

Honeyd – A low involvement
Honeypot in Action

Reto Baumann
GCIA, GSEC, CCNA

me@rbaumann.net

http://security.rbaumann.net

Originally published as part of the GCIA practical

Table of Contents
Table of Contents..2
Conventions Used in this Paper..2
Introduction ...3
What is a Honeypot...3
Two Honeypot Categories...3

Level of Involvement..4
Honeyd – A Virtual Honeypot..5

Honeyd Installation and Configuration...5
Honeyd in Action ...6

Chosen Setup ..7
Results ...8

Conclusion ..13
Software Download Locations...13
References..14

Conventions Used in this Paper

Normal text is written in 12-point Arial. A lot of command-line command are used, they
look the following

$ command to issue on a shell, the ‘$’ indicates the
command-line prompt

A lot of mysql commands are also used, the look similar to the command used on a shell

Mysql> Here comes a mysql command

Due to the heavy use of log entries, they have a somewhat smaller appearance

Logs are written in 9-point Courier-New

Output from all commands is enclosed in a box as if it would be a screenshot

Output from a command is surrounded by a box and therefore treated
like a screenshot. ASCII art should also appear correctly
 +---------------------+
 | Small Box in ASCII |
 +---------------------+

Introduction
Honeyd – What could that be? Well, honeyd is a small little program with a great effect –
you can spend hours of watching and fine-tuning honeyd and the associated scripts and
it is even fun. Honeyd is an application which enables the setup of multiple virtual
honeypots on a single machine, each with different characteristics and services. But let’s
start at the beginning, let’s first have a look at the honeypot technology before we are
coming back with more details for honeyd.

What is a Honeypot
Honeypots aren’t something that new – the basic idea of a honeypot is quite old and was
used already for quite a long time. Although, the word “Honeypot” is a new one and the
technology is getting more and more important. But let’s first have a look at a possible
definition of what a honeypot is
“A honeypot is a resource which pretends to be a real target. A honeypot is expected to
be attacked or compromised. The main goals are the distraction of an attacker and the
gain of information about an attack and the attacker.” - R. Baumann, C. Plattner

A honeypot therefore is a system which is acting as a potential target for an attacker.
The system itself though isn’t of much value to the operator as no valuable information
or important services are located on that machine – it’s the opposite. All services running
on a honeypot aren’t used in the productive environment. The services aren’t promoted
and so there shouldn’t be any productive traffic going for these systems. Due to this fact,
all traffic heading and reaching a honeypot is of potential value and should be analyzed.
A honeypot doesn’t need to deal with false positives like an intrusion detection system
as there are simply no false positives – all traffic is suspicious as there shouldn’t be any
traffic because nobody knows of the system, no productive services are running and the
system is not involved in “normal” activities.

Two Honeypot Categories
Two categories of honeypots have evolved – research and productive honeypots.
Research honeypots are used primarily for research activities like detecting new kind of
attacks, retrieving new hacker tools or to get a better knowledge about the attackers,
their background, activities and goals. Research honeypots are valuable for developing
new IDS signatures, analyze new attack tools or detect new ways of hidden
communications or distributed denial of service (DDoS) tools. Research honeypots
normally have great logging capabilities to log a hacker’s activity once the attacks
started or he gained root access.
The other category, the productive honeypots, is mostly used to distract an attacker from
the real target. A honeypot is used as a bait to bind his attacking attempts as long as
possible to the unproductive honeypot in order to gain time and protect the productive
environment in the meantime. A productive honeypot is primarily not interested in
gaining new knowledge about the blackhat community – its main interest is the
protection of the real servers. Productive honeypots sometimes are also used to gather
enough evidence for a successful prosecution of a hacker – But this application is still
controversial and the legal side of such procedures is also not clear.

Level of Involvement
Besides the two usage categories of honeypots we already seen, there are also three
different technical implementations of honeypots. The essential factor to distinguish here
is the “level of involvement”. A honeypot is acting like a “normal” server to the attacker –
he offers certain services on different ports and could have certain vulnerabilities.
Depending on the usage of a honeypot, having some real services on that machine is
not always desired or even needed. It could be enough to have a simple listener bound
to a port which just writes all incoming packets to a file and never answers to the
received request. For catching an infected Microsoft Internet Information Server this is
enough, no real IIS is needed. On the other hand, to study a hacker’s social network and
ways of communicating it could be necessary to “offer a real shell” and allow the attacker
to gain root privileges. Once a hacker is root on a system it could be very interesting to
see what he’s going to do and for what he does need his newly gained system. These
different honeypots can be described with the level of involvement

• Low involvement: They are listening on a certain port for incoming connections.
All packets are logged. No answer to the request is sent. Low involvement
honeypots have no interaction with the attacker. No traffic is ever leaving the
honeypot – It’s a simple logging machine.

• Mid involvement: Mid involvement honeypots also listen on different ports. But in
contradiction to low involvement they send information back to the attacker. A
request is answered and the attacker has the possibility to issue commands.
Normally, mid involvement honeypots don’t use real daemons, instead scripts or
small programs are used to imitate the behavior of a service. The provided
functionality depends on the script – in most cases, the provided commands are
very limited. The big advantage of using such scripts is their logging capabilities
and the circumvention of possible vulnerabilities of real services.

• High involvement: High involvement honeypots are the most advanced
honeypots. They use real daemons and provide the full set of functionality. An
attacker can do whatever he could do to a productive system – no limitations in
functionality, vulnerability or behavior. Unfortunately, logging all attempts with
high details isn’t always easy and the risk of a compromise is growing. Mostly,
high involvement honeypots are used when a compromise of a system is
desired.

The following table (source “Honeypots” by R. Baumann, C. Plattner) provides an
overview of the different honeypot and their level of involvement

 Low Inv. Mid Inv. High Inv.
Degree of involvement Low Mid High
Real operating system - - x
Risk Low Mid High
Information gathering Connections Requests All
Compromised wished - - x
Knowledge to run Low Low High
Knowledge to develop Low High High
Maintenance time Low Low Very high

Even if the idea of honeypots is not that new, honeypots are still in its infancy. Especially
the combination of honeypots with intrusion detection systems and firewalls could open
some new possibilities in the fight against the blackhat community. It is possible that the

combination of honeypots and intrusion detection could be used to dynamically update
firewall rules and actively prevent attacks before they can be targeted at a productive
system.

This short description of what a honeypot is, what kind of honeypots there are and how
they are setup technically should provide enough background to go on with honeyd.

Honeyd – A Virtual Honeypot
Honeyd is a freely available framework for setting up virtual honeypots. With honeyd it is
possible to setup honeypots with different personalities and services on one machine.
Honeyd emulates the different operating system’s IP stack and binds certain script to a
desired port to emulate a specific service. Honeyd is able to fool network fingerprinting
tools to think they are dealing with a real operating system ranging from a Windows NT
to an AIX box. Even different router’s IP stacks can be emulated. Honeyd relies on the
nmap fingerprinting file which is used to characterize different kind of operating systems
and their IP stacks. Before honeyd is inserting a packet into the IP stream, the
personality of the packet is adjusted according to the desired operating system and the
corresponding TCP/IP flags. With honeyd it is even possible to emulate complex network
architectures and their characteristics. Virtual routing topologies can be defined including
different brands of routers, the latency of a network connection as well as the packet
loss. When using tools to map the network (like traceroute), the network traffic appears
to follow the configured routers and network connections.
The setup of virtual machines is very easy. A configuration file is used to tell honeyd
what kind of operating system is desired, how it does respond to closed ports and what
kind of service is listening on which port. Honeyd is capable of binding a script to a
network port. The script can be a standard shell script which simulates a certain service.
Most scripts are built as state machines where a command triggers a certain response
or advances to a new state with new possibilities. Scripts for the most popular well
known services like SMTP, HTTP and telnet are available at several locations on the
Internet.

Honeyd Installation and Configuration
The honeyd installation is straight forward and no problem at all. All you have to get first
are three libraries

• libevent - an asynchronous event library
• libnet – a network library
• libpcap - a packet capture library

Installing all three libraries is very easy; just go the usual way of installing a UNIX
application with

$./configure; make; make install

Honeyd itself is also installed in the same way. After successfully installing all
components it is a wise idea to store all honeyd scripts in a central place.

As mentioned, honeyd is configured via a simple text file where all virtual honeypots as
well as the virtual network topology is specified. Each system is first created with a

create command. The system then is further specified and configured with add and
set commands. With the set personality command, a personality is assigned to a
created system. It is further possible to choose the default action for the supported
network protocols like block, reset or open. If the default value is set to be open, all
ports for the desired protocol are in a listening state. The value reset defines all ports
to be closed while block is used to drop all packets for the designated protocol.
Adding services, therefore binding scripts to a certain port, is done by using the add
command. Instead of binding a script to a port it is also possible to forward the traffic to
another IP by using the keyword proxy. Honeyd defines four variables which can be
very handy: $ipsrc for the IP source, $sport for the source port, $ipdst for the
targeted IP and finally $dport for the destination port. With these variables it is possible
to pass parameters to the scripts or to forward traffic based on one of these values.
The created systems are then assigned to an IP with the bind command. The following
example configuration file shows most of these commands as well as a basic example
for defining a network topology.

route entry 192.168.1.1
route 192.168.1.1 link 192.168.1.0/24
route 192.168.1.1 add net 192.168.2.0/24 192.168.2.1 latency 45ms
loss 0.2
route 192.168.1.1 add net 192.168.3.0/24 192.168.3.1 latency 10ms
loss 0.1
route 192.168.2.1 link 192.168.1.0/24
route 192.168.3.1 link 192.168.2.0/24

create router
set router personality “Cisco 7206 running IOS 11.1(24)”
set router default tcp action reset
add router tcp port 23 “scripts/router-telnet.pl”
bind 192.168.1.1 router

create linux
set linux personality "Linux 2.2.12 - 2.2.19"
add linux tcp port 23 "sh scripts/telnet.sh"
add linux tcp port 22 open
set linux uptime 112211
set linux default tcp action reset
set linux default udp action reset
bind 192.168.1.2 linux

The example configuration script generates a simple network topology as well as a
Cisco router with telnet running on port 23 as well as a Linux operating system with
telnet on port 23 and an open ssh port. The Linux system is set to have an uptime of
112211 seconds.
As it can be seen here, adding new systems, modifying existing ones and even construct
virtual networks is straight forward and easily achieved.

Honeyd in Action
To see honeyd in action, I decided to give it a try and configure three different systems
with different services with honeyd. The following chapters will describe how honeyd was
installed and configured and most importantly, what kind of attacks did hit honeyd during
a two weeks testing period.

Chosen Setup
Honeyd was installed as described in one of the earlier chapters. To be able to catch
and categorize most attacks I also installed Snort in its latest version available at the
time of writing (version 1.9.1) as well as MySQL 4.1 for logging all Snort events to the
database for easier analysis. Describing the installation of all involved pieces of software
would break the content here, but installing them shouldn’t be a problem for a UNIX
user/administrator.

One physical system was configured with honeyd to host three virtual machines. Each
should listen on its own IP address. Honeyd is using libpcap to listen on a network
interface and to capture the traffic. To have traffic for the configured IP’s passing our
network interface, we have to answer the corresponding ARP requests. For this
purpose, arpd was installed. This little tool listens on an interface and answers ARP
requests for some desired IP addresses. With the help of arpd it was ensured that the
traffic for our virtual honeypots did get to our physical interface.

For honeyd, the following configuration file was used:

annotate "AIX 4.0 - 4.2" fragment old
create aix
set aix personality "AIX 4.0 - 4.2"
add aix tcp port 80 "sh scripts/web.sh"
add aix tcp port 22 "sh scripts/test.sh $ipsrc $dport"
set aix default tcp action reset
bind 10.0.0.2 aix

create linux
set linux personality "Linux 2.2.12 - 2.2.19"
add linux tcp port 23 "sh scripts/telnet.sh"
add linux tcp port 22 open
set linux uptime 112211
set linux default tcp action reset
set linux default udp action reset
bind 10.0.0.3 linux

create windows
set windows personality "Windows NT 4.0 Server SP5-SP6"
set windows default tcp action reset
set windows default udp action reset
add windows tcp port 80 "perl scripts/iisemulator-0.95/iisemul8.pl"
add windows tcp port 139 open
add windows tcp port 137 open
add windows udp port 137 open
add windows udp port 135 open
set windows uptime 42002
bind 10.0.0.4 windows

For Snort, the following configuration file was used

#--
http://www.snort.org Snort 1.9.1 Ruleset
Contact: snort-sigs@lists.sourceforge.net
Ruleset for honeyd field project
#--
NOTE:This ruleset only works for 1.9.1 and later
#--

Step #1: Set the network variables:

var HOME_NET 62.2.201.201/28
var EXTERNAL_NET !62.2.201.201/28
var DNS_SERVERS $HOME_NET
var SMTP_SERVERS $HOME_NET
var HTTP_SERVERS $HOME_NET
var SQL_SERVERS $HOME_NET
var TELNET_SERVERS $HOME_NET
var HTTP_PORTS 80
var SHELLCODE_PORTS !80

Path to your rules files (this can be a relative path)
var RULE_PATH /etc/snort/rules

Step #2: Preprocessors

preprocessor frag2
preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor stream4_reassemble
preprocessor http_decode: 80 unicode iis_alt_unicode double_encode
iis_flip_slash full_whitespace
preprocessor rpc_decode: 111 32771
preprocessor bo: -nobrute
preprocessor telnet_decode
preprocessor portscan: $HOME_NET 4 3 portscan.log
preprocessor conversation: allowed_ip_protocols all, timeout 60,
max_conversations 32000

Step #3: Configure output plugins

output log_tcpdump: tcpdump.log
output alert_full: snort-alerts.txt
output database: log, mysql, user=snort password=snort dbname=snort
host=localhost

Step #4: Customize your rule set

The standard rules where used… but removed here to save space

After starting Snort and arpd, the system was ready to host three new virtual honeypots.
Honeyd was then started

$ honeyd -p nmap.prints -f honeyd.conf -x xprobe2.conf
-a nmap.assoc –l /usr/local/honeyd/logs 10.0.0.2-
10.0.0.4

After checking the readiness of our honeypots, the system was left alone for 14 days to
gather and log attacks destined for its victims.

Results
The honeyd configuration was running for exactly 14 days. All events were stored in a
MySQL database for easy statistical analysis. In the two weeks, 11121 alerts were
generated. It would be interesting to see if we have about the same amount of attacks
each day.

Detected Attacks by Day

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day

At
te

m
pt

s

As it can be easily seen, we have huge differences in the number of attacks detected
each day. By having a look at the alerts itself we can see that the signature “WEB-IIS
cmd.exe access” triggered most of the alerts (more than 50%). Doing another chart
where we explicitly show the “WEB-IIS cmd.exe access” alerts leads to some new
conclusions. As it can be seen, all other alerts don’t lead to such strong peaks which we
had on day 2, 5 and 8. We still have some kind of “top-scorer days” but they are not as
significant as others.

Detected Attacks by Day

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day

At
te

m
pt

s Total Count
WEB-IIS cmd.exe
Others

The next analysis which we were interested in was if we had top attackers and if so what
they did. It’s interesting to see that three attackers generated about 35% of all alerts. By
examining these three attackers a little bit closer we can see that the mostly launched
web attacks.

Top Three Attackers and Their Attacks

1

10

100

1000

10000

W
EB

-II
S

cm
d.

ex
e

W
EB

-II
S

un
ic

od
e

W
EB

-M
IS

C
cr

os
s

si
te

W
EB

-II
S

C
od

eR
ed

W
EB

-II
S

...
.

ac
ce

ss

W
EB

-II
S

iis
sa

m
pl

es

W
EB

-II
S

.h
tr

ac
ce

ss

W
EB

-II
S

w
eb

hi
ts

W
EB

-M
IS

C
ht

tp

W
EB

-II
S

SA
M

W
EB

-II
S

m
ul

tip
le

Attack

N
um

be
r o

f A
tte

m
pt

s

198.67.195.10
248.4.56.37
162.113.196.32
194.79.97.117

Querying the MySQL database about the alerts reveals the following table

mysql> select s.sig_name, count(*) as count from event
e, signature s where e.signature=s.sig_id group by
e.signature order by count desc;

+---+-------+
| sig_name | count |
+---+-------+
WEB-IIS cmd.exe access	6240
WEB-IIS unicode directory traversal attempt	735
WEB-PHP content-disposition	456
WEB-IIS ISAPI .ida attempt	432
WEB-IIS unicode directory traversal attempt	354
WEB-IIS unicode directory traversal attempt	336
SCAN SOCKS Proxy attempt	319
WEB-IIS unicode directory traversal attempt	235
MS-SQL Worm propagation attempt	234
ATTACK RESPONSES 403 Forbidden	223
WEB-MISC robots.txt access	160
WEB-IIS view source via translate header	153
SCAN Proxy (8080) attempt	150
WEB-IIS CodeRed v2 root.exe access	142
SCAN Squid Proxy attempt	135
ICMP Large ICMP Packet	124
ICMP PING speedera	115
WEB-MISC cross site scripting attempt	85
ATTACK RESPONSES http dir listing	64

ICMP PING CyberKit 2.2 Windows	45
WEB-CGI formmail access	39
WEB-MISC http directory traversal	38
WEB-IIS SAM Attempt	36
ICMP superscan echo	29
ICMP PING NMAP	25
ICMP Destination Unreachable (Communication Admini...)	24
WEB-IIS .htr access	22
WEB-IIS iissamples access	17
WEB-MISC bad HTTP/1.1 request, Potentially worm attack	15
WEB-IIS webhits access	15
WEB-IIS access	14
(spp_stream4) STEALTH ACTIVITY (NULL scan) detection	12
WEB-CGI formmail arbitrary command execution attempt	12
WEB-IIS ISAPI .idq access	12
WEB-IIS multiple decode attempt	11
WEB-MISC http directory traversal	7
WEB-FRONTPAGE /_vti_bin/ access	6
WEB-IIS Unicode2.pl script (File permission canonicali...)	6
WEB-IIS encoding access	4
WEB-IIS ISAPI .printer access	4
WEB-IIS ISAPI .idq attempt	4
ICMP Source Quench	3
WEB-IIS /iisadmpwd/aexp2.htr access	3
(spp_stream4) TTL LIMIT Exceeded	2
(spp_stream4) STEALTH ACTIVITY (XMAS scan) detection	2
WEB-MISC /etc/passwd	2
WEB-IIS _vti_inf access	2
WEB-FRONTPAGE _vti_rpc access	2
WEB-IIS cmd32.exe access	2
(spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection	2
WEB-MISC .htpasswd access	1
MISC Tiny Fragments	1
SCAN myscan	1
ATTACK RESPONSES id check returned root	1
+---+-------+
54 rows in set (0.11 sec)

Looks like most of our top ten attacks are well known web attacks. Nothing that
interesting, except the “MS-SQL worm propagation”. We encountered 234 attempts of
an MS-SQL worm propagation attempt. This would result in more than 15 attacks each
day. Let’s check if we have a uniform distribution.

MS SQL worm propagation attempts

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day

At
te

m
pt

s

As it can be seen, we have days with much more attack attempts and days which no
attempt was detected at all. Let’s see if all the attacks were from different IP addresses
or if we are dealing with a handful of attackers (signature number 27 is our MS SQL
worm propagation attempt).

mysql> select i.ip_src, count(*) as count from event e,
iphdr i where e.cid=i.cid and e.signature=27 group by
i.ip_src order by count desc;

+------------+-------+
| ip_src | count |
+------------+-------+
2340602250	20
1093107862	13
3395763701	6
1029824543	5
3395788908	5
1078811399	5
3501812517	4
3256754466	3
1087796482	3
1061685509	3
...

The query reveals that we have two top attackers. Let’s check with whom we are dealing
here. Our top attacker 139.130.193.138 (2340602250) belongs to an Australian
company named Telstra, who is some kind of ISP offering Internet connectivity to their
customers. The other IP, 130.79.1.22, belong to a university in France. I informed the
administrator of the network about a possible infection of one of his MS SQL servers.
The third one is an ISP again, this time from China.

Another attack which draws attention is the “ATTACK RESPONSES id check returned
root”. Further investigation reveals that this must have been a false positive as it was an
incoming packet destined at port 25 (SMTP). It looks as if a mail did contain information
which triggered this alert.

Conclusion
Honeyd is a nice little tool which can be perfectly used to setup a low to mid involvement
honeypot. The possibility to generate different virtual honeypots on one machine with
even different simulated operating systems enhances the usability of this tool even
further. It’s great for simulating victims and collecting a lot of interesting information.
Honeyd could be used as a early warning system in a productive environment to catch
some attacks and trigger an alert. Honeyd could also be very useful in detecting infected
machines in a network by just sitting there and playing victim. Finding infected web or
MS SQL servers can be achieved. The mechanism of attaching a script to a certain port
allows a very flexible setup with unlimited capabilities and opportunities for tuning.
Honeyd is not as flexible as a high involvement honeypot – the information that can be
collected by a high involvement honeypot is much higher. On the downside, the
associated risk and the amount of time needed for a good implementation is much
higher. Honeyd is simple and the associated risk is very low – A tool which is very handy
and much fun to run it.

Software Download Locations
I will shortly present a list of download locations for the different tools. Unfortunately, I
can’t guarantee that they are still working at a later time. In case the source can’t be
found there, try google (http://www.google.com) to search for them.

Tool Download Location
honeyd http://www.citi.umich.edu/u/provos/honeyd/
arpd http://www.citi.umich.edu/u/provos/honeyd/
honeyd scripts http://www.citi.umich.edu/u/provos/honeyd/contrib.html
libevent http://www.monkey.org/~provos/libevent/
libdnet http://libdnet.sourceforge.net/
libpcap http://www.tcpdump.org/

References
Baumann, Reto and Plattner, Christian. “Honeypots”. 2002
URL: http://security.rbaumann.net/download/diplomathesis.pdf (March 14 2003)

Multiple authors. “The Honeynet Project”. 2003
URL: http://project.honeynet.org/ (March 10 2003)

Neville, Alan. “IDS Logs in Forensics Investigations: An Analysis of a Compromised
Honeypot”. 2003. URL: http://www.securityfocus.com/infocus/1676 (March 10 2003)

Provos, Niels. “Honeyd – A Virtual Honeypot Daemon”. 2003
URL: http://www.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf (March 11 2003)

Roesch and Green. “Snort User’s Manual Chapter 2: Writing Snort Rules”. 2003
URL: http://www.snort.org/docs/writing_rules/chap2.html (March 15 2003)

Spitzner, Lance. “Honeypots: Tracking Hackers Website”. 2003
URL: http://project.honeynet.org/ (March 11 2003)

Spitzner, Lance. “Open Source Honeypots, Part Two: Deploying Honeyd in the Wild”.
2003. URL: http://www.securityfocus.com/infocus/1675 (March 10 2003)

