A12 
 1324.7 qo M24 
 1342.1 qo V3 
 1348.3 qo A29 
 1373.1 qo M25 
 1383.1 eo A12 
 1384.0 so V3 
 1389.1 qo M26 
 1419.0 qo A30 
 1459.0 qo A31 
 1469.0 qo A32 
 1491.4 qo M27 
 1506.1 eo V3 
 1507.1 so M24 
 1519.0 qo M28 
 1525.8 qo M29 
 1526.2 eo M24 
 1527.2 so A13 
 1546.4 qo M30 
 1548.1 qo A33 
 1563.8 qo A34 
 1579.2 eo A13 
 1580.1 so A14 
 1582.7 qo A35 
 1616.0 qo M31 
 1626.0 eo A14 
 1627.0 so A15 
 1653.2 qo M32 
 1654.7 qo A36  

 
 
 
 
 
 
 
 
 
 
 
       V3  :12208  1 
 
 
 
  7792             0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  6640 M22 :1000   2 
 
  5640 M23 :576    1 
 
 
  5064             0 
 
 
       M24 :1904   1 
 
 
                   2 
 
 
                   3 
 
 
 
                   4 
 
  3160 M25 :4040   3 
                   4 
                   5 
 
 
                   6 
 
 
 
 
 
                   7 
 
 
                   8 
 

                  16 
 
 
 
 
                  17 
 
 
 
 42944 A13 :5192  16 
 
 
                  17 
 
 
 
 
                  18 
                  19 
                  20 
 
 
 
 
 
 
 37752 A14 :4584  19 
 
                  20 
                  21 
 
 33168 A15 :5600  20 
                  21 
 
 
 27568 A16 :4632  20 
 
                  21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here is another example of the 
selection of a packet although its 
credit becomes negative. This 
happens actually close to the 
refresh time, and is due to the 
contingency of offered load and 
packet sizes. 

 1683.0 eo A15 
 1684.0 so A16 
 1699.0 qo A37 
 1705.3 qo M33 
 1730.4 eo A16 
 1731.4 so A17 
 1742.0 qo M34 
 1746.5 qo A38 
 1760.7 qo M35 
 1761.7 eo A17 
 1762.7 so A18 
 1768.5 eo A18 
 1769.5 so A19 
 1819.1 qo M36 
 1823.5 qo A39 
 1843.2 eo A19 
 1844.2 so A20 
 1858.0 qo M37 
 1868.7 qo M38 
 1879.7 qo A40 
 1914.6 eo A20 
 1915.6 so A21 
 1937.0 eo A21 
 1938.0 so A22 
 1939.1 qo A41 
 1942.1 qo V4 
 1942.7 qo M39 
 1958.8 eo A22 
 1959.8 so V4 
 1986.5 qo M40 
 1990.3 qo A42 
 1997.0 qo A43 
 2000.0 q+ 
... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       V4  :12208  1 
 
 
 -4416             0 
 
 
 
 20000 
 

 
 
 
                   9 
 
 
                  10 
 
                  11 
 
 
 
 
                  12 
 
 
 
                  13 
                  14 
 
 
 
 
 
 
 
                  15 
 
 
                  16 
 
 
 30000 
 

 
 22936 A17 :3024  20 
                  21 
 
 
 19912 A18 :576   20 
 
                  21 
 
 
 19336 A19 :7368  20 
 
 11968 A20 :7040  19 
 
                  20 
 
  4928 A21 :2136  19 
 
 
                  20 
 
  2792 A22 :2072  19 
 
   720 A23 :4808  18 
                  19 
 
 
 
 
 
                  20 
                  21 
 50000 
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List of abbreviations 
 
AF Assured Forwarding 

ATM Asynchronous Transfer Mode 

BA Behavior Aggregate 

BE Best Effort 

CE Customer Edge equipment 

CoS Class of Service 

CPE Customer Premises Equipment 

CRC Cyclic Redundancy Check 

CT Class-Type 

DS Differentiated Services 
(DiffServ) 

DSCP DS Code Point 

DS-TE DS Traffic Engineering 

EF Expedited Forwarding 

E-LSP EXP-Inferred-PSC LSP 

FCS Frame Check Sequence 

FE Fast Ethernet 

FEC Forwarding Equivalence Class 

FR Frame Relay 

GE Gigabit Ethernet 

L-LSP Label-Only-Inferred-PSC LSP 

LSP Label Switched Path 

LSR Label Switching Router 

Mbps Megabits per second 

MPLS Multi Protocol Label Switching 

MTU Maximum Transfer Unit 

OA Ordered Aggregate 

P Provider core equipment 

PDB Per-Domain Behavior 

PDH Plesiochronous Digital 
Hierarchy (E1, E3, DS3) 

PE Provider Edge equipment 

PHB Per Hop Behavior 

PPP Point-to-Point Protocol 

PSC PHB Scheduling Class 

QoS Quality of Service 

RED Random Early Detection 

RFC Request for Comments 

RTO Retransmission Time-Out 

RTT Round Trip Time 

SDH Synchronous Digital Hierarchy 
(STM-1, STM-4, STM-16...) 

SFD Start Frame Delimiter 

SLS Service Level Specification 

TCP Transmission Control Protocol 

TE Traffic Engineering 

TOS Type Of Service field 

UDP User Datagram Protocol 

VLAN Virtual Local Area Network 

VPN Virtual Private Network 
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Glossary 
 

Frame – A frame is the unit of transmission in a link layer protocol, 
and consists of a link-layer header followed by a packet. 

IP Datagram – An IP datagram is the unit of end-to-end 
transmission in the IP protocol. An IP datagram consists of an IP 
header followed by transport layer data. 

Packet – A packet is the unit of data passed across the interface 
between the internet layer and the link layer. It includes an IP 
header and data. A packet may be a complete IP datagram or a 
fragment of an IP datagram. 

Segment – a segment is the unit of end-to-end transmission in the 
TCP protocol. A segment consists of a TCP header followed by 
application data. A segment is transmitted by encapsulation inside 
an IP datagram. 

Traffic Trunk (TT) – an aggregation of traffic flows of the same 
class which are placed inside an LSP. 

DS Field – the 6 most significant bits of the (former) IPV4 TOS 
octet or the (former) IPV6 Traffic Class octet. 

DS code point (DSCP) – a value which is encoded in the DS field, 
and which each DS Node MUST use to select the PHB which is to 
be experienced by each packet it forwards. 

Microflow – a single instance of an application-to-application flow 
of packets which is identified by source address, destination 
address, protocol id, and source port, destination port (where 
applicable). 

Behavior Aggregate (BA) – a collection of packets with the same 
DS code point crossing a link in a particular direction. 

Per Hop Behavior (PHB) – the externally observable forwarding 
behavior applied at a DS-compliant node to a behavior aggregate. 

Traffic Aggregate (TA) – a collection of packets with a codepoint 
that maps to the same PHB, usually in a DS domain or some 
subset of a DS domain. A traffic aggregate marked for the foo PHB 
is referred to as the "foo traffic aggregate" or "foo aggregate" 
interchangeably. This generalizes the concept of Behavior 
Aggregate from a link to a network. 

Per-Domain Behavior (PDB) – the expected treatment that an 
identifiable or target group of packets will receive from "edge-to-
edge" of a DS domain. A particular PHB (or, if applicable, list of 
PHBs) and traffic conditioning requirements are associated with 
each PDB. 

Ordered Aggregate (OA) – a set of Behavior Aggregates that 
share an ordering constraint. The set of PHBs that are applied to 
this set of Behavior Aggregates constitutes a PHB scheduling 
class. 

PHB Group – a set of one or more PHBs that can only be 
meaningfully specified and implemented simultaneously, due to a 
common constraint applying to all PHBs in the set such as a queue 
servicing or queue management policy. 

PHB Scheduling Class (PSC) – a PHB group for which a common 
constraint is that, ordering of at least those packets belonging to 
the same microflow must be preserved. 

DS Domain – a contiguous portion of the Internet over which a 
consistent set of differentiated services policies are administered in 
a coordinated fashion. A DS domain can represent different 
administrative domains or autonomous systems, different trust 
regions, different network technologies (e.g., cell/frame), hosts and 
routers, etc. 

Service Level Specification (SLS) – a set of parameters and their 
values which together define the service offered to a traffic stream 
by a DS domain. 

Traffic Conditioning Specification (TCS) – a set of parameters and 
their values which together specify a set of classifier rules and a 
traffic profile; a TCS is an integral element of an SLS. 

BA classifier – a classifier that selects packets based only on the 
contents of the DS field. 

MF Classifier – a multi-field (MF) classifier which selects packets 
based on the content of some arbitrary number of header fields; 
typically some combination of source address, destination 
address, DS field, protocol ID, source port and destination port. 

Traffic conditioner – an entity which performs traffic conditioning 
functions and which may contain meters, markers, droppers, and 
shapers. Traffic conditioners are typically deployed in DS boundary 
nodes only. A traffic conditioner may re-mark a traffic stream or 
may discard or shape packets to alter the temporal characteristics 
of the stream and bring it into compliance with a traffic profile. 

Traffic profile – a description of the temporal properties of a traffic 
stream such as rate and burst size. 

Metering – the process of measuring the temporal properties (e.g., 
rate) of a traffic stream selected by a classifier. The instantaneous 
state of this process may be used to affect the operation of a 
marker, shaper, or dropper, and/or may be used for accounting 
and measurement purposes. 

Marking – the process of setting the DS codepoint in a packet 
based on defined rules; pre- marking, re-marking. 

Shaping – the process of delaying packets within a traffic stream to 
cause it to conform to some defined traffic profile. 

Policing – the process of discarding packets (by a dropper) within 
a traffic stream in accordance with the state of a corresponding 
meter enforcing a traffic profile. 

Assured Forwarding (AF) – PHB group which is a means for a 
provider DS domain to offer different levels of forwarding 
assurances. Within each AF class (an instance of the AF PHB 
group) IP packets are marked with one of three possible drop 
precedence values. 

Expedited Forwarding (EF) – PHB intended to provide a building 
block for low delay, low jitter and low loss services by ensuring that 
the EF aggregate is served at a certain configured rate. 

Class-Type (CT) – The set of traffic trunks crossing a link, that is 
governed by a specific set of bandwidth constraints. CT is used for 
the purposes of link bandwidth allocation, constraint based routing 
and admission control. A given traffic trunk belongs to the same 
CT on all links. 

 


