
WebSOS: Protecting Web Servers From DDoS
Attacks

Debra L. Cook∗, William G. Morein∗, Angelos D. Keromytis∗, Vishal Misra∗ and Daniel Rubenstein†

∗ Department of Computer Science † Department of Electrical Engineering
Columbia University

New York City, NY, USA
{dcook,wgm2001,angelos,misra,danr}@cs.columbia.edu

Abstract— We present the WebSOS architecture, a mechanism
for countering denial of service (DoS) attacks against web servers.
WebSOS uses a combination of overlay networking, content-
based routing, and aggressive packet filtering to guarantee access
to a service that is targeted by a DoS attack. Our approach
requires no modifications to servers or browsers, and makes use
of the web proxy feature and TLS client authentication supported
by modern browsers.

We use a WebSOS prototype to conduct a preliminary per-
formance evaluation both on the local area network and over
the Internet using PlanetLab, a testbed for experimentation with
network overlays. We determine the end-to-end latency imposed
by the architecture to increase by a factor of 5 on average. We
conclude that this overhead is reasonable in the context of a
determined DoS attack.

Keywords: Denial of Service, web proxies, overlay net-
works, packet filtering, consistent hashing, distributed hash
tables.

I. INTRODUCTION

The extremely widely-used World Wide Web environment
provides a rich set of targets for motivated attackers. This has
been demonstrated by the large number of vulnerabilities and
exploits against web servers, browsers, and applications uti-
lizing these (e.g., CGI scripts). Traditional security considera-
tions revolved around protecting the network connection’s con-
fidentiality and integrity, protecting the server from break-in,
and protecting the client’s private information from unintended
disclosure. To that end, several protocols and mechanisms have
been developed that address these issues individually [1], [2],
[3], [4], [5]. One area that has been neglected thus far has
been that of service availability in the presence of denial of
service (DoS) attacks, and their distributed variants (DDoS).
Such attacks can take many forms, depending on the resource
the attacker is trying to exhaust. Of particular interest are
link congestion attacks, whereby attackers identify “pinch”
points in the communications substrate and flood them with
large volumes of traffic. An example of an obvious attack
point is the location (IP address) of the destination that is to
be secured, or the routers in its immediate network vicinity;
sending enough attack traffic will cause the links closest to
the destination to be congested and drop all other traffic.

Previous approaches that address the general network DoS
problem [6], [7], [8] are reactive: they monitor traffic at a
target location, waiting for an attack to occur. After the attack

is identified, typically via analysis of traffic patterns and packet
headers, filters may be established in an attempt to block the
offenders. The main two problems with this approach are the
accuracy with which legitimate traffic can be distinguished
from the DoS traffic, and the robustness of the mechanism for
establishing filters deep enough in the network (away from the
target) so that the effects of the attack are minimized.

We build on the Secure Overlay Services (SOS) architecture,
originally introduced in [9]. Our intent is to allow legitimate
users to access web servers under a congestion-based DDoS
attack. We assume that there is a pre-determined subset of
clients scattered throughout the wide-area network who require
(and should have) access to these servers. These users prove
their right to contact the web server through cryptographic
means — i.e., possession of a secret key. This works well
in the web environment, where users are familiar with SSL
[1] and, more importantly, practically all browsers provide the
necessary functionality. We should stress that WebSOS does
not solve the general DoS problem (e.g., the “flash crowd”
phenomenon). We are interested in classes of communication
where both participants are known to each other a priori.

In WebSOS, the portion of the network immediately sur-
rounding the web servers to be protected aggressively filters
and blocks all incoming packets from hosts that are not
approved, as shown in Figure 1. The small set of nodes that are
approved at any particular time is kept secret so that attackers
cannot try to impersonate them to pass through the filter. These
nodes are picked from among those within a distributed set of
nodes throughout the wide area network, that form a secure
overlay dedicated to DoS protection services. Any transmis-
sions that wish to traverse the overlay must first be validated at
entry points of the overlay. Once inside the overlay, the traffic
is tunneled securely for several hops along the overlay to the
approved (and secret from attackers) locations, which can then
forward the validated traffic through the filtering routers to
the target. Thus, the two main principles behind our design
are the elimination of communication pinch-points, which
constitute attractive DoS targets, via a combination of filtering
and overlay routing to obscure the identities of the sites whose
traffic is permitted to pass through the filter, and the ability to
recover from random or induced failures within the forwarding
infrastructure or within the secure overlay nodes.

We use web proxies enhanced with Chord-routing [10]



functionality as the overlay nodes. A proxy local to the web
browser performs the authentication between the legitimate
user and the overlay network, using TLS. Traffic inside the
overlay is also protected via TLS. The implementation is fairly
compact, and was used to evaluate the performance of the
WebSOS overlay both in a local area scenario and using the
PlanetLab testbed [11]. The results show that the end-to-end
latency increases, on average, by a factor 5. We believe this is
an acceptable alternative to providing no service. WebSOS can
be used on an as-needed basis, without affecting performance
when no DoS attack is taking place.

A. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of Secure Overlay Services (SOS)
discusses the specifics of the WebSOS architecture. Sec-
tion III presents details of our prototype implementation, while
Section IV contains a preliminary performance evaluation.
Section V discusses related work in DoS detection, prevention,
and mitigation. Section VI concludes the paper and discusses
directions for future research.

II. THE WEBSOS ARCHITECTURE

The goal of the WebSOS infrastructure is to distinguish
between authorized and unauthorized traffic. The former is
allowed to reach the destination, while the latter (or, more
generally, unverified traffic) is dropped or rate-limited. Thus,
at a very basic level, we need the functionality of a firewall
“deep” enough in the network that the access link to the target
is not congested. This imaginary firewall performs access
control by using traditional protocols such as IPsec. Without
WebSOS, knowledge of the target’s IP address is sufficient to
a moderately-provisioned attacker to saturate the target site.

Unfortunately, traditional firewalls themselves are suscep-
tible to DoS attacks. One way to address this problem is
to replicate the firewall functionality, in a manner similar to
that described in [12]. To avoid the effects of a DoS attack
against the firewall connectivity, we need to distribute these
instances of the firewall across the network. In effect, we are
“farming out” the expensive processing (such as cryptographic
protocol handling) to a large number of nodes. However,
firewalls depend on topological restrictions in the network to
enforce access control policy. Since our distributed firewall has
performed the access control step, it would seem obvious that
all we need around the target is a router that is configured to
only let through traffic forwarded to it by one of the firewalls.

However, a security system cannot depend upon the identity
of these firewalls to remain secret. Thus, an attacker can launch
a DoS attack with spoofed traffic purporting to originate from
one of these firewalls. Notice that, given a sufficiently large
group of such firewalls, we can select a very small number
of these as the designated authorized forwarding stations:
only traffic forwarded from these will be allowed through
the filtering router, and we change this set periodically. We
call these nodes secret servlets. All other nodes must forward

traffic for the target to one of these nodes. Figure 1 gives a
high-level overview of the WebSOS architecture.

Beacon

Servlet
Secret

overlay
nodes

SOAP

Filtered region

Beacon

Servlet
Secret

Beacon

Servlet
Secret

SOAP

Source
Point

Target

Fig. 1. Basic SOS architecture.

To route traffic internally, WebSOS uses Chord [10], which
can be viewed as a routing service that can be implemented
as a network overlay. Consistent hashing [13] is used to map
an arbitrary identifier to a unique destination node that is an
active member of the overlay. Each overlay node maintains a
list that contains O(log N) identities of other active nodes in
the overlay, where N is the number of overlay nodes. Given
the destination identifier, each node knows how to choose a
member in its list such that, from an arbitrarily chosen starting
node, the destination node to which the identifier hashes is
reached in O(log N) overlay hops. The Chord service is
robust to changes in overlay membership: each node’s list
is adjusted to account for nodes leaving and joining the
overlay such that the above stated properties continue to hold.
Note that WebSOS can use any routing algorithm; we chose
Chord because of our familiarity with it and its self-healing
properties.

In WebSOS, the identifier to which the hash function is
applied to is the IP address of the target (web server). Thus,
Chord can be used to direct a packet from any node in the
overlay to the node that the identifier is mapped to (or the
node whose identifier is “closest” to that value), by applying
the hash function to the target’s IP address. This node to which
Chord delivers the packet is not the target, nor is it necessarily
the secret servlet. It is simply a unique node that will be
eventually be reached using Chord, regardless of the starting
point in the overlay. We refer to this node as the beacon, since
it is to this node that packets destined for the target are first
guided. When a packet is approved by a SOAP for forwarding
over the overlay, the hash on the IP address of the target is
used as the key. Chord therefore provides a robust and reliable
while relatively unpredictable means of routing packets from
an access point to one of several beacons.

The secret servlet can determine the beacon’s identity by
hashing on the target identifier (which the secret servlet
knows), and then use Chord to route traffic to it. Hence, the
secret servlet can inform the beacon of the secret servlet’s
identity. The servlets send these advertisements periodically.
Should the servlet for a target change, the beacon will find
out as soon as the new servlet sends an advertisement. If



the old beacon for a target drops out of the overlay, Chord
will route the advertisements to a node closest to the hash
of the target’s identifier. Such a node will know that it is
the new beacon because Chord will not be able to further
forward the advertisement. By providing only the beacon with
the identity of the secret servlet, the packet can be delivered
from any overlay entry point (we call these Secure Overlay
Access Points, or SOAPs) to the target by traveling across
the overlay to the beacon, then from the beacon to the secret
servlet, and finally from the secret servlet (through the filter)
to the target. This allows the overlay to scale for arbitrarily
large numbers of overlay nodes and target sites.

A. WebSOS Overlay Nodes

We use special-purpose web proxies as the overlay nodes.
These proxies implement the following functionality:

1) Receive SSL connections from other proxies; both sides
are mutually authenticated using public key certificates
issued by the administrator of the WebSOS overlay.

2) Proxy HTTP (or HTTPS) requests received over these
SSL connections to other WebSOS nodes, again over
SSL.

3) Accept SSL connections from browsers, verify the client
certificate received over the SSL exchange, and proxy
the HTTP or HTTPS request(s) to other overlay nodes,
per item (2).

4) Implement the Chord routing algorithm, as discussed
above. The routing table thus constructed is used to
determine the next proxy to forward an HTTP/HTTPS
request to, as per above.

5) Implement beacon functionality. This means that every
node must maintain a table associating web server IP
addresses to secret servlet IP addresses. If a proxy
request for a web server in this table is received, the
connection is proxied to the associated secret servlet.

6) Implement secret servlet functionality. If a request is
received for a web server for which the node is a secret
servlet, the connection is forwarded directly to the web
server. Furthermore, allow authorized web servers to
notify a WebSOS node that it is a secret servlet for that
server. The node must verify the certificate presented
by the server in the SSL exchange, and then notify the
beacon for that target that it is the new servlet.

Notice that if the browser is doing end-to-end SSL (to the
web server), the encrypted link will be super-encrypted with
SSL on the link between the browser and the SOAP, and
between each overlay node. We use SSL in the intermediate
links to prevent an attacker from inserting traffic in the overlay
through IP spoofing. We also use SSL as an admission-control
mechanism to the overlay; SOAPs perform the admission
control function. No special functionality is required by the
proxies to perform these tasks; the user browser simply has to
be supplied with the appropriate public key certificate(s) from
the WebSOS administrator.

Traffic in the reverse direction (from web server to client)
could also traverse the overlay, by reversing the roles of

user and target. In that case, the path taken by requests and
responses would be different. Alternatively, traffic from the
target to the user could be sent directly (without using the over-
lay); this is usually not a problem, since most communication
channels are full-duplex and, in the event of a DDoS attack,
only the downstream portion (to the target) is congested. An
additional benefit of this asymmetric approach is reduced
latency, especially considering that most client/server traffic
(especially in the web environment) is highly asymmetric (i.e.,
clients receive a lot more information than they transmit). This
was possible because routing decisions in SOS are made on a
per-packet basis.

In WebSOS, routing decisions are made on a per-connection
basis. Any subsequent requests over the same connection
(when using HTTP 1.1) and any responses from the web
server can take the reverse path through the overlay. While this
makes the implementation simpler, it also introduces increased
latency, as the bulk of the traffic will also traverse the overlay.
We shall see in the next section how to avoid this problem.

B. Sequence of Operations

The sequence of operations in the WebSOS architecture
consists of the following steps.

• A site (target) installs a filter on a router in its immediate
vicinity and then selects a number of WebSOS nodes
to act as servlets. Routers at the perimeter of the site
are instructed to only allow traffic from these servlets
to reach the internal of the site’s network. These routers
are powerful enough to do filtering (using only a small
number of rules) on incoming traffic without adversely
impacting their performance. In order to make guessing
the identity of a secret servlet for a particular target harder
for the attacker, the filtering mechanism should use packet
fields with potentially high entropy. For example, only
GRE [14] packets form a particular source (the secret
servlet) containing a specific 32-bit value in the GRE
Key field [15]. An attacker trying to slip attack traffic
through the filter must guess both the current servlet’s IP
address and the correct 32-bit key.

• When an SOS node is informed that it will act as a secret
servlet for a site (and after verifying the authenticity of
the request, by verifying the certificate received during
the SSL exchange), it will compute the key k for each
of a number of well-known consistent hash functions,
based on the target site’s network address. Each of these
keys will identify a number of overlay nodes that will act
as beacons for that web server. Any traffic to the target
received from the overlay will be directly forwarded to
these nodes, and from there to the secret servlets.

• Having identified the beacons, the servlets or the target
will contact them, notifying the beacons of the servlets’
existence and association with a particular target. Bea-
cons, after verifying the validity of the request, will store
the necessary information to forward traffic for that target
to the appropriate servlet.



• A source that wants to communicate with the target
contacts a SOAP. After authenticating and authorizing the
request, the SOAP securely proxies all traffic from the
source to the target via one of the beacons. The SOAP
(and all subsequent hops on the overlay) can proxy the
HTTP request to an appropriate beacon in a distributed
fashion using Chord, by applying the appropriate hash
function(s) to the target’s IP address to identify the next
hop on the overlay.

• Finally, the beacon proxies the request to a secret servlet
that then proxies the traffic (through the filtering router)
to the target.

This scheme is robust against DoS attacks because if an
access point is attacked, the confirmed source point can simply
choose an alternate access point to enter the overlay. Any
overlay node can provide all different required functionalities
(SOAP, Chord routing, beacon, secret servlet). If a node within
the overlay is attacked, the node simply exits the overlay
and the Chord service self-heals, providing new paths over
the re-formed overlay to (potentially new sets of) beacons.
Furthermore, no node is more important or sensitive than
others — even beacons can be attacked and are allowed to
fail. Finally, if a secret servlet’s identity is discovered and the
servlet is targeted as an attack point, or attacks arrive at the
target with the source IP address of some secret servlet, the
target can choose an alternate set of secret servlets.

III. IMPLEMENTATION

We have an initial implementation of WebSOS, consisting
of three main modules. The components are a communications
module, a SOS routing module, and an overlay routing module
running on each node in the SOS overlay.

The communications module is responsible for forwarding
HTTP requests and responses among the nodes in the SOS
overlay. When a new proxy request (in the form of a new TCP
connection) is received, the communications module calls the
SOS routing module with the target’s destination address to
obtain the address of the next hop in the overlay. It then opens
a new TCP connection to that node and relays the received
HTTP request. Any traffic received in the opposite direction
(i.e., the HTTP responses and web content) are relayed back to
the source. Authentication of the requesting node by the SOAP
and internal nodes is accomplished through SSL. Authorized
users and SOS overlay nodes are issued X.509[16] certificates
signed by the WebSOS certificate authority.

Thus, when a request is issued by the browser, it is tunnelled
through a series of SSL-encrypted links to the target, allowing
the entire transmission between the requester and target to be
encrypted. These SSL connections between WebSOS nodes
are dynamically established, as new requests are routed. One
problem we ran into while developing the WebSOS prototype
is that web browsers do not provide support for the actual
proxy request to be encrypted. To solve this problem, we
wrote a port forwarder that runs on the user’s system, accepts
plaintext proxy requests locally, and forwards them using SSL
to the access point node. In the current implementation, this

TABLE I

Latency, measured in seconds, when contacting various
SSL-enabled web servers directly and with different numbers

of (intermediate) overlay nodes in the same LAN.

Server/Nodes Direct 1 4 7 10
Yahoo! 1.39 2.06 2.37 2.79 3.33
Verisign 3.43 4.22 5.95 6.41 9.01
CU BB 0.64 0.86 1.06 1.16 1.21
CU BB (2nd) 0.14 0.17 0.19 0.20 0.25

forwarder is a stand-alone program. Thus, to use WebSOS,
an authorized user simply has to access any SOAP, download
the proxy code, and set the browser’s proxy settings to the
localhost. The downloaded proxy itself is not considered part
of the WebSOS overlay and is not trusted to perform any
access control decisions; it is simply a “helper” application.

The SOS routing module receives requests from the com-
munications module and responds with the IP address of the
next node in the SOS overlay to which the request should be
forwarded. The module first checks whether the current node
serves a specific purpose (i.e., whether is it a beacon or secret
servlet for that target). If the node serves no such purpose,
the module calls the overlay routing module to determine
the next hop in the SOS overlay and passes the reply to the
communications module.

The overlay routing module is a general routing algorithm
for overlay networks. A Chord implementation was used in
our initial tests, but can be replaced with any other routing
algorithm, e.g., CAN [17]. It receives queries containing a
destination IP address (the web server’s) and responds with
the IP address of the next node in the overlay to which the
request should be forwarded. For maintenance of its own
routing table, the Chord implementation also communicates
with other overlay nodes to determine their status.

IV. EXPERIMENTAL EVALUATION

In order to quantify the overhead imposed by the WebSOS
architecture, we created a simple topology running on the local
network (100 Mbit fully-switched Ethernet). For our local-area
network overlay, we used 10 commodity PCs running Linux
Redhat 7.3. We measured the time-to-completion of https
requests. That is, we measured the elapsed time starting when
the browser initiates the TCP connection to the destination or
the first proxy, to the time all data from the remote web server
have been received. We ran this test by contacting 3 different
SSL-enabled sites: login.yahoo.com, www.verisign.com, and
our Columbia University’s course bulletin-board web service.
For each of these sites we measured the time-to-completion
for a different number of overlay nodes between the browser
and the target (remote web server).

The browser was located in a separate network. The reason
for this configuration was to introduce some latency in the
first-hop connection (from the browser to the SOAP), thus
simulating (albeit using a real network) an environment where
the browsers have slower access links to the SOAPs, relative
to the links connecting the overlay nodes themselves (which



TABLE II

Latency, measured in seconds, when contacting various
SSL-enabled web servers directly and with different numbers

of (intermediate) overlay nodes using PlanetLab.

Server/Nodes Direct 1 4 7 10
Yahoo! 1.39 3.15 5.53 10.65 14.36
Verisign 3.43 5.12 7.95 14.95 22.82
CU BB 0.64 1.01 1.45 3.14 5.07
CU BB (2nd) 0.14 0.23 0.28 0.57 0.72

may be co-located with core routers). By locating all the
overlay nodes in the same location, we effectively measure
the aggregate overhead of the WebSOS nodes in the optimal
performance case.

Table I shows the results for the case of 0 (browser contacts
remote server directly), 1, 4, 7, and 10 traffic-handling overlay
nodes. The times reported are in seconds, and are averaged
over several HTTPS GET requests of the same page, which
was not locally cached. For each GET request, a new TCP
connection was initiated by the browser. The row labeled “CU
BB (2nd)” shows the time-to-completion of an HTTPS GET
request that uses an already-established connection through the
overlay to the web server, using the HTTP 1.1 protocol.

As the table shows, WebSOS increases the end-to-end
latency between the browser and the server by a factor of 2
to 3. This increase can be primarily attributed to the network-
stack and proxy processing overhead at each hop.

Furthermore, there is an SSL-processing overhead for the
inter-overlay communications. A minor additional crypto-
graphic overhead, relative to the direct access case, is the
certificate validation that the SOAPs have to perform, to
determine the client’s authority to use the overlay, and the SSL
connection between the proxy running on the user’s machine
and the SOAP. As shown in [18], such overheads are typically
dominated by the end-to-end communication overheads. Use
of cryptographic accelerators can further improve performance
in that area. One further optimization is to maintain persistent
SSL connections between the overlay nodes. However, this
will make the task of the communication module harder, as it
will have to parse HTTP requests and responses arriving over
the same connection in order to make routing decisions.

Table II shows the same experiment using PlanetLab [11],
a wide-area overlay network testbed. The PlanetLab nodes are
distributed in academic institutions across the country, and
are connected over the Internet. We deployed our WebSOS
proxies PlanetLab and ran the exact same tests. Naturally, the
direct-contact case remains the same. We see that the time-to-
completion in this scenario increases by a factor of 2 to 10,
depending on the number of nodes in the overlay. In each case,
the increase in latency over the local-Ethernet configuration
can be directly attributed to the delay in the links between the
WebSOS nodes. While the PlanetLab configuration allowed us
to conduct a much more realistic performance evaluation, it
also represents a worst-case deployment scenario for WebSOS:

typically, we would expect WebSOS to be offered as a service
by an ISP, with the (majority of) WebSOS nodes located
near the core of the network. Using PlanetLab, the nodes
are distributed in (admittedly well-connected) end-sites. We
would expect that a more commercial-oriented deployment
of WebSOS would result in a corresponding decrease in the
inter-overlay delay. On the other hand, it is easier to envision
end-site deployment of WebSOS, as it does not require ISP
participation.

Note the latency increases with the log of the number of
nodes in the overlay, since that is how many nodes, in the worst
case, a connection will be relayed through before it reaches the
beacon. However, the difficulty of shutting down the network
for the attacker increases linearly with the number of nodes.
This is directly analogous to modern cryptography: extending
the length of a cryptographic key increases the work factor
for legitimate users linearly, but makes a brute force attack
exponentially more difficult.

Finally, while the additional overhead imposed by WebSOS
can be significant, we have to consider the alternative: no web
service while a DoS attack against the server is occurring.
While an increase in end-to-end latency by a factor of 5 (or
even 10, in the worst case) is considerable, we believe it
is more than acceptable in certain environments and in the
presence of a determined attack.

V. RELATED WORK

The need to protect against or mitigate the effects of DoS
attacks has been recognized by both the commercial and
research world. Some work has been done toward achieving
these goals, e.g., [6], [7], [8]. However, these mechanisms
focus on detecting the source of DoS attacks in progress and
then countering them, typically by “pushing” some filtering
rules on routers as far away from the target of the attack
(and close to the sources) as possible. Thus, they fall into this
class of approaches that are reactive. The motivation behind
such approaches has been twofold: first, it is conceptually
simple to introduce a protocol that will be used by a relatively
small subset of the nodes on the Internet (i.e., ISP routers),
as opposed to requiring the introduction of new protocols that
must be deployed and used by end-systems. Second, these
mechanisms are fairly transparent to protocols, applications,
and legitimate users. Unfortunately, these reactive approaches
by themselves are not always adequate solutions.

Methods that filter traffic by looking for known attack pat-
terns or statistical anomalies in traffic patterns can be defeated
by changing the attack pattern and masking the anomalies that
are sought by the filter. Furthermore, statistical approaches will
likely filter out valid traffic as well. Since the Internet spans
multiple administrative domains and (legal) jurisdictions, it is
often very difficult, if not outright impossible, to shut down an
attack by contacting the administrator or the authorities closest
to the source. In any case, such action cannot be realistically
delivered in a timely fashion (often taking several hours). Even
if this were possible, it is often the case that the source of the
attack is not the real culprit but simply a node that has been



remotely subverted by a cracker. The attacker can just start
using another compromised node.

Using a “pushback”-like mechanism such as that described
in [6] to counter a DoS attack makes close cooperation among
different service providers necessary: since most attacks use
random source IP addresses (and since ingress filtering is not
widely used), the only reliable packet field that can be used for
filtering is the destination IP address (of the target). If filters
can only be pushed “halfway” through the network between
the target and the sources of the attack, the target runs the risk
of voluntarily cutting off or adversely impacting (e.g., by rate-
limiting) its communications with the rest of the Internet. The
accuracy of such filtering mechanisms improves dramatically
as the filters are “pushed” closer to the actual source(s) of
the attack. Thus, it will be necessary for providers to allow
other providers, or even end-network administrators, to install
filters on their routers. Apart from the very realistic possibility
of abuse, it is questionable whether such collaboration can be
achieved to the degree necessary.

[19] proposes using Class-Based Queueing on a web load-
balancer to identify misbehaving IP addresses and place them
in lower-priority queues. However, most DDoS attacks use
spoofed IP addresses that vary over time, thus defeating
classification. Even if the same address is used, the amount
of state that the load-balancer needs to keep may be pro-
hibitive. Furthermore, many of the DDoS attacks simply cause
congestion to the web server’s access link. To combat that,
the load-balancer would have to be placed closer to the
network core. Not only would this further compound the state-
explosion problem, but such detailed filtering and especially
state-management on a per-source-IP address bassis can have
performance implications at such high speeds.

VI. CONCLUSIONS

We presented WebSOS, an architecture that allows legiti-
mate users to access a web server in the presence of a DoS
attack. We use a combination of cryptographic protocols for
authentication, packet filtering, overlay networks, and consis-
tent hashing to provide service to authorized users trying to
contact a web server under attack. Our architecture requires
no changes to web servers, browsers, or existing protocols.

We evaluated the performance of WebSOS, using our proto-
type implementation, over both a local area network and over
the Internet using PlanetLab. Our measurements show that in
a realistic but worst-case deployment scenario the end-to-end
communication latency between browser and server increases
on the average by a factor of 5, with a worst case of 10. We
also discussed various potential optimizations for improving
performance. We believe that even at its current level, the
overhead imposed is acceptable in many critical environments
and applications.

ACKNOWLEDGEMENTS

This work is supported in part by DARPA contract No.
F30602-02-2-0125 (FTN program) and by the National Sci-
ence Foundation under grant No. ANI-0117738 and CAREER

Award No. ANI-0133829, with additional support from Cisco
and Intel Corporations. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

Alexander Konstantinou’s NetCallback was used as a basis
for the forwarding code. Abhinav Kamra wrote the CHORD
implementation.

REFERENCES

[1] T. Dierks and C. Allen, “The TLS protocol version 1.0,” RFC 2246,
January 1999. [Online]. Available: ftp://ftp.isi.edu/in-notes/rfc2246.txt

[2] R. S. Sandhu and J. S. Park, “Decentralized user-role assignment
for web-based intranets,” in ACM Workshop on Role-Based Access
Control, 1998, pp. 1–12. [Online]. Available: citeseer.nj.nec.com/
sandhu98decentralized.html

[3] L. Gong and R. Schemers, “Implementing Protection Domains in the
Java Development Kit 1.2,” in Proceedings of Network and Distributed
System Security Symposium (NDSS), March 1998, pp. 125–134.

[4] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for
anonymous and private internet connections,” Communications of the
ACM (USA), vol. 42, no. 2, pp. 39–41, 1999. [Online]. Available:
citeseer.nj.nec.com/goldschlag99onion.html

[5] L. Cranor, M. Langheinrich, M. Massimo, M. Presler-Marshall, and
J. Reagle, “The Platform for Privacy Preferences 1.0 (P3P1.0) Speci-
fication,” World Wide Web Consortium (W3C), Tech. Rep., 2002.

[6] J. Ioannidis and S. M. Bellovin, “Implementing Pushback: Router-Based
Defense Against DDoS Attacks,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), February 2002.

[7] D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic Approach to
IP Traceback,” in Proc. of the Network and Dsitributed System Security
Symposium (NDSS), February 2001, pp. 3–12.

[8] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network Support
for IP Traceback,” ACM/IEEE Transactions on Networking, vol. 9, no. 3,
pp. 226–237, June 2001.

[9] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay
Services,” in Proceedings of ACM SIGCOMM, August 2002, pp. 61–72.

[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM, San Diego, CA, August 2001.

[11] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, “A Blueprint for
Introducing Disruptive Technology into the Internet,” in Proceedings
of the 1st Workshop on Hot Topics in Networks (HotNets-I), October
2002. [Online]. Available: citeseer.nj.nec.com/peterson02blueprint.html

[12] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a
Distributed Firewall,” in Proceedings of Computer and Communications
Security (CCS), November 2000, pp. 190–199.

[13] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relievig Hot Spots on the World Wide Web,” in
Proceedings of ACM Symposium on Theory of Computing (STOC),
May 1997, pp. 654–663. [Online]. Available: citeseer.nj.nec.com/
karger97consistent.html

[14] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, March 2000. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2784.txt

[15] G. Dommety, “Key and Sequence Number Extensions to GRE,” RFC
2890, September 2000. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc2890.txt

[16] CCITT, X.509: The Directory Authentication Framework, International
Telecommunications Union, Geneva, 1989.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” in Proceedings of ACM
SIGCOMM, San Diego, CA, August 2001.

[18] S. Miltchev, S. Ioannidis, and A. Keromytis, “A Study of the Relative
Costs of Network Security Protocols,” in Proceedings of USENIX Annual
Technical Conference (Freenix track), June 2002, pp. 41–48.

[19] F. Kargl, J. Maier, and M. Weber, “Protecting web servers from
distributed denial of service attacks,” in Proceedings of the World
Wide Web Conference, 2001, pp. 514–524. [Online]. Available:
citeseer.nj.nec.com/444367.html


