
Bandwidth Management
& Optimization

Opensource Bandwidth Solutions

27 Feb – 03 March '06
Nairobi, Kenya

Facilitator:
Nigel Kukard, Phd CompSc

<nkukard@lbsd.net>

Page 1

mailto:nkukard@lbsd.net

Page 2

Copyright © 2006, Nigel Kukard.
Permission is hereby granted to use this work under the below license.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 2.5.

Attribution-NonCommercial-ShareAlike 2.5

You are free:
• to copy, distribute, display, and perform the work
• to make derivative works

Under the following conditions:

Attribution. You must give the original author
credit.

Non-Commercial. You may not use this work for
commercial purposes.

Share Alike. If you alter, transform, or build upon
this work, you may distribute the resulting work
only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license
terms of this work.

• Any of these conditions can be waived if you get permission from the
copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code - the full license is
available from: http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode

Page 3

Table of Contents

Introduction...5
Opensource Bandwidth Management Solutions...6

Squid – HTTP/FTP Proxy...6
ISC Bind (named)..6
DJBDNS...7
Dante – SOCKS..7
Traffic Shaper (tc)...9

Queues and Queuing Disciplines explained...9
Simple, classless Queuing Disciplines...10
Classful Queuing Disciplines...22

BWM Tools..57
IPTables...58

Extensions to iptables: Matches..63
Extensions to iptables: Targets..87
Layer-7 Traffic Classification...101
Bridging...104

ebtables...107
Bridging and Firewalling..121

Using BWM Tools..127
Installing BWM Tools...127
BWM Tools Utilities...128
Configuring BWM Tools...129

The <global> section:...129
The <acl> section:..131
The <nat> section:...133
The <traffic> section:...137

Integrating BWM Tools with your system...141
Graphing..143

Generating RRD files ...144
Creating a pretty graph using bwm_graph ..145
RRDTool..147

rrdcreate...150
rrdupdate..161
rrdgraph...163
rrddump..177
rrdrestore...178
rrdfetch...178
rrdtune..183
rrdlast...186
rrdresize...187
rrdcgi..188

Advanced configuration example...192
Credits...203

Page 4

Introduction

Bandwidth management in todays world is a crucial part of any
organization, with the costs of bandwidth being as high as they are in
some countries, ISP's and businesses cannot afford to shove a router
in on their network, connect it to the net and hope for the best.

Network administrators must draft policies regarding the desired
quality of service they wish to provide to their organization, starting
with those protocols that require priority traffic right down to those
that if they work, you're lucky.

The next step is to choose a product that enforces these policies.
There are many commercial products available ranging from sub
$1,000 USD right up to so called “high end” solutions which far
exceed $10,000 USD. You might ask ... What do these products
achieve which one cannot achieve using opensource software? This
is my question to you.

After reading this document one should have a much broader
understanding of the power which lies in opensource and the goals
which one can achieve by combining products together to create an
overall solution.

Page 5

Opensource Bandwidth Management Solutions

There are many solutions available today, these fall into 3 categories...

• HTTP/FTP (Specialized) proxying/caching, such as squid
• DNS caching, such as ISC Bind & djbdns
• SOCKS proxy, Dante
• Kernel based

Squid – HTTP/FTP Proxy

Squid is...
• Full-featured Web proxy cache
• Designed to run on Unix systems
• Free, open-source software

Squid supports...
• Proxying and caching of HTTP, FTP, and other URLs
• Proxying for SSL
• Cache hierarchies
• ICP, HTCP, CARP, Cache Digests
• Transparent caching
• WCCP (Squid v2.3 and above)
• Extensive access controls
• HTTP server acceleration
• SNMP
• Caching of DNS lookups

ISC Bind (named)

Features & drawbacks:
• DNS Security

DNSSEC (signed zones)
TSIG (signed DNS requests)

Page 6

• IP version 6
Answers DNS queries on IPv6 sockets
IPv6 resource records (A6, DNAME, etc.)
Experimental IPv6 Resolver Library

• DNS Protocol Enhancements
IXFR, DDNS, Notify, EDNS0
Improved standards conformance

• Views
One server process can provide multiple "views" of the DNS namespace,
e.g. an "inside" view to certain clients, and an "outside" view to others.

• Multiprocessor Support
• Improved Portability Architecture
• Supports limiting of memory consumption, but utilizes a minimum of about

32Mb of memory

DJBDNS

Features & drawbacks:
• djbdns is not a single, monolithic program
• Run under separate user accounts
• Supports limiting of memory consumption and uses a minimum of about

4Mb of memory.
• DJB code is program-friendly configuration files
• djbdns is "almost free," in that you can download it, compile it, and

redistribute it. What you can not do, however, is distribute a version that is
changed in any way. There are those who are not happy with that
restriction, and it does tend to frustrate the free software development
dynamic. What people can do is distribute patches.

• One site reported receiving 500 queries per second per server at peak
times for data from a 350-megabyte data.cdb. The tinydns process handled
about 7000 queries per second of CPU time. The CPU was a Pentium III-
550.

Dante – SOCKS

Highlights

Page 7

Some key highlights of Dante include:
• Designed with a emphasis on security and scalability.
• Distributed with a liberal license (BSD/CMU-type)
• Multi-layer access controls.
• Allows server applications to be socksified.
• Can socksify most programs at runtime without requiring recompilation.
• Interaction with libwrap (tcp wrappers).
• Can spawn external programs and provide them with endpoint information.
• Bandwidth usage control (via module Bandwidth).
• Port/redirection control (via module Redirect).
• Supports server-chaining, currently for TCP Connect.
• Control over number of client sessions (via module Session).

Dante module - Redirect
The Redirect module gives control over both where clients requests and replies
will end up, aswell as what addresses and portranges the Dante server will use.

It can be used to redirect clients connections from one address to another, useful
for cases where you for instance want clients to be automatically sent to a
different address from what they intended.

It can be used to restrict the portranges used by the Dante server, useful for
cases where a firewall needs to know what portranges the Dante server will use.

Price: EUR 200

Dante module - Bandwidth control
The Bandwidth module gives control over how much bandwidth the Dante server
uses on behalf of the different clients.

It can be used to limit bandwidth to non-work related web/ftp sites, or to prevent
ftp-related traffic from impacting too much on interactive telnet/ssh traffic.
It can also be used to give more bandwidth to certain clients or for traffic to
certain sites.

In addition, when using the Dante bind extension, it can be used to provide
bandwidth control to network servers (like e.g. webservers) that do not support
bandwidth control internally.

Price: EUR 400

Page 8

Traffic Shaper (tc)

Linux even goes far beyond what Frame and ATM provide.

Just to prevent confusion, tc uses the following rules for bandwidth specification:

mbps = 1024 kbps = 1024 * 1024 bps => byte/s
mbit = 1024 kbit => kilo bit/s.
mb = 1024 kb = 1024 * 1024 b => byte
mbit = 1024 kbit => kilo bit.

Internally, the number is stored in bps and b.

But when tc prints the rate, it uses following :
1Mbit = 1024 Kbit = 1024 * 1024 bps => byte/s

Queues and Queuing Disciplines explained

With queuing we determine the way in which data is SENT. It is important to
realize that tc can only shape data that we transmit.

With the way the Internet works, we have no direct control of what people send
us. It's a bit like your (physical!) mailbox at home. There is no way you can
influence the world to modify the amount of mail they send you, short of
contacting everybody.

However, the Internet is mostly based on TCP/IP which has a few features that
help us. TCP/IP has no way of knowing the capacity of the network between two
hosts, so it just starts sending data faster and faster ('slow start') and when
packets start getting lost, because there is no room to send them, it will slow
down. In fact it is a bit smarter than this, but more about that later.

This is the equivalent of not reading half of your mail, and hoping that people will
stop sending it to you. With the difference that it works for the Internet.
If you have a router and wish to prevent certain hosts within your network from
downloading too fast, you need to do your shaping on the *inner* interface of
your router, the one that sends data to your own computers.

You also have to be sure you are controlling the bottleneck of the link. If you

Page 9

have a 100Mbit NIC and you have a router that has a 256kbit link, you have to
make sure you are not sending more data than your router can handle.

Otherwise, it will be the router who is controlling the link and shaping the
available bandwidth. We need to 'own the queue' so to speak, and be the slowest
link in the chain. Luckily this is easily possible.

Simple, classless Queuing Disciplines

As said, with queuing disciplines, we change the way data is sent. Classless
queuing disciplines are those that, by and large accept data and only reschedule,
delay or drop it.

These can be used to shape traffic for an entire interface, without any
subdivisions. It is vital that you understand this part of queuing before we go on
the classful qdisc-containing-qdiscs!

By far the most widely used discipline is the pfifo_fast qdisc - this is the default.
This also explains why these advanced features are so robust. They are nothing
more than 'just another queue'.

Each of these queues has specific strengths and weaknesses. Not all of them may
be as well tested.

pfifo_fast

This queue is, as the name says, First In, First Out, which means that no
packet receives special treatment. At least, not quite. This queue has 3 so
called 'bands'. Within each band, FIFO rules apply. However, as long as
there are packets waiting in band 0, band 1 won't be processed. Same goes
for band 1 and band 2.

The kernel honors the so called Type of Service flag of packets, and takes
care to insert 'minimum delay' packets in band 0.

Do not confuse this classless simple qdisc with the classful PRIO one!
Although they behave similarly, pfifo_fast is classless and you cannot add

Page 10

other qdiscs to it with the tc command.

Parameters & usage

You can't configure the pfifo_fast qdisc as it is the hardwired default. This
is how it is configured by default:

priomap

Determines how packet priorities, as assigned by the kernel, map to
bands. Mapping occurs based on the TOS octet of the packet, which
looks like this:

0 1 2 3 4 5 6 7

PRECEDENCE TOS MBZ

The four TOS bits (the 'TOS field') are defined as:

Binary Decimal Meaning

1000 8 Minimize delay (md)

0100 4 Maximize throughput (mt)

0010 2 Maximize reliability (mr)

0001 1 Minimize monetary cost (mmc)

0000 0 Normal Service

As there is 1 bit to the right of these four bits, the actual value of the
TOS field is double the value of the TOS bits. tcpdump -vv shows you
the value of the entire TOS field, not just the four bits. It is the value
you see in the first column of this table:

TOS Bits Means Linux Priority Band

0x0 0 Normal Service 0 Best Effort 1

0x2 1 Minimize Monetary Cost 1 Filler 2

0x4 2 Maximize Reliability 0 Best Effort 1

0x6 3 mmc+mr 0 Best Effort 1

0x8 4 Maximize Throughput 2 Bulk 2

Page 11

TOS Bits Means Linux Priority Band

0xa 5 mmc+mt 2 Bulk 2

0xc 6 mr+mt 2 Bulk 2

0xe 7 mmc+mr+mt 2 Bulk 2

0x10 8 Minimize Delay 6 Interactive 0

0x12 9 mmc+md 6 Interactive 0

0x14 10 mr+md 6 Interactive 0

0x16 11 mmc+mr+md 6 Interactive 0

0x18 12 mt+md 4 Int. Bulk 1

0x1a 13 mmc+mt+md 4 Int. Bulk 1

0x1c 14 mr+mt+md 4 Int. Bulk 1

0x1e 15 mmc+mr+mt+md 4 Int. Bulk 1

Lots of numbers. The second column contains the value of the
relevant four TOS bits, followed by their translated meaning. For
example, 15 stands for a packet wanting Minimal Monetary Cost,
Maximum Reliability, Maximum Throughput AND Minimum Delay.

The fourth column lists the way the Linux kernel interprets the TOS
bits, by showing to which Priority they are mapped.

The last column shows the result of the default priomap. On the
command line, the default priomap looks like this:

1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1

This means that priority 4, for example, gets mapped to band number
1. The priomap also allows you to list higher priorities (> 7) which do
not correspond to TOS mappings, but which are set by other means.

This table from RFC 1349 (read it for more details) tells you how
applications might very well set their TOS bits:

Service TOS Bits Meaning

TELNET 1000 minimize delay

FTP Control 1000 minimize delay

Data 0100 maximize throughput

TFTP 1000 minimize delay

Page 12

Service TOS Bits Meaning

SMTP Command
phase

1000 minimize delay

DATA phase 0100 maximize throughput

DNS UDP Query 1000 minimize delay

TCP Query 0000

Zone
Transfer

0100 maximize throughput

NNTP 0001 minimize monetary
cost

ICMP 0000

txqueuelen
The length of this queue is gleaned from the interface configuration,
which you can see and set with ifconfig and ip. To set the queue
length to 10, execute:

ifconfig eth0 txqueuelen 10

You can't set this parameter with tc!

Token Bucket Filter (TBF)
The Token Bucket Filter (TBF) is a simple qdisc that only passes packets
arriving at a rate which is not exceeding some administratively set rate,
but with the possibility to allow short bursts in excess of this rate.

TBF is very precise, network- and processor friendly. It should be your first
choice if you simply want to slow an interface down.

The TBF implementation consists of a buffer (bucket), constantly filled by
some virtual pieces of information called tokens, at a specific rate (token
rate). The most important parameter of the bucket is its size, that is the
number of tokens it can store.

Each arriving token collects one incoming data packet from the data queue
and is then deleted from the bucket. Associating this algorithm with the

Page 13

two flows -- token and data, gives us three possible scenarios:

• The data arrives in TBF at a rate that's equal to the rate of incoming
tokens. In this case each incoming packet has its matching token and
passes the queue without delay.

• The data arrives in TBF at a rate that's smaller than the token rate.
Only a part of the tokens are deleted at output of each data packet
that's sent out the queue, so the tokens accumulate, up to the bucket
size. The unused tokens can then be used to send data at a speed
that's exceeding the standard token rate, in case short data bursts
occur.

• The data arrives in TBF at a rate bigger than the token rate. This
means that the bucket will soon be devoid of tokens, which causes
the TBF to throttle itself for a while. This is called an 'overlimit
situation'. If packets keep coming in, packets will start to get
dropped.

The last scenario is very important, because it allows to administratively
shape the bandwidth available to data that's passing the filter.

The accumulation of tokens allows a short burst of overlimit data to be still
passed without loss, but any lasting overload will cause packets to be
constantly delayed, and then dropped.

Please note that in the actual implementation, tokens correspond to bytes,
not packets.

Parameters & usage

Even though you will probably not need to change them, tbf has some
knobs available. First the parameters that are always available:

limit or latency
Limit is the number of bytes that can be queued waiting for tokens to
become available. You can also specify this the other way around by
setting the latency parameter, which specifies the maximum amount
of time a packet can sit in the TBF. The latter calculation takes into
account the size of the bucket, the rate and possibly the peakrate (if
set).

burst/buffer/maxburst
Size of the bucket, in bytes. This is the maximum amount of bytes
that tokens can be available for instantaneously. In general, larger
shaping rates require a larger buffer. For 10mbit/s on Intel, you need

Page 14

at least 10kbyte buffer if you want to reach your configured rate!

If your buffer is too small, packets may be dropped because more
tokens arrive per timer tick than fit in your bucket.

mpu
A zero-sized packet does not use zero bandwidth. For ethernet, no
packet uses less than 64 bytes. The Minimum Packet Unit determines
the minimal token usage for a packet.

rate
The speedknob. See remarks above about limits.
If the bucket contains tokens and is allowed to empty, by default it
does so at infinite speed. If this is unacceptable, use the following
parameters:

peakrate
If tokens are available, and packets arrive, they are sent out
immediately by default, at 'lightspeed' so to speak. That may not be
what you want, especially if you have a large bucket.

The peakrate can be used to specify how quickly the bucket is
allowed to be depleted. If doing everything by the book, this is
achieved by releasing a packet, and then wait just long enough, and
release the next. We calculated our waits so we send just at peakrate.

However, due to the default 10ms timer resolution of Unix, with
10.000 bits average packets, we are limited to 1mbit/s of peakrate!

mtu/minburst
The 1mbit/s peakrate is not very useful if your regular rate is more
than that. A higher peakrate is possible by sending out more packets
per timertick, which effectively means that we create a second
bucket!
This second bucket defaults to a single packet, which is not a bucket
at all.

To calculate the maximum possible peakrate, multiply the configured
mtu by 100 (or more correctly, HZ, which is 100 on Intel, 1024 on
Alpha).

Sample configuration

Page 15

A simple but *very* useful configuration is this:

tc qdisc add dev ppp0 root tbf rate 220kbit latency 50ms burst
1540

Ok, why is this useful? If you have a networking device with a large queue,
like a DSL modem or a cable modem, and you talk to it over a fast device,
like over an ethernet interface, you will find that uploading absolutely
destroys interactivity.

This is because uploading will fill the queue in the modem, which is
probably *huge* because this helps actually achieving good data
throughput uploading. But this is not what you want, you want to have the
queue not too big so interactivity remains and you can still do other stuff
while sending data.

The line above slows down sending to a rate that does not lead to a queue
in the modem - the queue will be in Linux, where we can control it to a
limited size.

Change 220kbit to your uplink's *actual* speed, minus a few percent. If you
have a really fast modem, raise 'burst' a bit.

Stochastic Fairness Queuing (SFQ)
Stochastic Fairness Queuing (SFQ) is a simple implementation of the fair
queuing algorithms family. It's less accurate than others, but it also
requires less calculations while being almost perfectly fair.

The key word in SFQ is conversation (or flow), which mostly corresponds to
a TCP session or a UDP stream. Traffic is divided into a pretty large
number of FIFO queues, one for each conversation. Traffic is then sent in a
round robin fashion, giving each session the chance to send data in turn.

This leads to very fair behavior and disallows any single conversation from
drowning out the rest. SFQ is called 'Stochastic' because it doesn't really
allocate a queue for each session, it has an algorithm which divides traffic
over a limited number of queues using a hashing algorithm.

Because of the hash, multiple sessions might end up in the same bucket,
which would halve each session's chance of sending a packet, thus halving
the effective speed available. To prevent this situation from becoming

Page 16

noticeable, SFQ changes its hashing algorithm quite often so that any two
colliding sessions will only do so for a small number of seconds.

It is important to note that SFQ is only useful in case your actual outgoing
interface is really full! If it isn't then there will be no queue on your linux
machine and hence no effect. Later on we will describe how to combine
SFQ with other qdiscs to get a best-of-both worlds situation.

Specifically, setting SFQ on the ethernet interface heading to your cable
modem or DSL router is pointless without further shaping!

Parameters & usage

The SFQ is pretty much self tuning:

perturb
Reconfigure hashing once this many seconds. If unset, hash will
never be reconfigured. Not recommended. 10 seconds is probably a
good value.

quantum
Amount of bytes a stream is allowed to dequeue before the next
queue gets a turn. Defaults to 1 maximum sized packet (MTU-sized).
Do not set below the MTU!

limit
The total number of packets that will be queued by this SFQ (after
that it starts dropping them).

Sample configuration

If you have a device which has identical link speed and actual available
rate, like a phone modem, this configuration will help promote fairness:

tc qdisc add dev ppp0 root sfq perturb 10
tc -s -d qdisc ls
qdisc sfq 800c: dev ppp0 quantum 1514b limit 128p flows 128/1024
perturb 10sec
 Sent 4812 bytes 62 pkts (dropped 0, overlimits 0)

The number 800c: is the automatically assigned handle number, limit
means that 128 packets can wait in this queue. There are 1024

Page 17

hashbuckets available for accounting, of which 128 can be active at a time
(no more packets fit in the queue!) Once every 10 seconds, the hashes are
reconfigured.

Advice for when to use which queue

Summarizing, these are the simple queues that actually manage traffic by
reordering, slowing or dropping packets.

The following tips may help in choosing which queue to use. It mentions
some qdiscs described in the later chapters.

• To purely slow down outgoing traffic, use the Token Bucket Filter.
Works up to huge bandwidths, if you scale the bucket.

• If your link is truly full and you want to make sure that no single
session can dominate your outgoing bandwidth, use Stochastical
Fairness Queuing.

• If you have a big backbone and know what you are doing, consider
Random Early Drop.

• To 'shape' incoming traffic which you are not forwarding, use the
Ingress Policer. Incoming shaping is called 'policing', by the way, not
'shaping'.

• If you *are* forwarding it, use a TBF on the interface you are
forwarding the data to. Unless you want to shape traffic that may go
out over several interfaces, in which case the only common factor is
the incoming interface. In that case use the Ingress Policer.

• If you don't want to shape, but only want to see if your interface is so
loaded that it has to queue, use the pfifo queue (not pfifo_fast). It
lacks internal bands but does account the size of its backlog.

• Finally - you can also do "social shaping". You may not always be able
to use technology to achieve what you want. Users experience
technical constraints as hostile. A kind word may also help with
getting your bandwidth to be divided right.

Page 18

Terminology
To properly understand more complicated configurations it is necessary to
explain a few concepts first. Because of the complexity and the relative
youth of the subject, a lot of different words are used when people in fact
mean the same thing.

Queuing Discipline (qdisc)
An algorithm that manages the queue of a device, either incoming
(ingress) or outgoing (egress).

root qdisc
The root qdisc is the qdisc attached to the device.

Classless qdisc
A qdisc with no configurable internal subdivisions.

Classful qdisc
A classful qdisc contains multiple classes. Some of these classes
contains a further qdisc, which may again be classful, but need not
be. According to the strict definition, pfifo_fast *is* classful, because
it contains three bands which are, in fact, classes. However, from the
user's configuration perspective, it is classless as the classes can't be
touched with the tc tool.

Classes
A classful qdisc may have many classes, each of which is internal to
the qdisc. A class, in turn, may have several classes added to it. So a
class can have a qdisc as parent or an other class. A leaf class is a
class with no child classes. This class has 1 qdisc attached to it. This
qdisc is responsible to send the data from that class. When you create
a class, a fifo qdisc is attached to it. When you add a child class, this
qdisc is removed. For a leaf class, this fifo qdisc can be replaced with
an other more suitable qdisc. You can even replace this fifo qdisc
with a classful qdisc so you can add extra classes.

Classifier
Each classful qdisc needs to determine to which class it needs to
send a packet. This is done using the classifier.

Filter
Classification can be performed using filters. A filter contains a

Page 19

number of conditions which if matched, make the filter match.

Scheduling
A qdisc may, with the help of a classifier, decide that some packets
need to go out earlier than others. This process is called Scheduling,
and is performed for example by the pfifo_fast qdisc mentioned
earlier. Scheduling is also called 'reordering', but this is confusing.

Shaping
The process of delaying packets before they go out to make traffic
confirm to a configured maximum rate. Shaping is performed on
egress. Colloquially, dropping packets to slow traffic down is also
often called Shaping.

Policing
Delaying or dropping packets in order to make traffic stay below a
configured bandwidth. In Linux, policing can only drop a packet and
not delay it - there is no 'ingress queue'.

Work-Conserving
A work-conserving qdisc always delivers a packet if one is available.
In other words, it never delays a packet if the network adapter is
ready to send one (in the case of an egress qdisc).

non-Work-Conserving
Some queues, like for example the Token Bucket Filter, may need to
hold on to a packet for a certain time in order to limit the bandwidth.
This means that they sometimes refuse to pass a packet, even though
they have one available.

Page 20

Now that we have our terminology straight, let's see where all these things
are.

 Userspace programs
 ^
 |
 +­­­­­­­­­­­­­­­+­­­+
 | Y |
 | ­­­­­­­> IP Stack |
	Y	
	Y	
^		
	/ ­­­­­­­­­­> Forwarding ­>	
^ /		
	/ Y	
^ Y /­qdisc1­\		
	Egress /­­qdisc2­­\	
­­­>­>Ingress Classifier ­­­qdisc3­­­­	­>	
Qdisc __qdisc4__/		
\­qdiscN_/		
 +­­+

The big block represents the kernel. The leftmost arrow represents traffic
entering your machine from the network. It is then fed to the Ingress Qdisc
which may apply Filters to a packet, and decide to drop it. This is called
'Policing'.

This happens at a very early stage, before it has seen a lot of the kernel. It
is therefore a very good place to drop traffic very early, without consuming
a lot of CPU power.

If the packet is allowed to continue, it may be destined for a local
application, in which case it enters the IP stack in order to be processed,
and handed over to a userspace program. The packet may also be
forwarded without entering an application, in which case it is destined for
egress. Userspace programs may also deliver data, which is then examined
and forwarded to the Egress Classifier.

There it is investigated and enqueued to any of a number of qdiscs. In the
unconfigured default case, there is only one egress qdisc installed, the
pfifo_fast, which always receives the packet. This is called 'enqueuing'.

Page 21

The packet now sits in the qdisc, waiting for the kernel to ask for it for
transmission over the network interface. This is called 'dequeueing'.

This picture also holds in case there is only one network adaptor - the
arrows entering and leaving the kernel should not be taken too literally.
Each network adapter has both ingress and egress hooks.

Classful Queuing Disciplines

Classful qdiscs are very useful if you have different kinds of traffic which
should have differing treatment. One of the classful qdiscs is called 'CBQ',
'Class Based Queuing' and it is so widely mentioned that people identify
queuing with classes solely with CBQ, but this is not the case.

CBQ is merely the oldest kid on the block - and also the most complex one.
It may not always do what you want. This may come as something of a
shock to many who fell for the 'sendmail effect', which teaches us that any
complex technology which doesn't come with documentation must be the
best available.

More about CBQ and its alternatives shortly.

Flow within classful qdiscs & classes

When traffic enters a classful qdisc, it needs to be sent to any of the classes
within - it needs to be 'classified'. To determine what to do with a packet,
the so called 'filters' are consulted. It is important to know that the filters
are called from within a qdisc, and not the other way around!

The filters attached to that qdisc then return with a decision, and the qdisc
uses this to enqueue the packet into one of the classes. Each subclass may
try other filters to see if further instructions apply. If not, the class
enqueues the packet to the qdisc it contains.

Besides containing other qdiscs, most classful qdiscs also perform shaping.
This is useful to perform both packet scheduling (with SFQ, for example)

Page 22

and rate control. You need this in cases where you have a high speed
interface (for example, ethernet) to a slower device (a cable modem).

If you were only to run SFQ, nothing would happen, as packets enter &
leave your router without delay: the output interface is far faster than your
actual link speed. There is no queue to schedule then.

The qdisc family: roots, handles, siblings and parents

Each interface has one egress 'root qdisc'. By default, it is the earlier
mentioned classless pfifo_fast queueing discipline. Each qdisc and class is
assigned a handle, which can be used by later configuration statements to
refer to that qdisc. Besides an egress qdisc, an interface may also have an
ingress qdisc , which polices traffic coming in.

The handles of these qdiscs consist of two parts, a major number and a
minor number : <major>:<minor>. It is customary to name the root qdisc
'1:', which is equal to '1:0'. The minor number of a qdisc is always 0.

Classes need to have the same major number as their parent. This major
number must be unique within a egress or ingress setup. The minor
number must be unique within a qdisc and his classes.

Page 23

How filters are used to classify traffic

Recapping, a typical hierarchy might look like this:

 1: root qdisc
 |
 1:1 child class
 / | \
 / | \
 / | \
 / | \
 1:10 1:11 1:12 child classes
 | | |
 | 11: | leaf class
 | |
 10: 12: qdisc
 / \ / \
 10:1 10:2 12:1 12:2 leaf classes

But don't let this tree fool you! You should *not* imagine the kernel to be at
the apex of the tree and the network below, that is just not the case.
Packets get enqueued and dequeued at the root qdisc, which is the only
thing the kernel talks to.

A packet might get classified in a chain like this:

1: -> 1:1 -> 1:12 -> 12: -> 12:2

The packet now resides in a queue in a qdisc attached to class 12:2. In this
example, a filter was attached to each 'node' in the tree, each choosing a
branch to take next. This can make sense. However, this is also possible:

1: -> 12:2

In this case, a filter attached to the root decided to send the packet directly
to 12:2.

How packets are dequeued to the hardware

When the kernel decides that it needs to extract packets to send to the

Page 24

interface, the root qdisc 1: gets a dequeue request, which is passed to 1:1,
which is in turn passed to 10:, 11: and 12:, each of which queries its
siblings, and tries to dequeue() from them. In this case, the kernel needs to
walk the entire tree, because only 12:2 contains a packet.

In short, nested classes ONLY talk to their parent qdiscs, never to an
interface. Only the root qdisc gets dequeued by the kernel!

The upshot of this is that classes never get dequeued faster than their
parents allow. And this is exactly what we want: this way we can have SFQ
in an inner class, which doesn't do any shaping, only scheduling, and have
a shaping outer qdisc, which does the shaping.

The PRIO qdisc

The PRIO qdisc doesn't actually shape, it only subdivides traffic based on
how you configured your filters. You can consider the PRIO qdisc a kind of
pfifo_fast on steroids, whereby each band is a separate class instead of a
simple FIFO.

When a packet is enqueued to the PRIO qdisc, a class is chosen based on
the filter commands you gave. By default, three classes are created. These
classes by default contain pure FIFO qdiscs with no internal structure, but
you can replace these by any qdisc you have available.

Whenever a packet needs to be dequeued, class :1 is tried first. Higher
classes are only used if lower bands all did not give up a packet.

This qdisc is very useful in case you want to prioritize certain kinds of
traffic without using only TOS-flags but using all the power of the tc filters.
You can also add an other qdisc to the 3 predefined classes, whereas
pfifo_fast is limited to simple fifo qdiscs.

Because it doesn't actually shape, the same warning as for SFQ holds:
either use it only if your physical link is really full or wrap it inside a
classful qdisc that does shape. The latter holds for almost all cable modems
and DSL devices.

In formal words, the PRIO qdisc is a Work-Conserving scheduler.

Page 25

PRIO parameters & usage

The following parameters are recognized by tc:

bands
Number of bands to create. Each band is in fact a class. If you change
this number, you must also change:

priomap
If you do not provide tc filters to classify traffic, the PRIO qdisc looks
at the TC_PRIO priority to decide how to enqueue traffic.

This works just like with the pfifo_fast qdisc mentioned earlier, see
there for lots of detail.

The bands are classes, and are called major:1 to major:3 by default, so if
your PRIO qdisc is called 12:, tc filter traffic to 12:1 to grant it more
priority.

Reiterating, band 0 goes to minor number 1! Band 1 to minor number 2,
etc.

Sample configuration

We will create this tree:
 1: root qdisc
 / | \
 / | \
 / | \
 1:1 1:2 1:3 classes
 | | |
 10: 20: 30: qdiscs qdiscs
 sfq tbf sfq
band 0 1 2

Bulk traffic will go to 30:, interactive traffic to 20: or 10:.

Command lines:

Page 26

tc qdisc add dev eth0 root handle 1: prio

This *instantly* creates classes 1:1, 1:2, 1:3

tc qdisc add dev eth0 parent 1:1 handle 10: sfq
tc qdisc add dev eth0 parent 1:2 handle 20: tbf rate 20kbit \

buffer 1600 limit 3000
tc qdisc add dev eth0 parent 1:3 handle 30: sfq

Now let's see what we created:

tc -s qdisc ls dev eth0
qdisc sfq 30: quantum 1514b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)

 qdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)

 qdisc sfq 10: quantum 1514b
 Sent 132 bytes 2 pkts (dropped 0, overlimits 0)

 qdisc prio 1: bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
 Sent 174 bytes 3 pkts (dropped 0, overlimits 0)

As you can see, band 0 has already had some traffic, and one packet was
sent while running this command!

We now do some bulk data transfer with a tool that properly sets TOS
flags, and take another look:

scp tc nkukard@10.0.0.11:./
nkukard@10.0.0.11's password:
tc 100% |*****************************| 353 KB 00:00
tc -s qdisc ls dev eth0
qdisc sfq 30: quantum 1514b
 Sent 384228 bytes 274 pkts (dropped 0, overlimits 0)

 qdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
 Sent 2640 bytes 20 pkts (dropped 0, overlimits 0)

Page 27

 qdisc sfq 10: quantum 1514b
 Sent 2230 bytes 31 pkts (dropped 0, overlimits 0)

 qdisc prio 1: bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
 Sent 389140 bytes 326 pkts (dropped 0, overlimits 0)

As you can see, all traffic went to handle 30:, which is the lowest priority
band, just as intended. Now to verify that interactive traffic goes to higher
bands, we create some interactive traffic:

tc -s qdisc ls dev eth0
qdisc sfq 30: quantum 1514b
 Sent 384228 bytes 274 pkts (dropped 0, overlimits 0)

 qdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
 Sent 2640 bytes 20 pkts (dropped 0, overlimits 0)

 qdisc sfq 10: quantum 1514b
 Sent 14926 bytes 193 pkts (dropped 0, overlimits 0)

 qdisc prio 1: bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
 Sent 401836 bytes 488 pkts (dropped 0, overlimits 0)

It worked - all additional traffic has gone to 10:, which is our highest
priority qdisc. No traffic was sent to the lowest priority, which previously
received our entire scp.

The famous CBQ qdisc

As said before, CBQ is the most complex qdisc available, the most hyped,
the least understood, and probably the trickiest one to get right. This is not
because the authors are evil or incompetent, far from it, it's just that the
CBQ algorithm isn't all that precise and doesn't really match the way Linux
works.

Besides being classful, CBQ is also a shaper and it is in that aspect that it
really doesn't work very well. It should work like this. If you try to shape a
10mbit/s connection to 1mbit/s, the link should be idle 90% of the time. If it
isn't, we need to throttle so that it IS idle 90% of the time.

Page 28

This is pretty hard to measure, so CBQ instead derives the idle time from
the number of microseconds that elapse between requests from the
hardware layer for more data. Combined, this can be used to approximate
how full or empty the link is.

This is rather tortuous and doesn't always arrive at proper results. For
example, what if the actual link speed of an interface that is not really able
to transmit the full 100mbit/s of data, perhaps because of a badly
implemented driver? A PCMCIA network card will also never achieve
100mbit/s because of the way the bus is designed - again, how do we
calculate the idle time?

It gets even worse if we consider not-quite-real network devices like PPP
over Ethernet or PPTP over TCP/IP. The effective bandwidth in that case is
probably determined by the efficiency of pipes to userspace - which is
huge.

People who have done measurements discover that CBQ is not always very
accurate and sometimes completely misses the mark.

In many circumstances however it works well. With the documentation
provided here, you should be able to configure it to work well in most
cases.

CBQ shaping in detail

As said before, CBQ works by making sure that the link is idle just long
enough to bring down the real bandwidth to the configured rate. To do so,
it calculates the time that should pass between average packets.

During operations, the effective idletime is measured using an exponential
weighted moving average (EWMA), which considers recent packets to be
exponentially more important than past ones. The UNIX loadaverage is
calculated in the same way.

The calculated idle time is subtracted from the EWMA measured one, the
resulting number is called 'avgidle'. A perfectly loaded link has an avgidle
of zero: packets arrive exactly once every calculated interval.

An overloaded link has a negative avgidle and if it gets too negative, CBQ
shuts down for a while and is then 'overlimit'.

Page 29

Conversely, an idle link might amass a huge avgidle, which would then
allow infinite bandwidths after a few hours of silence. To prevent this,
avgidle is capped at maxidle.

If overlimit, in theory, the CBQ could throttle itself for exactly the amount
of time that was calculated to pass between packets, and then pass one
packet, and throttle again. But see the 'minburst' parameter below.

These are parameters you can specify in order to configure shaping:

avpkt
Average size of a packet, measured in bytes. Needed for calculating
maxidle, which is derived from maxburst, which is specified in
packets.

bandwidth
The physical bandwidth of your device, needed for idle time
calculations.

cell
The time a packet takes to be transmitted over a device may grow in
steps, based on the packet size. An 800 and an 806 size packet may
take just as long to send, for example - this sets the granularity. Most
often set to '8'. Must be an integral power of two.

maxburst
This number of packets is used to calculate maxidle so that when
avgidle is at maxidle, this number of average packets can be burst
before avgidle drops to 0. Set it higher to be more tolerant of bursts.
You can't set maxidle directly, only via this parameter.

minburst
As mentioned before, CBQ needs to throttle in case of overlimit. The
ideal solution is to do so for exactly the calculated idle time, and pass
1 packet. For Unix kernels, however, it is generally hard to schedule
events shorter than 10ms, so it is better to throttle for a longer
period, and then pass minburst packets in one go, and then sleep
minburst times longer.

The time to wait is called the offtime. Higher values of minburst lead
to more accurate shaping in the long term, but to bigger bursts at
millisecond timescales.

Page 30

minidle
If avgidle is below 0, we are overlimits and need to wait until avgidle
will be big enough to send one packet. To prevent a sudden burst
from shutting down the link for a prolonged period of time, avgidle is
reset to minidle if it gets too low.

Minidle is specified in negative microseconds, so 10 means that
avgidle is capped at -10us.

mpu
Minimum packet size - needed because even a zero size packet is
padded to 64 bytes on ethernet, and so takes a certain time to
transmit. CBQ needs to know this to accurately calculate the idle
time.

rate
Desired rate of traffic leaving this qdisc - this is the 'speed knob'!

Internally, CBQ has a lot of fine tuning. For example, classes which are
known not to have data enqueued to them aren't queried. Overlimit classes
are penalized by lowering their effective priority. All very smart &
complicated.

CBQ classful behavior

Besides shaping, using the aforementioned idletime approximations, CBQ
also acts like the PRIO queue in the sense that classes can have differing
priorities and that lower priority numbers will be polled before the higher
priority ones.

Each time a packet is requested by the hardware layer to be sent out to the
network, a weighted round robin process ('WRR') starts, beginning with the
lower-numbered priority classes.

These are then grouped and queried if they have data available. If so, it is
returned. After a class has been allowed to dequeue a number of bytes, the
next class within that priority is tried.

The following parameters control the WRR process:

allot

Page 31

When the outer CBQ is asked for a packet to send out on the
interface, it will try all inner qdiscs (in the classes) in turn, in order of
the 'priority' parameter. Each time a class gets its turn, it can only
send out a limited amount of data. 'Allot' is the base unit of this
amount. See the 'weight' parameter for more information.

prio
The CBQ can also act like the PRIO device. Inner classes with higher
priority are tried first and as long as they have traffic, other classes
are not polled for traffic.

weight
Weight helps in the Weighted Round Robin process. Each class gets a
chance to send in turn. If you have classes with significantly more
bandwidth than other classes, it makes sense to allow them to send
more data in one round than the others.

A CBQ adds up all weights under a class, and normalizes them, so
you can use arbitrary numbers: only the ratios are important. People
have been using 'rate/10' as a rule of thumb and it appears to work
well. The renormalized weight is multiplied by the 'allot' parameter to
determine how much data can be sent in one round.

Please note that all classes within an CBQ hierarchy need to share the
same major number!

CBQ parameters that determine link sharing & borrowing

Besides purely limiting certain kinds of traffic, it is also possible to specify
which classes can borrow capacity from other classes or, conversely, lend
out bandwidth.

Isolated/sharing
A class that is configured with 'isolated' will not lend out bandwidth
to sibling classes. Use this if you have competing or mutually-
unfriendly agencies on your link who do not want to give each other
freebies.

The control program tc also knows about 'sharing', which is the
reverse of 'isolated'.

Page 32

bounded/borrow
A class can also be 'bounded', which means that it will not try to
borrow bandwidth from sibling classes. tc also knows about 'borrow',
which is the reverse of 'bounded'.

A typical situation might be where you have two agencies on your link
which are both 'isolated' and 'bounded', which means that they are really
limited to their assigned rate, and also won't allow each other to borrow.

Within such an agency class, there might be other classes which are
allowed to swap bandwidth.

Sample configuration

 1: root qdisc
 |
 1:1 child class
 / \
 / \
 1:3 1:4 leaf classes
 | |
 30: 40: qdiscs
 (sfq) (sfq)

This configuration limits webserver traffic to 5mbit and SMTP traffic to 3
mbit. Together, they may not get more than 6mbit. We have a 100mbit NIC
and the classes may borrow bandwidth from each other.

tc qdisc add dev eth0 root handle 1:0 cbq bandwidth 100Mbit \
avpkt 1000 cell 8

tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth \
100Mbit rate 6Mbit weight 0.6Mbit prio 8 allot 1514 cell 8 \
maxburst 20 \
avpkt 1000 bounded

This part installs the root and the customary 1:1 class. The 1:1 class is
bounded, so the total bandwidth can't exceed 6mbit.

As said before, CBQ requires a *lot* of knobs. All parameters are explained
above, however. The corresponding HTB configuration is lots simpler.

Page 33

tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth \
100Mbit rate 5Mbit weight 0.5Mbit prio 5 allot 1514 cell 8 \
maxburst 20 avpkt 1000

tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth \
100Mbit rate 3Mbit weight 0.3Mbit prio 5 allot 1514 cell 8 \
maxburst 20 avpkt 1000

These are our two leaf classes. Note how we scale the weight with the
configured rate. Both classes are not bounded, but they are connected to
class 1:1 which is bounded. So the sum of bandwith of the 2 classes will
never be more than 6mbit. The classids need to be within the same major
number as the parent qdisc, by the way!

tc qdisc add dev eth0 parent 1:3 handle 30: sfq
tc qdisc add dev eth0 parent 1:4 handle 40: sfq

Both classes have a FIFO qdisc by default. But we replaced these with an
SFQ queue so each flow of data is treated equally.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
 sport 80 0xffff flowid 1:3
tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
 sport 25 0xffff flowid 1:4

These commands, attached directly to the root, send traffic to the right
qdiscs.

Note that we use 'tc class add' to CREATE classes within a qdisc, but that
we use 'tc qdisc add' to actually add qdiscs to these classes.

You may wonder what happens to traffic that is not classified by any of the
two rules. It appears that in this case, data will then be processed within
1:0, and be unlimited.

If SMTP+web together try to exceed the set limit of 6mbit/s, bandwidth
will be divided according to the weight parameter, giving 5/8 of traffic to
the webserver and 3/8 to the mail server.

With this configuration you can also say that webserver traffic will always
get at minimum 5/8 * 6 mbit = 3.75 mbit.

Other CBQ parameters: split & defmap

Page 34

As said before, a classful qdisc needs to call filters to determine which
class a packet will be enqueued to.

Besides calling the filter, CBQ offers other options, defmap & split. As you
will often want to filter on the Type of Service field only, a special syntax is
provided. Whenever the CBQ needs to figure out where a packet needs to
be enqueued, it checks if this node is a 'split node'. If so, one of the sub-
qdiscs has indicated that it wishes to receive all packets with a certain
configured priority, as might be derived from the TOS field, or socket
options set by applications.

The packets' priority bits are and-ed with the defmap field to see if a match
exists. In other words, this is a short-hand way of creating a very fast filter,
which only matches certain priorities. A defmap of ff (hex) will match
everything, a map of 0 nothing. A sample configuration may help make
things clearer:

tc qdisc add dev eth1 root handle 1: cbq bandwidth 10Mbit allot \
1514 cell 8 avpkt 1000 mpu 64

tc class add dev eth1 parent 1:0 classid 1:1 cbq bandwidth \
10Mbit rate 10Mbit allot 1514 cell 8 weight 1Mbit prio 8 \
maxburst 20 avpkt 1000

Standard CBQ preamble.

Defmap refers to TC_PRIO bits, which are defined as follows:

TC_PRIO Num Corresponds to TOS

BESTEFFOR 0 Maximize Reliability

FILLER 1 Minimize Cost

BULK 2 Maximize Throughput (0x8)

INTERACTIVE_BULK 4

INTERACTIV 6 Minimize Delay (0x10)

CONTROL 7

The TC_PRIO.. number corresponds to bits, counted from the right. See the
pfifo_fast section for more details how TOS bits are converted to priorities.

Now the interactive and the bulk classes:

tc class add dev eth1 parent 1:1 classid 1:2 cbq bandwidth \
10Mbit rate 1Mbit allot 1514 cell 8 weight 100Kbit prio 3 \

Page 35

maxburst 20 avpkt 1000 split 1:0 defmap c0
tc class add dev eth1 parent 1:1 classid 1:3 cbq bandwidth \

10Mbit rate 8Mbit allot 1514 cell 8 weight 800Kbit prio 7 \
maxburst 20 avpkt 1000 split 1:0 defmap 3f

The 'split qdisc' is 1:0, which is where the choice will be made. C0 is binary
for 11000000, 3F for 00111111, so these two together will match
everything. The first class matches bits 7 & 6, and thus corresponds to
'interactive' and 'control' traffic. The second class matches the rest.

Node 1:0 now has a table like this:

priority send to

0 1:3

1 1:3

2 1:3

3 1:3

4 1:3

5 1:3

6 1:2

7 1:2

For additional fun, you can also pass a 'change mask', which indicates
exactly which priorities you wish to change. You only need to use this if you
are running 'tc class change'.

For example, to add best effort traffic to 1:2, we could run this:

tc class change dev eth1 classid 1:2 cbq defmap 01/01

The priority map at 1:0 now looks like this:

priority send to

0 1:2

1 1:3

2 1:3

3 1:3

Page 36

priority send to

4 1:3

5 1:3

6 1:2

7 1:2

Hierarchical Token Bucket (HTB)

The HTB approach is well suited for setups where you have a fixed amount
of bandwidth which you want to divide for different purposes, giving each
purpose a guaranteed bandwidth, with the possibility of specifying how
much bandwidth can be borrowed.

HTB works just like CBQ but does not resort to idle time calculations to
shape. Instead, it is a classful Token Bucket Filter - hence the name.

As your HTB configuration gets more complex, your configuration scales
well. With CBQ it is already complex even in simple cases.

Sample configuration

Functionally almost identical to the CBQ sample configuration above:

tc qdisc add dev eth0 root handle 1: htb default 30
tc class add dev eth0 parent 1: classid 1:1 htb rate 6mbit \

burst 15k
tc class add dev eth0 parent 1:1 classid 1:10 htb rate 5mbit \

burst 15k
tc class add dev eth0 parent 1:1 classid 1:20 htb rate 3mbit \

ceil 6mbit burst 15k
tc class add dev eth0 parent 1:1 classid 1:30 htb rate 1kbit \

ceil 6mbit burst 15k

Its recommended that SFQ be added beneath these classes:

tc qdisc add dev eth0 parent 1:10 handle 10: sfq perturb 10
tc qdisc add dev eth0 parent 1:20 handle 20: sfq perturb 10

Page 37

tc qdisc add dev eth0 parent 1:30 handle 30: sfq perturb 10

Add the filters which direct traffic to the right classes:

U32="tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32"
$U32 match ip dport 80 0xffff flowid 1:10
$U32 match ip sport 25 0xffff flowid 1:20

And that's it - no unsightly unexplained numbers, no undocumented
parameters.

HTB certainly looks wonderful - if 10: and 20: both have their guaranteed
bandwidth, and more is left to divide, they borrow in a 5:3 ratio, just as you
would expect.

Unclassified traffic gets routed to 30:, which has little bandwidth of its own
but can borrow everything that is left over. Because we chose SFQ
internally, we get fairness thrown in for free.

Classifying packets with filters

To determine which class shall process a packet, the so-called 'classifier
chain' is called each time a choice needs to be made. This chain consists of
all filters attached to the classful qdisc that needs to decide.

To reiterate the tree, which is not a tree:

 root 1:
 |
 1:1
 / | \
 / | \
 / | \
 10: 11: 12:
 / \ / \
 10:1 10:2 12:1 12:2

When enqueueing a packet, at each branch the filter chain is consulted for

Page 38

a relevant instruction. A typical setup might be to have a filter in 1:1 that
directs a packet to 12: and a filter on 12: that sends the packet to 12:2.

You might also attach this latter rule to 1:1, but you can make efficiency
gains by having more specific tests lower in the chain.

You can't filter a packet 'upwards', by the way. Also, with HTB, you should
attach all filters to the root.

And again - packets are only enqueued downwards. When they are
dequeued, they go up again, where the interface lives. They do NOT fall off
the end of the tree to the network adapter!

Some simple filtering examples

As explained in the Classifier chapter, you can match on literally anything,
using a very complicated syntax. To start, I'll show you how to do the
obvious things, which luckily are quite easy.

Let's say we have a PRIO qdisc called '10:' which contains three classes,
and we want to assign all traffic from and to port 22 to the highest priority
band, the filters would be:

tc filter add dev eth0 protocol ip parent 10: prio 1 u32 match \
 ip dport 22 0xffff flowid 10:1
tc filter add dev eth0 protocol ip parent 10: prio 1 u32 match \
 ip sport 80 0xffff flowid 10:1
tc filter add dev eth0 protocol ip parent 10: prio 2 flowid 10:2

What does this say? It says: attach to eth0, node 10: a priority 1 u32 filter
that matches on IP destination port 22 *exactly* and send it to band 10:1.
And it then repeats the same for source port 80. The last command says
that anything unmatched so far should go to band 10:2, the next-highest
priority.

You need to add 'eth0', or whatever your interface is called, because each
interface has a unique namespace of handles.

To select on an IP address, use this:

Page 39

tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 \
 match ip dst 4.3.2.1/32 flowid 10:1
tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 \
 match ip src 1.2.3.4/32 flowid 10:1
tc filter add dev eth0 protocol ip parent 10: prio 2 flowid 10:2

This assigns traffic to 4.3.2.1 and traffic from 1.2.3.4 to the highest priority
queue, and the rest to the next-highest one.

You can concatenate matches, to match on traffic from 1.2.3.4 and from
port 80, do this:

tc filter add dev eth0 parent 10:0 protocol ip prio 1 \
 u32 match ip src 4.3.2.1/32 match ip sport 80 0xffff flowid 10:1

All the filtering commands you will normally need

Most shaping commands presented here start with this preamble:

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 ..

These are the so called 'u32' matches, which can match on ANY part of a
packet.

On source/destination address

Source mask 'match ip src 1.2.3.0/24', destination mask 'match ip dst
4.3.2.0/24'. To match a single host, use /32, or omit the mask.

On source/destination port, all IP protocols
Source: 'match ip sport 80 0xffff', destination: 'match ip dport 80
0xffff'

On ip protocol (tcp, udp, icmp, gre, ipsec)
Use the numbers from /etc/protocols, for example, icmp is 1: 'match
ip protocol 1 0xff'.

On the TOS field
To select interactive, minimum delay traffic:

Page 40

tc filter add dev ppp0 parent 1:0 protocol ip prio 10 u32 \
 match ip tos 0x10 0xff flowid 1:4

Use 0x08 0xff for bulk traffic.

On fwmark
You can mark packets with iptables and have that mark survive
routing across interfaces. This is really useful to for example only
shape traffic on eth1 that came in on eth0.

Syntax:

tc filter add dev eth1 protocol ip parent 1:0 prio 1 handle 6 \
fw flowid 1:1

Note that this is not a u32 match.

You can place a mark like this:

iptables -A PREROUTING -t mangle -i eth0 -j MARK \
--set-mark 6

The number 6 is arbitrary.

If you don't want to understand the full tc filter syntax, just use
iptables, and only learn to select on fwmark.

The Intermediate queuing device (IMQ)

The Intermediate queueing device is not a qdisc but its usage is tightly
bound to qdiscs. Within linux, qdiscs are attached to network devices and
everything that is queued to the device is first queued to the qdisc. From
this concept, two limitations arise:

1. Only egress shaping is possible (an ingress qdisc exists, but its
possibilities are very limited compared to classful qdiscs).

2. A qdisc can only see traffic of one interface, global limitations can't
be placed.

Page 41

IMQ is there to help solve those two limitations. In short, you can put
everything you choose in a qdisc. Specially marked packets get intercepted
in netfilter NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING hooks and
pass through the qdisc attached to an imq device. An iptables target is
used for marking the packets.

This enables you to do ingress shaping as you can just mark packets
coming in from somewhere and/or treat interfaces as classes to set global
limits. You can also do lots of other stuff like just putting your http traffic in
a qdisc, put new connection requests in a qdisc, ...

Sample configuration

The first thing that might come to mind is use ingress shaping to give
yourself a high guaranteed bandwidth. Configuration is just like with any
other interface:

tc qdisc add dev imq0 root handle 1: htb default 20
tc class add dev imq0 parent 1: classid 1:1 htb rate 2mbit \

burst 15k
tc class add dev imq0 parent 1:1 classid 1:10 htb rate 1mbit
tc class add dev imq0 parent 1:1 classid 1:20 htb rate 1mbit
tc qdisc add dev imq0 parent 1:10 handle 10: pfifo
tc qdisc add dev imq0 parent 1:20 handle 20: sfq
tc filter add dev imq0 parent 10:0 protocol ip prio 1 u32 match \
 ip dst 10.0.0.230/32 flowid 1:10

In this example u32 is used for classification. Other classifiers should work
as expected. Next traffic has to be selected and marked to be enqueued to
imq0.

iptables -t mangle -A PREROUTING -i eth0 -j IMQ --todev 0

ip link set imq0 up

The IMQ iptables targets is valid in the PREROUTING and POSTROUTING
chains of the mangle table. It's syntax is:

Page 42

IMQ [--todev n] n : number of imq device

An ip6tables target is also provided.

Please note traffic is not enqueued when the target is hit but afterwards.
The exact location where traffic enters the imq device depends on the
direction of the traffic (in/out). These are the predefined netfilter hooks
used by iptables:

enum nf_ip_hook_priorities {
 NF_IP_PRI_FIRST = INT_MIN,
 NF_IP_PRI_CONNTRACK = -200,
 NF_IP_PRI_MANGLE = -150,
 NF_IP_PRI_NAT_DST = -100,
 NF_IP_PRI_FILTER = 0,
 NF_IP_PRI_NAT_SRC = 100,
 NF_IP_PRI_LAST = INT_MAX,
};

For ingress traffic, imq registers itself with NF_IP_PRI_MANGLE + 1
priority which means packets enter the imq device directly after the
mangle PREROUTING chain has been passed.

For egress imq uses NF_IP_PRI_LAST which honors the fact that packets
dropped by the filter table won't occupy bandwidth.

Advanced filters for (re-)classifying packets

As explained in the section on classful queuing disciplines, filters are
needed to classify packets into any of the sub-queues. These filters are
called from within the classful qdisc.

Here is an incomplete list of classifiers available:

fw
Bases the decision on how the firewall has marked the packet. This
can be the easy way out if you don't want to learn tc filter syntax.

u32
Bases the decision on fields within the packet (i.e. source IP address,
etc)

Page 43

route
Bases the decision on which route the packet will be routed by

rsvp, rsvp6
Routes packets based on RSVP Only useful on networks you control -
the Internet does not respect RSVP.

tcindex
Used in the DSMARK qdisc, see the relevant section.

Note that in general there are many ways in which you can classify packets
and that it generally comes down to preference as to which system you
wish to use.

Classifiers in general accept a few arguments in common. They are listed
here for convenience:

protocol
The protocol this classifier will accept. Generally you will only be
accepting only IP traffic. Required.

parent
The handle this classifier is to be attached to. This handle must be an
already existing class. Required.

prio
The priority of this classifier. Lower numbers get tested first.

handle
This handle means different things to different filters.

All the following sections will assume you are trying to shape the traffic
going to HostA. They will assume that the root class has been configured
on 1: and that the class you want to send the selected traffic to is 1:1.

The u32 classifier

The U32 filter is the most advanced filter available in the current
implementation. It entirely based on hashing tables, which make it robust
when there are many filter rules.

Page 44

In its simplest form the U32 filter is a list of records, each consisting of two
fields: a selector and an action. The selectors, described below, are
compared with the currently processed IP packet until the first match
occurs, and then the associated action is performed. The simplest type of
action would be directing the packet into defined class.

The command line of tc filter program, used to configure the filter, consists
of three parts: filter specification, a selector and an action. The filter
specification can be defined as:

tc filter add dev IF [protocol PROTO]
 [(preference|priority) PRIO]
 [parent CBQ]

The protocol field describes protocol that the filter will be applied to. We
will only discuss case of ip protocol. The preference field (priority can be
used alternatively) sets the priority of currently defined filter. This is
important, since you can have several filters (lists of rules) with different
priorities. Each list will be passed in the order the rules were added, then
list with lower priority (higher preference number) will be processed. The
parent field defines the CBQ tree top (e.g. 1:0), the filter should be
attached to.

The options described above apply to all filters, not only U32.

U32 selector

The U32 selector contains definition of the pattern, that will be matched to
the currently processed packet. Precisely, it defines which bits are to be
matched in the packet header and nothing more, but this simple method is
very powerful. Let's take a look at the following examples, taken directly
from a pretty complex, real-world filter:

tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32 \
 match u32 00100000 00ff0000 at 0 flowid 1:10

For now, leave the first line alone - all these parameters describe the
filter's hash tables. Focus on the selector line, containing match keyword.
This selector will match to IP headers, whose second byte will be 0x10

Page 45

(0010). As you can guess, the 00ff number is the match mask, telling the
filter exactly which bits to match. Here it's 0xff, so the byte will match if
it's exactly 0x10. The at keyword means that the match is to be started at
specified offset (in bytes) -- in this case it's beginning of the packet.
Translating all that to human language, the packet will match if its Type of
Service field will have `low delay' bits set. Let's analyze another rule:

tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32 \
 match u32 00000016 0000ffff at nexthdr+0 flowid 1:10

The nexthdr option means next header encapsulated in the IP packet, i.e.
header of upper-layer protocol. The match will also start here at the
beginning of the next header. The match should occur in the second, 32-bit
word of the header. In TCP and UDP protocols this field contains packet's
destination port. The number is given in big-endian format, i.e. older bits
first, so we simply read 0x0016 as 22 decimal, which stands for SSH
service if this was TCP. As you guess, this match is ambiguous without a
context, and we will discuss this later.

Having understood all the above, we will find the following selector quite
easy to read: match c0a80100 ffffff00 at 16. What we got here is a three
byte match at 17-th byte, counting from the IP header start. This will match
for packets with destination address anywhere in 192.168.1/24 network.
After analyzing the examples, we can summarize what we have learned.

General selectors

General selectors define the pattern, mask and offset the pattern will be
matched to the packet contents. Using the general selectors you can match
virtually any single bit in the IP (or upper layer) header. They are more
difficult to write and read, though, than specific selectors that described
below. The general selector syntax is:

match [u32 | u16 | u8] PATTERN MASK [at OFFSET | nexthdr+OFFSET]

One of the keywords u32, u16 or u8 specifies length of the pattern in bits.
PATTERN and MASK should follow, of length defined by the previous
keyword. The OFFSET parameter is the offset, in bytes, to start matching.
If nexthdr+ keyword is given, the offset is relative to start of the upper
layer header.

Page 46

Some examples:

Packet will match to this rule, if its time to live (TTL) is 64. TTL is the field
starting just after 8-th byte of the IP header.

tc filter add dev ppp14 parent 1:0 prio 10 u32 match u8 64 0xff \
at 8 flowid 1:4

The following matches all TCP packets which have the ACK bit set:

tc filter add dev ppp14 parent 1:0 prio 10 u32 match ip protocol \
6 0xff match u8 0x10 0xff at nexthdr+13 flowid 1:3

Use this to match ACKs on packets smaller than 64 bytes:

match acks the hard way,
IP protocol 6,
IP header length 0x5(32 bit words),
IP Total length 0x34 (ACK + 12 bytes of TCP options)
TCP ack set (bit 5, offset 33)

tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32 \
 match ip protocol 6 0xff match u8 0x05 0x0f at 0 \
 match u16 0x0000 0xffc0 at 2 match u8 0x10 0xff at 33 \
 flowid 1:3

This rule will only match TCP packets with ACK bit set, and no further
payload. Here we can see an example of using two selectors, the final
result will be logical AND of their results. If we take a look at TCP header
diagram, we can see that the ACK bit is second older bit (0x10) in the 14-th
byte of the TCP header (at nexthdr+13). As for the second selector, if we'd
like to make our life harder, we could write match u8 0x06 0xff at 9 instead
of using the specific selector protocol tcp, because 6 is the number of TCP
protocol, present in 10-th byte of the IP header. On the other hand, in this
example we couldn't use any specific selector for the first match - simply
because there's no specific selector to match TCP ACK bits.

The filter below is a modified version of the filter above. The difference is,
that it doesn't check the ip header length. Why? Because the filter above
does only work on 32 bit systems.

tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32 \
 match ip protocol 6 0xff match u8 0x10 0xff at nexthdr+13 \

Page 47

 match u16 0x0000 0xffc0 at 2 flowid 1:3

The route classifier

This classifier filters based on the results of the routing tables. When a
packet that is traversing through the classes reaches one that is marked
with the "route" filter, it splits the packets up based on information in the
routing table.

tc filter add dev eth1 parent 1:0 protocol ip prio 100 route

Here we add a route classifier onto the parent node 1:0 with priority 100.
When a packet reaches this node (which, since it is the root, will happen
immediately) it will consult the routing table. If the packet matches, it will
be send to the given class and have a priority of 100. Then, to finally kick it
into action, you add the appropriate routing entry:

The trick here is to define 'realm' based on either destination or source.
The way to do it is like this:

ip route add Host/Network via Gateway dev Device realm
RealmNumber

For instance, we can define our destination network 192.168.10.0 with a
realm number 10:

ip route add 192.168.10.0/24 via 192.168.10.1 dev eth1 realm 10

When adding route filters, we can use realm numbers to represent the
networks or hosts and specify how the routes match the filters.

tc filter add dev eth1 parent 1:0 protocol ip prio 100 \
route to 10 classid 1:10

The above rule matches the packets going to the network 192.168.10.0.
Route filter can also be used to match source routes. For example, there is
a subnetwork attached to the Linux router on eth2.

Page 48

ip route add 192.168.2.0/24 dev eth2 realm 2
tc filter add dev eth1 parent 1:0 protocol ip prio 100 \

route from 2 classid 1:2

Here the filter specifies that packets from the subnetwork 192.168.2.0
(realm 2) will match class id 1:2.

Policing filters

To make even more complicated setups possible, you can have filters that
only match up to a certain bandwidth. You can declare a filter either to
entirely cease matching above a certain rate, or not to match only the
bandwidth exceeding a certain rate.

So if you decided to police at 4mbit/s, but 5mbit/s of traffic is present, you
can stop matching either the entire 5mbit/s, or only not match 1mbit/s, and
do send 4mbit/s to the configured class.

If bandwidth exceeds the configured rate, you can drop a packet, reclassify
it, or see if another filter will match it.

Ways to police

There are basically two ways to police. If you compiled the kernel with
'Estimators', the kernel can measure for each filter how much traffic it is
passing, more or less. These estimators are very easy on the CPU, as they
simply count 25 times per second how many data has been passed, and
calculate the bitrate from that.

The other way works again via a Token Bucket Filter, this time living
within your filter. The TBF only matches traffic UP TO your configured
bandwidth, if more is offered, only the excess is subject to the configured
overlimit action.

Page 49

With the kernel estimator

This is very simple and has only one parameter: avrate. Either the flow
remains below avrate, and the filter classifies the traffic to the classid
configured, or your rate exceeds it in which case the specified action is
taken, which is 'reclassify' by default.

The kernel uses an Exponential Weighted Moving Average for your
bandwidth which makes it less sensitive to short bursts.

With Token Bucket Filter

Uses the following parameters:

• burst/buffer/maxburst

• mtu/minburst

• mpu

• rate

Which behave mostly identical to those described in the Token Bucket
Filter section. Please note however that if you set the mtu of a TBF policer
too low, *no* packets will pass, whereas the egress TBF qdisc will just pass
them slower.

Another difference is that a policer can only let a packet pass, or drop it. It
cannot hold it in order to delay it.

Overlimit actions

If your filter decides that it is overlimit, it can take 'actions'. Currently, four
actions are available:

Page 50

continue
Causes this filter not to match, but perhaps other filters will.

drop
This is a very fierce option which simply discards traffic exceeding a
certain rate. It is often used in the ingress policer and has limited
uses. For example, you may have a name server that falls over if
offered more than 5mbit/s of packets, in which case an ingress filter
could be used to make sure no more is ever offered.

Pass/OK
Pass on traffic ok. Might be used to disable a complicated filter, but
leave it in place.

reclassify
Most often comes down to reclassification to Best Effort. This is the
default action.

Examples

The only real example known is mentioned in the 'Protecting your host
from SYN floods' section.

Limit incoming icmp traffic to 2kbit, drop packets over the limit:

tc filter add dev $DEV parent ffff: protocol ip prio 20 \
u32 match ip protocol 1 0xff police rate 2kbit buffer \
10k drop flowid :1

Limit packets to a certain size (i.e. all packets with a length greater than
84 bytes will get dropped):

tc filter add dev $DEV parent ffff: protocol ip prio 20 u32 match \
tos 0 0 police mtu 84 drop flowid :1

This method can be used to drop all packets:

tc filter add dev $DEV parent ffff: protocol ip prio 20 u32 match \
ip protocol 1 0xff police mtu 1 drop flowid :1

Page 51

It actually drops icmp packets greater-than 1 byte. While packets with a
size of 1 byte are possible in theory, you will not find these in a real
network.

Hashing filters for very fast massive filtering

If you have a need for thousands of rules, for example if you have a lot of
clients or computers, all with different QoS specifications, you may find
that the kernel spends a lot of time matching all those rules.

By default, all filters reside in one big chain which is matched in
descending order of priority. If you have 1000 rules, 1000 checks may be
needed to determine what to do with a packet.

Matching would go much quicker if you would have 256 chains with each
four rules - if you could divide packets over those 256 chains, so that the
right rule will be there.

Hashing makes this possible. Let's say you have 1024 cable modem
customers in your network, with IP addresses ranging from 1.2.0.0 to
1.2.3.255, and each has to go in another bin, for example 'lite', 'regular'
and 'premium'. You would then have 1024 rules like this:

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.0.0 classid 1:1

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.0.1 classid 1:1
...

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.3.254 classid 1:3

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.3.255 classid 1:2

To speed this up, we can use the last part of the IP address as a 'hash key'.
We then get 256 tables, the first of which looks like this:

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.0.0 classid 1:1

Page 52

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.1.0 classid 1:1

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.2.0 classid 1:1

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.3.0 classid 1:3

The next one starts like this:

tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip \
src 1.2.0.1 classid 1:1
...

This way, only four checks are needed at most, two on average.

Configuration is pretty complicated, but very worth it by the time you have
this many rules. First we make a filter root, then we create a table with 256
entries:

tc filter add dev eth1 parent 1:0 prio 5 protocol ip u32
tc filter add dev eth1 parent 1:0 prio 5 handle 2: protocol ip \

u32 divisor 256

Now we add some rules to entries in the created table:

tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
 match ip src 1.2.0.123 flowid 1:1
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
 match ip src 1.2.1.123 flowid 1:2
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
 match ip src 1.2.3.123 flowid 1:3
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
 match ip src 1.2.4.123 flowid 1:2

This is entry 123, which contains matches for 1.2.0.123, 1.2.1.123,
1.2.2.123, 1.2.3.123, and sends them to 1:1, 1:2, 1:3 and 1:2 respectively.
Note that we need to specify our hash bucket in hex, 0x7b is 123.

Next create a 'hashing filter' that directs traffic to the right entry in the
hashing table:

Page 53

tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 800:: \
 match ip src 1.2.0.0/16 hashkey mask 0x000000ff at 12 \
 link 2:

Ok, some numbers need explaining. The default hash table is called 800::
and all filtering starts there. Then we select the source address, which lives
as position 12, 13, 14 and 15 in the IP header, and indicate that we are
only interested in the last part. This will be sent to hash table 2:, which we
created earlier.

It is quite complicated, but it does work in practice and performance will
be staggering. Note that this example could be improved to the ideal case
where each chain contains 1 filter!

Ingress qdisc

All qdiscs discussed so far are egress qdiscs. Each interface however can
also have an ingress qdisc which is not used to send packets out to the
network adaptor. Instead, it allows you to apply tc filters to packets coming
in over the interface, regardless of whether they have a local destination or
are to be forwarded.

As the tc filters contain a full Token Bucket Filter implementation, and are
also able to match on the kernel flow estimator, there is a lot of
functionality available. This effectively allows you to police incoming
traffic, before it even enters the IP stack.

Parameters & usage

The ingress qdisc itself does not require any parameters. It differs from
other qdiscs in that it does not occupy the root of a device. Attach it like
this:

tc qdisc add dev eth0 ingress

This allows you to have other, sending, qdiscs on your device besides the

Page 54

ingress qdisc.

Prioritizing interactive traffic

If lots of data is coming down your link, or going up for that matter, and
you are trying to do some maintenance via telnet or ssh, this may not go
too well. Other packets are blocking your keystrokes. Wouldn't it be great
if there were a way for your interactive packets to sneak past the bulk
traffic? Linux can do this for you!

As before, we need to handle traffic going both ways. Evidently, this works
best if there are Linux boxes on both ends of your link, although other
UNIX's are able to do this.

The standard pfifo_fast scheduler has 3 different 'bands'. Traffic in band 0
is transmitted first, after which traffic in band 1 and 2 gets considered. It is
vital that our interactive traffic be in band 0.

The most common use is to set telnet & ftp control connections to
"Minimum Delay" and FTP data to "Maximum Throughput". This would be
done as follows, on your upstream router:

iptables -A PREROUTING -t mangle -p tcp --sport telnet \
-j TOS --set-tos Minimize-Delay

iptables -A PREROUTING -t mangle -p tcp --sport ftp \
-j TOS --set-tos Minimize-Delay

iptables -A PREROUTING -t mangle -p tcp --sport ftp-data \
-j TOS --set-tos Maximize-Throughput

Now, this only works for data going from your telnet foreign host to your
local computer. The other way around appears to be done for you, ie,
telnet, ssh & friends all set the TOS field on outgoing packets
automatically.

Should you have an application that does not do this, you can always do it
with netfilter. On your local box:

iptables -A OUTPUT -t mangle -p tcp --dport telnet \
 -j TOS --set-tos Minimize-Delay
iptables -A OUTPUT -t mangle -p tcp --dport ftp \

Page 55

-j TOS --set-tos Minimize-Delay
iptables -A OUTPUT -t mangle -p tcp --dport ftp-data \

-j TOS --set-tos Maximize-Throughput

Page 56

BWM Tools

Introduction
Bandwidth Management Tools was designed to provide a full suite of bandwidth
management applications, able to shape, log and graph traffic.

BWM Tools intercepts packets using the QUEUE mechanism, when packets
arrive they are queued. Another thread picks these packets up and processes
them according to the flows defined.

Seeing as BWM Tools uses iptables for matching traffic, the control over traffic is
limitless.

BWM Tools is a set of userspace utilities, no kernel patches are required. As long
as your iptables supports the -j QUEUE target, traffic shaping will work.

Features
This section lists a few features which make BWM Tools a good solution for small
to large enterprises...

Traffic Shaping
• Class based traffic categorization.
• Hierarchical flows allows you to embed flows within flows to form

complex traffic shaping setups.
• Parent burst thresholds, this allows child flows to burst until their

parent flow has reached a specific utilization threshold.
• Realtime flow monitoring

Firewalling
• Support for all IPTables/Netfilter features on host operating system.

Graphing
• RRD Tool file generation which can be used to create custom graphs.
• Builtin RRD Tool graphing support allowing BWM Tools to generate

pretty looking graphs all by itself.

Logging
• Logging of traffic stats to file at pre-defined intervals for use in

reporting or graphing.
• Logging of byte, packet, burst & drop counters.
• Traffic flow grouping.

Page 57

Seeing as BWM Tools is based largely on the functionality of IPTables/Netfilter,
we going to touch on this subject below.

IPTables

What is Netfilter/Iptables?

Netfilter is the framework in Linux 2.4+ kernels that allow for firewalling, NAT,
and packet mangling. Iptables is the userspace tools that works with the
Netfilter framework (technically a lie; Iptables is also a part of the Netfilter
framework in the kernel). Think of Netfilter as kernel space, and Iptables as
userspace.

Interesting Netfilter features...

• State matching - Connection tracking (can you trust the remote host to
determine whether your firewall will accept a packet?).

• Automatic fragmentation reassembly - Connection tracking automatically
reassembles fragmented packets for examination.

• Improved matching - Advanced packet matching such as rate limit, string
matching (packet data), etc.

• Improved logging - Customized logging levels and entries, also allows user
space logging.

• Allows packet mangling - Allows for the mangling of any information inside
a packet.

• Userspace queuing - Allows userspace programs access to packets.
• Built-in support for port forwarding - obviates IPMASQADM.
• Progress - Inexorable fact of life.

There are several different things you can do with iptables. You start with three
built-in chains INPUT, OUTPUT and FORWARD which you can't delete. Let's look
at the operations to manage whole chains:

1. Create a new chain (-N)
2. Delete an empty chain (-X)
3. Change the policy for a built-in chain. (-P)
4. List the rules in a chain (-L)
5. Flush the rules out of a chain (-F)
6. Zero the packet and byte counters on all rules in a chain (-Z)

Page 58

There are several ways to manipulate rules inside a chain:

1. Append a new rule to a chain (-A)
2. Insert a new rule at some position in a chain (-I)
3. Replace a rule at some position in a chain (-R)
4. Delete a rule at some position in a chain, or the first that matches (-D)

Managing single rules

This is the bread-and-butter of packet filtering; manipulating rules. Most
commonly, you will probably use the append (-A) and delete (-D) commands. The
others (-I for insert and -R for replace) are simple extensions of these concepts.

Each rule specifies a set of conditions the packet must meet, and what to do if it
meets them (a `target'). For example, you might want to drop all ICMP packets
coming from the IP address 127.0.0.1. So in this case our conditions are that the
protocol must be ICMP and that the source address must be 127.0.0.1. Our
target is `DROP'.

127.0.0.1 is the `loopback' interface, which you will have even if you have no real
network connection. You can use the `ping' program to generate such packets (it
simply sends an ICMP type 8 (echo request) which all cooperative hosts should
obligingly respond to with an ICMP type 0 (echo reply) packet). This makes it
useful for testing.

ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.2 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.2 ms

iptables -A INPUT -s 127.0.0.1 -p icmp -j DROP
ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss

Page 59

You can see here that the first ping succeeds (the `-c 1' tells ping to only send a
single packet).

Then we append (-A) to the `INPUT' chain, a rule specifying that for packets
from 127.0.0.1 (`-s 127.0.0.1') with protocol ICMP (`-p icmp') we should jump to
DROP (`-j DROP').

Then we test our rule, using the second ping. There will be a pause before the
program gives up waiting for a response that will never come.

We can delete the rule in one of two ways. Firstly, since we know that it is the
only rule in the input chain, we can use a numbered delete, as in:

iptables -D INPUT 1

To delete rule number 1 in the INPUT chain.

The second way is to mirror the -A command, but replacing the -A with -D. This is
useful when you have a complex chain of rules and you don't want to have to
count them to figure out that it's rule 37 that you want to get rid of. In this case,
we would use:

iptables -D INPUT -s 127.0.0.1 -p icmp -j DROP

The syntax of -D must have exactly the same options as the -A (or -I or -R)
command. If there are multiple identical rules in the same chain, only the first
will be deleted.

Filtering Specifications

We have seen the use of `-p' to specify protocol, and `-s' to specify source
address, but there are other options we can use to specify packet characteristics.
What follows is an exhaustive compendium.

Specifying Source and Destination IP Addresses

Source (`-s', `--source' or `--src') and destination (`-d', `--destination' or `--
dst') IP addresses can be specified in four ways. The most common way is
to use the full name, such as `localhost' or `www.linuxhq.com'. The second

Page 60

way is to specify the IP address such as `127.0.0.1'.

The third and fourth ways allow specification of a group of IP addresses,
such as `199.95.207.0/24' or `199.95.207.0/255.255.255.0'. These both
specify any IP address from 199.95.207.0 to 199.95.207.255 inclusive; the
digits after the `/' tell which parts of the IP address are significant. `/32' or
`/255.255.255.255' is the default (match all of the IP address). To specify
any IP address at all `/0' can be used, like so:

[NOTE: `-s 0/0' is redundant here.]
iptables -A INPUT -s 0/0 -j DROP

This is rarely used, as the effect above is the same as not specifying the `-s'
option at all.

Specifying Inversion
Many flags, including the `-s' (or `--source') and `-d' (`--destination') flags
can have their arguments preceded by `!' (pronounced `not') to match
addresses NOT equal to the ones given. For example. `-s ! localhost'
matches any packet not coming from localhost.

Specifying Protocol
The protocol can be specified with the `-p' (or `--protocol') flag. Protocol
can be a number (if you know the numeric protocol values for IP) or a name
for the special cases of `TCP', `UDP' or `ICMP'. Case doesn't matter, so
`tcp' works as well as `TCP'.

The protocol name can be prefixed by a `!', to invert it, such as `-p ! TCP'
to specify packets which are not TCP.

Specifying an Interface
The `-i' (or `--in-interface') and `-o' (or `--out-interface') options specify the
name of an interface to match. An interface is the physical device the
packet came in on (`-i') or is going out on (`-o'). You can use the ifconfig
command to list the interfaces which are `up' (i.e., working at the
moment).

Packets traversing the INPUT chain don't have an output interface, so any
rule using `-o' in this chain will never match. Similarly, packets traversing
the OUTPUT chain don't have an input interface, so any rule using `-i' in

Page 61

this chain will never match.

Only packets traversing the FORWARD chain have both an input and
output interface.

It is perfectly legal to specify an interface that currently does not exist; the
rule will not match anything until the interface comes up. This is extremely
useful for dial-up PPP links (usually interface ppp0) and the like.

As a special case, an interface name ending with a `+' will match all
interfaces (whether they currently exist or not) which begin with that
string. For example, to specify a rule which matches all PPP interfaces, the
-i ppp+ option would be used.

The interface name can be preceded by a `!' with spaces around it, to
match a packet which does not match the specified interface(s), eg -i !
ppp+.

Specifying Fragments
Sometimes a packet is too large to fit down a wire all at once. When this
happens, the packet is divided into fragments, and sent as multiple
packets. The other end reassembles these fragments to reconstruct the
whole packet.

The problem with fragments is that the initial fragment has the complete
header fields (IP + TCP, UDP and ICMP) to examine, but subsequent
packets only have a subset of the headers (IP without the additional
protocol fields). Thus looking inside subsequent fragments for protocol
headers (such as is done by the TCP, UDP and ICMP extensions) is not
possible.

If you are doing connection tracking or NAT, then all fragments will get
merged back together before they reach the packet filtering code, so you
need never worry about fragments.

Please also note that in the INPUT chain of the filter table (or any other
table hooking into the NF_IP_LOCAL_IN hook) is traversed after
defragmentation of the core IP stack.

Otherwise, it is important to understand how fragments get treated by the
filtering rules. Any filtering rule that asks for information we don't have
will not match. This means that the first fragment is treated like any other
packet. Second and further fragments won't be. Thus a rule -p TCP --sport

Page 62

www (specifying a source port of `www') will never match a fragment
(other than the first fragment). Neither will the opposite rule -p TCP --sport
! www.

However, you can specify a rule specifically for second and further
fragments, using the `-f' (or `--fragment') flag. It is also legal to specify that
a rule does not apply to second and further fragments, by preceding the `-f'
with ` ! '.

Usually it is regarded as safe to let second and further fragments through,
since filtering will effect the first fragment, and thus prevent reassembly
on the target host; however, bugs have been known to allow crashing of
machines simply by sending fragments. Your call.

Note for network-heads: malformed packets (TCP, UDP and ICMP packets
too short for the firewalling code to read the ports or ICMP code and type)
are dropped when such examinations are attempted. So are TCP fragments
starting at position 8.

As an example, the following rule will drop any fragments going to
192.168.1.1:

iptables -A OUTPUT -f -d 192.168.1.1 -j DROP

Extensions to iptables: Matches

IPTables is extensible, meaning that both the kernel and the iptables tool can be
extended to provide new features.

Some of these extensions are standard, and other are more exotic. Extensions
can be made by other people and distributed separately for niche users.

Kernel extensions normally live in the kernel module subdirectory, they are
demand loaded if your kernel was compiled with CONFIG_KMOD set, so you
should not need to manually insert them.

Extensions to the iptables program are shared libraries which usually live in
/usr/lib/iptables.

Extensions come in two types: new targets, and new matches (we'll talk about
new targets a little later). Some protocols automatically offer new tests:

Page 63

currently these are TCP, UDP and ICMP as shown below.

For these you will be able to specify the new tests on the command line after the
`-p' option, which will load the extension. For explicit new tests, use the `-m'
option to load the extension, after which the extended options will be available.

To get help on an extension, use the option to load it (`-p', `-j' or `-m') followed
by `-h' or `--help', eg:

iptables -p tcp –help

Match Extensions
IPTables can use extended packet matching modules. These are loaded in two
ways: implicitly, when -p or --protocol is specified, or with the -m or --match
options, followed by the matching module name; after these, various extra
command line options become available, depending on the specific module. You
can specify multiple extended match modules in one line, and you can use the -h
or --help options after the module has been specified to receive help specific to
that module.

The following are included in the base package, and most of these can be
preceded by a ! to invert the sense of the match.

addrtype
This module matches packets based on their address type. Address types
are used within the kernel networking stack and categorize addresses into
various groups. The exact definition of that group depends on the specific
layer three protocol.

The following address types are possible:

• UNSPEC
an unspecified address (i.e. 0.0.0.0)

• UNICAST
an unicast address

• LOCAL
a local address

• BROADCAST

Page 64

a broadcast address

• ANYCAST
an anycast packet

• MULTICAST
a multicast address

• BLACKHOLE
a blackhole address

• UNREACHABLE
an unreachable address

• PROHIBIT a prohibited address

--src-type type
Matches if the source address is of given type

--dst-type type
Matches if the destination address is of given type

ah

``ah'' : lets you match an AH packet based on its Security Parameter Index
(SPI). This module matches the SPIs in AH header of IPSec packets.

--ahspi [!] spi[:spi]
match spi (range)

For example, we will drop all the AH packets that have a SPI equal to 500:

iptables -A INPUT -p 51 -m ah --ahspi 500 -j DROP
iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP ipv6-auth-- anywhere anywhere ah spi:500

esp
``esp'' : lets you match an ESP packet based on its SPI. This module
matches the SPIs in ESP header of IPSec packets.

Page 65

--espspi [!] spi[:spi]
The esp match works exactly the same:

iptables -A INPUT -p 50 -m esp --espspi 500 -j DROP
iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP ipv6-crypt-- anywhere anywhere esp
spi:500

Do not forget to specify the proper protocol through ``-p 50'' or ``-p 51''
(for esp & ah respectively) when you use the ah or esp matches, or else the
rule insertion will simply abort for obvious reasons.

childlevel
This is an experimental module. It matches on whether the packet is part of
a master connection or one of its children (or grandchildren, etc). For
instance, most packets are level 0. FTP data transfer is level 1.

--childlevel [!] level

condition
This matches if a specific /proc filename is '0' or '1'.

--condition [!] filename
Match on boolean value stored in /proc/net/ipt_condition/filename file

For example, if you want to prohibit access to your web server while doing
maintenance, you can use the following:

iptables -A FORWARD -p tcp -d 192.168.1.10 --dport http -m
condition --condition webdown -j REJECT --reject-with tcp-reset
echo 1 > /proc/net/ipt_condition/webdown

The following rule will match only if the ``webdown'' condition is set to
“1”.

Notes:
• The condition variables are stored in the `/proc/net/ipt_condition/'

directory.
• A condition variable can only be set to ``0'' (FALSE) or ``1'' (TRUE).

Page 66

• One or many rules can be affected by the state of a single condition
variable.

• A condition proc file is automatically created when a new condition is
first referenced.

• A condition proc file is automatically deleted when the last reference
to it is removed.

connmark
This module matches the netfilter mark field associated with a connection
(which can be set using the CONNMARK target below).

--mark value[/mask]
Matches packets in connections with the given mark value (if a mask
is specified, this is logically ANDed with the mark before the
comparison).

connrate
This module matches the current transfer rate in a connection.

--connrate [!] [from]:[to]
Match against the current connection transfer rate being within
'from' and 'to' bytes per second. When the "!" argument is used
before the range, the sense of the match is inverted.

conntrack

This module, when combined with connection tracking, allows access to
more connection tracking information than the "state" match. (this module
is present only if iptables was compiled under a kernel supporting this
feature)

--ctstate state
Where state is a comma separated list of the connection states to
match. Possible states are...

INVALID
Meaning that the packet is associated with no known
connection.

ESTABLISHED
Meaning that the packet is associated with a connection which
has seen packets in both directions.

Page 67

NEW
Meaning that the packet has started a new connection, or
otherwise associated with a connection which has not seen
packets in both directions.

RELATED
Meaning that the packet is starting a new connection, but is
associated with an existing connection, such as an FTP data
transfer, or an ICMP error.

SNAT
A virtual state, matching if the original source address differs
from the reply destination.

DNAT
A virtual state, matching if the original destination differs from
the reply source.

--ctproto proto
Protocol to match (by number or name)

--ctorigsrc [!] address[/mask]
Match against original source address

--ctorigdst [!] address[/mask]
Match against original destination address

--ctreplsrc [!] address[/mask]
Match against reply source address

--ctrepldst [!] address[/mask]
Match against reply destination address

--ctstatus [NONE|EXPECTED|SEEN_REPLY|ASSURED][,...]
Match against internal conntrack states

--ctexpire time[:time]
Match remaining lifetime in seconds against given value or range of
values (inclusive)

For example, if you want to allow all the RELATED connections for TCP
protocols only, then you can proceed as follows :

Page 68

iptables -A FORWARD -m conntrack --ctstate RELATED \
--ctproto tcp -j ACCEPT

iptables –list
Chain FORWARD (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate RELATED

dscp

This module matches the 6 bit DSCP field within the TOS field in the IP
header. DSCP has superseded TOS within the IETF.

--dscp value
Match against a numeric (decimal or hex) value [0-32].

--dscp-class DiffServ Class
Match the DiffServ class. This value may be any of the BE, EF, AFxx
or CSx classes. It will then be converted into it's according numeric
value.

dstlimit
This module allows you to limit the packet per second (pps) rate on a per
destination IP or per destination port base. As opposed to the `limit' match,
every destination ip / destination port has it's own limit.

--dstlimit avg
Maximum average match rate (packets per second unless followed by
/sec /minute /hour /day postfixes).

--dstlimit-mode mode
The limiting hashmode. Is the specified limit per dstip, dstip-
dstport tuple, srcip-dstip tuple, or per srcipdstip-dstport tuple.

--dstlimit-name name
Name for /proc/net/ipt_dstlimit/* file entry

[--dstlimit-burst burst]
Number of packets to match in a burst. Default: 5

[--dstlimit-htable-size size]
Number of buckets in the hashtable

Page 69

[--dstlimit-htable-max max]
Maximum number of entries in the hashtable

[--dstlimit-htable-gcinterval interval]
Interval between garbage collection runs of the hashtable (in
miliseconds). Default is 1000 (1 second).

[--dstlimit-htable-expire time]
After which time are idle entries expired from hashtable (in
miliseconds)? Default is 10000 (10 seconds).

ecn

This allows you to match the ECN bits of the IPv4 and TCP header. ECN is
the Explicit Congestion Notification mechanism as specified in RFC3168

--ecn-tcp-cwr
This matches if the TCP ECN CWR (Congestion Window Received) bit
is set.

--ecn-tcp-ece
This matches if the TCP ECN ECE (ECN Echo) bit is set.

--ecn-ip-ect num
This matches a particular IPv4 ECT (ECN-Capable Transport). You
have to specify a number between `0' and `3'.

fuzzy
This match implements a TSK FLC (Takagi-Sugeno-Kang Fuzzy Logic
Controller). The basic idea is that the match is given two parameters that
tell it the desired filtering interval.

When the packet rate is below `lower-limit' the rule will never match.
Between `lower-limit' and `upper-limit', matching will occurs according a
increasing (mean) rate.

Finally, when the packet rate comes to `upper-limit', (mean) matching rate
attains its maximum value, 99%.

Taking into account that the sampling rate is variable and is of
approximately 100ms (on a busy machine), the author believes that the
module presents good responsiveness, adapting fast to changing traffic

Page 70

patterns.

--lower-limit number
Specifies the lower limit (in packets per second).

--upper-limit number
Specifies the upper limit (in packets per second).

For example, if you wish to avoid Denials Of Service, you could use the
following rule:

iptables -A INPUT -m fuzzy --lower-limit 100 --upper-limit 1000 \
-j REJECT

Below the 100 pps (packets per second) rate, the filter is inactive.
Between 100 and 1000 pps the mean acceptance rate drops from 100%
(when we are at 100 pps) to 1% (when we are at 1000 pps).
Above 1000 pps the acceptance rate keeps constant at 1%.

helper

This module matches packets related to a specific conntrack-helper.

--helper string
Matches packets related to the specified conntrack-helper.

string can be "ftp" for packets related to a ftp-session on default port.
For other ports append -portnr to the value, ie. "ftp-2121".

Same rules apply for other conntrack-helpers.

icmp
This extension is loaded if `--protocol icmp' is specified. It provides the
following option:

--icmp-type [!] typename
This allows specification of the ICMP type, which can be a numeric
ICMP type, or one of the ICMP type names below.

Valid ICMP Types:

Page 71

any
echo-reply (pong)
destination-unreachable
 network-unreachable
 host-unreachable
 protocol-unreachable
 port-unreachable
 fragmentation-needed
 source-route-failed
 network-unknown
 host-unknown
 network-prohibited
 host-prohibited
 TOS-network-unreachable
 TOS-host-unreachable
 communication-prohibited
 host-precedence-violation
 precedence-cutoff
source-quench
redirect
 network-redirect
 host-redirect
 TOS-network-redirect
 TOS-host-redirect
echo-request (ping)
router-advertisement
router-solicitation
time-exceeded (ttl-exceeded)
 ttl-zero-during-transit
 ttl-zero-during-reassembly
parameter-problem
 ip-header-bad
 required-option-missing
timestamp-request
timestamp-reply
address-mask-request
address-mask-reply

iprange
This matches on a given arbitrary range of IPv4 addresses

[!]--src-range ip-ip
Match source IP in the specified range.

Page 72

[!]--dst-range ip-ip
Match destination IP in the specified range.

length
This module matches the length of a packet against a specific value or
range of values.

--length length[:length]

For example, let's drop all the pings with a packet size greater than 85
bytes :

iptables -A INPUT -p icmp --icmp-type echo-request -m length \
--length 86:0xffff -j DROP

iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP icmp -- anywhere anywhere icmp echo-request
length 86:65535

Values of the range not present will be implied. The implied value for
minimum is 0, and for maximum is 65535.

limit
This module matches at a limited rate using a token bucket filter. A rule
using this extension will match until this limit is reached (unless the `!' flag
is used). It can be used in combination with the LOG target to give limited
logging, for example.

--limit rate
Maximum average matching rate: specified as a number, with an
optional `/second', `/minute', `/hour', or `/day' suffix; the default is
3/hour.

--limit-burst number
Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not reached,
up to this number; the default is 5.

mac
--mac-source [!] address

Page 73

Match source MAC address. It must be of the form
XX:XX:XX:XX:XX:XX. Note that this only makes sense for packets
coming from an Ethernet device and entering the PREROUTING,
FORWARD or INPUT chains.

mark
This module matches the netfilter mark field associated with a packet
(which can be set using the MARK target below).

--mark value[/mask]
Matches packets with the given unsigned mark value (if a mask is
specified, this is logically ANDed with the mask before the
comparison).

mport
This module matches a set of source or destination ports. Up to 15 ports
can be specified. It can only be used in conjunction with -p tcp or -p udp.

--source-ports port[,port[,port...]]
Match if the source port is one of the given ports. The flag --sports is
a convenient alias for this option.

--destination-ports port[,port[,port...]]
Match if the destination port is one of the given ports. The flag --
dports is a convenient alias for this option.

--ports port[,port[,port...]]
Match if the both the source and destination ports are equal to each
other and to one of the given ports.

For example, if you want to block ftp, ssh, telnet and http in one line, you
can:

iptables -A INPUT -p tcp -m mport --ports 20:23,80 -j DROP
iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere mport ports ftp-
data:telnet,http

multiport

Page 74

This module matches a set of source or destination ports. Up to 15 ports
can be specified. It can only be used in conjunction with -p tcp or -p udp.

--source-ports port[,port[,port...]]
Match if the source port is one of the given ports. The flag --sports is
a convenient alias for this option.

--destination-ports port[,port[,port...]]
Match if the destination port is one of the given ports. The flag --
dports is a convenient alias for this option.

--ports port[,port[,port...]]
Match if the both the source and destination ports are equal to each
other and to one of the given ports.

nth
This module matches every `n'th packet

--every value
Match every `value' packet

[--counter num]
Use internal counter number `num'. Default is `0'.

[--start num]
Initialize the counter at the number `num' insetad of `0'. Most
between `0' and `value'-1.

[--packet num]
Match on `num' packet. Most be between `0' and `value'-1.

For example, if you want to drop every 2 ping packets, you can do as
follows :

iptables -A INPUT -p icmp --icmp-type echo-request -m nth \
--every 2 -j DROP

iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP icmp -- anywhere anywhere icmp echo-request
every 2th

Page 75

For example, if you want to balance the load to the 3 addresses 10.0.0.5,
10.0.0.6 and 10.0.0.7, then you can do as follows :

iptables -t nat -A POSTROUTING -o eth0 -m nth --counter 7 \
--every 3 --packet 0 -j SNAT --to-source 10.0.0.5

iptables -t nat -A POSTROUTING -o eth0 -m nth --counter 7 \
--every 3 --packet 1 -j SNAT --to-source 10.0.0.6

iptables -t nat -A POSTROUTING -o eth0 -m nth --counter 7 \
--every 3 --packet 2 -j SNAT --to-source 10.0.0.7

iptables -t nat --list
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
SNAT all -- anywhere anywhere every 3th packet #0
to:10.0.0.5
SNAT all -- anywhere anywhere every 3th packet #1
to:10.0.0.6
SNAT all -- anywhere anywhere every 3th packet #2
to:10.0.0.7

owner
This module attempts to match various characteristics of the packet
creator, for locally-generated packets. It is only valid in the OUTPUT chain,
and even this some packets (such as ICMP ping responses) may have no
owner, and hence never match.

--uid-owner userid
Matches if the packet was created by a process with the given
effective user id.

--gid-owner groupid
Matches if the packet was created by a process with the given
effective group id.

--pid-owner processid
Matches if the packet was created by a process with the given
process id.

--sid-owner sessionid
Matches if the packet was created by a process in the given session
group.

--cmd-owner name

Page 76

Matches if the packet was created by a process with the given
command name. (this option is present only if iptables was compiled
under a kernel supporting this feature)

NOTE: pid, sid and command matching are broken on SMP

physdev
This module matches on the bridge port input and output devices enslaved
to a bridge device. This module is a part of the infrastructure that enables
a transparent bridging IP firewall and is only useful for kernel versions
above version 2.5.44.

--physdev-in name
Name of a bridge port via which a packet is received (only for
packets entering the INPUT, FORWARD and PREROUTING chains).
If the interface name ends in a "+", then any interface which begins
with this name will match. If the packet didn't arrive through a
bridge device, this packet won't match this option, unless '!' is used.

--physdev-out name
Name of a bridge port via which a packet is going to be sent (for
packets entering the FORWARD, OUTPUT and POSTROUTING
chains). If the interface name ends in a "+", then any interface which
begins with this name will match. Note that in the nat and mangle
OUTPUT chains one cannot match on the bridge output port,
however one can in the filter OUTPUT chain. If the packet won't
leave by a bridge device or it is yet unknown what the output device
will be, then the packet won't match this option, unless

--physdev-is-in
Matches if the packet has entered through a bridge interface.

--physdev-is-out
Matches if the packet will leave through a bridge interface.

--physdev-is-bridged
Matches if the packet is being bridged and therefore is not being
routed. This is only useful in the FORWARD and POSTROUTING
chains.

pkttype

This module matches the link-layer packet type.

Page 77

--pkt-type [unicast|broadcast|multicast]

If for example you want to silently drop all the broadcasted packets:

iptables -A INPUT -m pkttype --pkt-type broadcast -j DROP
iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere anywhere PKTTYPE = broadcast

random
This module randomly matches a certain percentage of all packets.

--average percent
Matches the given percentage. If omitted, a probability of 50% is set.

For example, if you want to drop 50% of the pings randomly, you can do as
follows:

iptables -A INPUT -p icmp --icmp-type echo-request -m random \
--average 50 -j DROP

iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP icmp -- anywhere anywhere icmp echo-request random
50%

realm
This matches the routing realm. Routing realms are used in complex
routing setups involving dynamic routing protocols like BGP.

--realm [!]value[/mask]
Matches a given realm number (and optionally mask).

For example, to log all the outgoing packet with a realm of 10, you can do
the following :

iptables -A OUTPUT -m realm --realm 10 -j LOG
iptables --list

Page 78

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
LOG all -- anywhere anywhere REALM match 0xa LOG
level warning

recent
This match allows you to dynamically create a list of IP addresses and then
match against that list in a few different ways.

--name name
Specify the list to use for the commands. If no name is given then
'DEFAULT' will be used.

[!] --set
This will add the source address of the packet to the list. If the source
address is already in the list, this will update the existing entry. This
will always return success or failure if `!' is passed in.

[!] --rcheck
This will check if the source address of the packet is currently in the
list and return true if it is, and false otherwise. Opposite is returned if
`!' is passed in.

[!] --update
This will check if the source address of the packet is currently in the
list. If it is then that entry will be updated and the rule will return
true. If the source address is not in the list then the rule will return
false. Opposite is returned if `!' is passed in.

[!] --remove
This will check if the source address of the packet is currently in the
list and if so that address will be removed from the list and the rule
will return true. If the address is not found, false is returned.
Opposite is returned if `!' is passed in.

[!] --seconds seconds
This option must be used in conjunction with one of `rcheck' or
`update'. When used, this will narrow the match to only happen when
the address is in the list and was seen within the last given number of
seconds. Opposite is returned if `!' is passed in.

[!] --hitcount hits
This option must be used in conjunction with one of `rcheck' or

Page 79

`update'. When used, this will narrow the match to only happen when
the address is in the list and packets had been received greater than
or equal to the given value. This option may be used along with
`seconds' to create an even narrower match requiring a certain
number of hits within a specific time frame. Opposite returned if `!'
passed in.

--rttl
This option must be used in conjunction with one of `rcheck' or
`update'. When used, this will narrow the match to only happen when
the address is in the list and the TTL of the current packet matches
that of the packet which hit the --set rule. This may be useful if you
have problems with people faking their source address in order to
DoS you via this module by disallowing others access to your site by
sending bogus packets to you.

For example, you can create a `badguy' list out of people attempting to
connect to port 139 on your firewall and then DROP all future packets from
them without considering them.

iptables -A FORWARD -m recent --name badguy --rcheck \
--seconds 60 -j DROP

iptables -A FORWARD -p tcp -i eth0 --dport 139 -m recent \
--name badguy --set -j DROP

iptables –list
Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere anywhere recent: CHECK
seconds:60
DROP tcp -- anywhere anywhere tcp dpt:netbios-ssn
recent: SET

set
This modules macthes IP sets which can be defined by ipset.

--set setname flag[,flag...]
Where flags are src and/or dst and there can be no more than six of
them. Hence the command

iptables -A FORWARD -m set --set test src,dst

This will match packets, for which (depending on the type of the set) the

Page 80

source address or port number of the packet can be found in the specified
set. If there is a binding belonging to the mached set element or there is a
default binding for the given set, then the rule will match the packet only if
additionally (depending on the type of the set) the destination address or
port number of the packet can be found in the set according to the binding.

state
This module, when combined with connection tracking, allows access to
the connection tracking state for this packet.

--state state
Where state is a comma separated list of the connection states to
match. Possible states are a subset of the conntrack match above...
INVALID, ESTABLISHED, NEW, RELATED.

string
This match allows you to match a string anywhere in the packet.

--string [!] string
Match a string in a packet

For example, to match packets containing the string ``cmd.exe'' anywhere
in the packet and queue them to a userland IDS, you could use:

iptables -A INPUT -m string --string 'cmd.exe' -j QUEUE
iptables –list
Chain INPUT (policy ACCEPT)
target prot opt source destination
QUEUE all -- anywhere anywhere STRING match
cmd.exe

Please do use this match with caution. A lot of people want to use this
match to stop worms, along with the DROP target. This is a major mistake.
It would be defeated by any IDS evasion method.

In a similar fashion, a lot of people have been using this match as a mean
to stop particular functions in HTTP like POST or GET by dropping any
HTTP packet containing the string POST. Please understand that this job is
better done by a filtering proxy. Additionally, any HTML content with the
word POST would get dropped with the former method. This match has
been designed to be able to queue to userland interesting packets for
better analysis, that's all. Dropping packet based on this would be defeated

Page 81

by any IDS evasion method.

tcp
These extensions are loaded if `--protocol tcp' is specified. It provides the
following options:

--source-port [!] port[:port]
Source port or port range specification. This can either be a service
name or a port number. An inclusive range can also be specified,
using the format port:port. If the first port is omitted, "0" is assumed;
if the last is omitted, "65535" is assumed. If the second port greater
then the first they will be swapped. The flag --sport is a convenient
alias for this option.

--destination-port [!] port[:port]
Destination port or port range specification. The flag --dport is a
convenient alias for this option.

--tcp-flags [!] mask comp
Match when the TCP flags are as specified. The first argument is the
flags which we should examine, written as a comma-separated list,
and the second argument is a comma-separated list of flags which
must be set. Flags are: SYN ACK FIN RST URG PSH ALL NONE.

Hence the command:

iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN

will only match packets with the SYN flag set, and the ACK, FIN and
RST flags unset.

[!] --syn
Only match TCP packets with the SYN bit set and the ACK and RST
bits cleared. Such packets are used to request TCP connection
initiation; for example, blocking such packets coming in an interface
will prevent incoming TCP connections, but outgoing TCP
connections will be unaffected. It is equivalent to --tcp-flags
SYN,RST,ACK SYN. If the "!" flag precedes the "--syn", the sense of
the option is inverted.

It is sometimes useful to allow TCP connections in one direction, but
not the other. For example, you might want to allow connections to
an external WWW server, but not connections from that server.

Page 82

The naive approach would be to block TCP packets coming from the
server. Unfortunately, TCP connections require packets going in both
directions to work at all.

The solution is to block only the packets used to request a
connection. These packets are called SYN packets (ok, technically
they're packets with the SYN flag set, and the RST and ACK flags
cleared, but we call them SYN packets for short). By disallowing only
these packets, we can stop attempted connections in their tracks.

This flag can be inverted by preceding it with a `!', which means
every packet other than the connection initiation.

--tcp-option [!] number
Match if TCP option set.

--mss value[:value]
Match TCP SYN or SYN/ACK packets with the specified MSS value
(or range), which control the maximum packet size for that
connection.

tcpmss
This matches the TCP MSS (maximum segment size) field of the TCP
header. You can only use this on TCP SYN or SYN/ACK packets, since the
MSS is only negotiated during the TCP handshake at connection startup
time.

[!] --mss value[:value]
Match a given TCP MSS value or range.

time
This matches if the packet arrival time/date is within a given range. All
options are facultative.

--timestart value
Match only if it is after `value' (Inclusive, format: HH:MM ; default
00:00).

--timestop value
Match only if it is before `value' (Inclusive, format: HH:MM ; default
23:59).

Page 83

--days listofdays
Match only if today is one of the given days. (format:
Mon,Tue,Wed,Thu,Fri,Sat,Sun ; default everyday)

--datestart date
Match only if it is after `date' (Inclusive, format:
YYYY[:MM[:DD[:hh[:mm[:ss]]]]] ; h,m,s start from 0 ; default to 1970)

--datestop date
Match only if it is before `date' (Inclusive, format:
YYYY[:MM[:DD[:hh[:mm[:ss]]]]] ; h,m,s start from 0 ; default to 2037)

For example, to accept packets that have an arrival time from 8:00H to
18:00H from Monday to Friday you can do as follows:

iptables -A INPUT -m time --timestart 8:00 --timestop 18:00 \
--days Mon,Tue,Wed,Thu,Fri -j ACCEPT

iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere TIME from 8:0 to 18:0 on
Mon,Tue,Wed,Thu,Fri

tos
This module matches the 8 bits of Type of Service field in the IP header (ie.
including the precedence bits).

--tos tos
The argument is either a standard name or a numeric value to match.

Minimize-Delay 16 (0x10)
Maximize-Throughput 8 (0x08)
Maximize-Reliability 4 (0x04)
Minimize-Cost 2 (0x02)
Normal-Service 0 (0x00)

ttl
This module matches the time to live field in the IP header.

Page 84

--ttl-eq ttl
Matches the given TTL value.

--ttl-gt ttl
Matches if TTL is greater than the given TTL value.

--ttl-lt ttl
Matches if TTL is less than the given TTL value.

For example if you want to log any packet that have a TTL less than 5, you
can do as follows:

iptables -A INPUT -m ttl --ttl-lt 5 -j LOG
iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
LOG all -- anywhere anywhere TTL match TTL < 5 LOG
level warning

udp
These extensions are loaded if `--protocol udp' is specified. It provides the
following options:

--source-port [!] port[:port]
Source port or port range specification. See the description of the --
source-port option of the TCP extension for details.

--destination-port [!] port[:port]
Destination port or port range specification. See the description of
the --destination-port option of the TCP extension for details.

unclean
This module takes no options, but attempts to match packets which seem
malformed or unusual. This is regarded as experimental.

Target Specifications

Now we know what examinations we can do on a packet, we need a way of

Page 85

saying what to do to the packets which match our tests. This is called a rule's
target.

There are two very simple built-in targets: DROP and ACCEPT. We've already
met them. If a rule matches a packet and its target is one of these two, no further
rules are consulted: the packet's fate has been decided.

There are two types of targets other than the built-in ones: extensions and user-
defined chains.

User-defined chains
One powerful feature which iptables inherits from ipchains is the ability for the
user to create new chains, in addition to the three built-in ones (INPUT,
FORWARD and OUTPUT). By convention, user-defined chains are lower-case to
distinguish them.

When a packet matches a rule whose target is a user-defined chain, the packet
begins traversing the rules in that user-defined chain. If that chain doesn't
decide the fate of the packet, then once traversal on that chain has finished,
traversal resumes on the next rule in the current chain.

Time for more ASCII art. Consider two (silly) chains: INPUT (the built-in chain)
and test (a user-defined chain).

 `INPUT' `test'
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Rule1: ­p ICMP ­j DROP		Rule1: ­s 192.168.1.1
­­­­­­­­­­­­­­­­­­­­­­­­­­		­­­­­­­­­­­­­­­­­­­­­­­­­­
Rule2: ­p TCP ­j test		Rule2: ­d 192.168.1.1
­­­­­­­­­­­­­­­­­­­­­­­­­­	­­­­­­­­­­­­­­­­­­­­­­­­­­­­	
Rule3: ­p UDP ­j DROP		
 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Consider a TCP packet coming from 192.168.1.1, going to 1.2.3.4. It enters the
INPUT chain, and gets tested against Rule1 - no match. Rule2 matches, and its
target is test, so the next rule examined is the start of test. Rule1 in test
matches, but doesn't specify a target, so the next rule is examined, Rule2. This
doesn't match, so we have reached the end of the chain. We return to the INPUT
chain, where we had just examined Rule2, so we now examine Rule3, which
doesn't match either.

Page 86

So the packet path is:

 v __________________________
 `INPUT' | / `test' v
 ­­­­­­­­­­­­­­­­­­­­­­­­|­­/ ­­­­­­­­­­­­­­­­­­­­­­­|­­­­
Rule1	/		Rule1	
­­­­­­­­­­­­­­­­­­­­­­­	/­		­­­­­­­­­­­­­­­­­­­­­­	­­­
Rule2 /		Rule2		
­­­­­­­­­­­­­­­­­­­­­­­­­­	­­­­­­­­­­­­­­­­­­­­­­­v­­­­			
Rule3 /­­+___________________________/				
 ­­­­­­­­­­­­­­­­­­­­­­­­|­­­
 v

User-defined chains can jump to other user-defined chains (but don't make loops:
your packets will be dropped if they're found to be in a loop).

Extensions to iptables: Targets

The other type of extension is a target. A target extension consists of a kernel
module, and an optional extension to iptables to provide new command line
options. There are several extensions in the default netfilter distribution:

Target Extensions
iptables can use extended target modules: the following are included in the
standard distribution.

BALANCE
This allows you to DNAT connections in a round-robin way over a given
range of destination addresses.

--to-destination ipaddr-ipaddr
Address range to round-robin over.

CLASSIFY
This module allows you to set the skb->priority value (and thus classify the

Page 87

packet into a specific CBQ class).

--set-class MAJOR:MINOR
Set the major and minor class value.

CLUSTERIP
This module allows you to configure a simple cluster of nodes that share a
certain IP and MAC address without an explicit load balancer in front of
them. Connections are statically distributed between the nodes in this
cluster.

--new
Create a new ClusterIP. You always have to set this on the first rule
for a given ClusterIP.

--hashmode mode
Specify the hashing mode. Has to be one of sourceip, sourceip-
sourceport, sourceip-sourceport-destport

--clustermac mac
Specify the ClusterIP MAC address. Has to be a link-layer multicast
address

--total-nodes num
Number of total nodes within this cluster.

--local-node num
Local node number within this cluster.

--hash-init rnd
Specify the random seed used for hash initialization.

CONNMARK
This module sets the netfilter mark value associated with a connection

--set-mark mark[/mask]
Set connection mark. If a mask is specified then only those bits set in
the mask is modified.

--save-mark [--mask mask]
Copy the netfilter packet mark value to the connection mark. If a
mask is specified then only those bits are copied.

Page 88

--restore-mark [--mask mask]
Copy the connection mark value to the packet. If a mask is specified
then only those bits are copied. This is only valid in the mangle table.

DNAT
This target is only valid in the nat table, in the PREROUTING and OUTPUT
chains, and user-defined chains which are only called from those chains. It
specifies that the destination address of the packet should be modified (and
all future packets in this connection will also be mangled), and rules should
cease being examined. It takes one type of option:

--to-destination ipaddr[-ipaddr][:port-port]
Which can specify a single new destination IP address, an inclusive
range of IP addresses, and optionally, a port range (which is only
valid if the rule also specifies -p tcp or -p udp). If no port range is
specified, then the destination port will never be modified.

You can add several --to-destination options. If you specify more than
one destination address, either via an address range or multiple --to-
destination options, a simple round-robin (one after another in cycle)
load balancing takes place between these adresses.

DSCP
This target allows to alter the value of the DSCP bits within the TOS
header of the IPv4 packet. As this manipulates a packet, it can only be used
in the mangle table.

--set-dscp value
Set the DSCP field to a numerical value (can be decimal or hex)

--set-dscp-class class
Set the DSCP field to a DiffServ class.

ECN
This target allows to selectively work around known ECN blackholes. It can
only be used in the mangle table.

--ecn-tcp-remove
Remove all ECN bits from the TCP header. Of course, it can only be
used in conjunction with -p tcp.

Page 89

LOG
Turn on kernel logging of matching packets. When this option is set for a
rule, the Linux kernel will print some information on all matching packets
(like most IP header fields) via the kernel log (where it can be read with
dmesg or syslog). This is a "non-terminating target", i.e. rule traversal
continues at the next rule. So if you want to LOG the packets you refuse,
use two separate rules with the same matching criteria, first using target
LOG then DROP (or REJECT).

--log-level level
Level of logging (numeric or see syslog.conf(5)).

--log-prefix prefix
Prefix log messages with the specified prefix; up to 29 letters long,
and useful for distinguishing messages in the logs.

--log-tcp-sequence
Log TCP sequence numbers. This is a security risk if the log is
readable by users.

--log-tcp-options
Log options from the TCP packet header.

--log-ip-options
Log options from the IP packet header.

MARK
This is used to set the netfilter mark value associated with the packet. It is
only valid in the mangle table. It can for example be used in conjunction
with iproute2.

--set-mark mark

MASQUERADE
This target is only valid in the nat table, in the POSTROUTING chain. It
should only be used with dynamically assigned IP (dialup) connections: if
you have a static IP address, you should use the SNAT target.
Masquerading is equivalent to specifying a mapping to the IP address of
the interface the packet is going out, but also has the effect that
connections are forgotten when the interface goes down. This is the correct

Page 90

behavior when the next dialup is unlikely to have the same interface
address (and hence any established connections are lost anyway). It takes
one option:

--to-ports port[-port]
This specifies a range of source ports to use, overriding the default
SNAT source port-selection heuristics (see above). This is only valid if
the rule also specifies -p tcp or -p udp.

MIRROR
This is an experimental demonstration target which inverts the source and
destination fields in the IP header and retransmits the packet. It is only
valid in the INPUT, FORWARD and PREROUTING chains, and user-defined
chains which are only called from those chains. Note that the outgoing
packets are NOT seen by any packet filtering chains, connection tracking
or NAT, to avoid loops and other problems.

NETMAP
This target allows you to statically map a whole network of addresses onto
another network of addresses. It can only be used from rules in the nat
table.

--to address[/mask]
Network address to map to. The resulting address will be constructed
in the following way: All 'one' bits in the mask are filled in from the
new `address'. All bits that are zero in the mask are filled in from the
original address.

For example, if you want to alter the destination of incoming connections
from 1.2.3.0/24 to 5.6.7.0/24, you can do as follows:
iptables -t nat -A PREROUTING -d 1.2.3.0/24 -j NETMAP \

--to 5.6.7.0/24
iptables -t nat --list
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
NETMAP all -- anywhere 1.2.3.0/24 5.6.7.0/24

NOTRACK
This target disables connection tracking for all packets matching that rule.

Page 91

It can only be used in the raw table.

REDIRECT
This target is only valid in the nat table, in the PREROUTING and OUTPUT
chains, and user-defined chains which are only called from those chains. It
alters the destination IP address to send the packet to the machine itself
(locally-generated packets are mapped to the 127.0.0.1 address). It takes
one option:

--to-ports port[-port]
This specifies a destination port or range of ports to use: without this,
the destination port is never altered. This is only valid if the rule also
specifies -p tcp or -p udp.

REJECT
This is used to send back an error packet in response to the matched
packet: otherwise it is equivalent to DROP so it is a terminating TARGET,
ending rule traversal. This target is only valid in the INPUT, FORWARD
and OUTPUT chains, and user-defined chains which are only called from
those chains. The following option controls the nature of the error packet
returned:

--reject-with type
The type given can be:
icmp-net-unreachable
icmp-host-unreachable
icmp-port-unreachable
icmp-proto-unreachable
icmp-net-prohibited
icmp-host-prohibited or
icmp-admin-prohibited (*)

Which return the appropriate ICMP error message (port-unreachable
is the default). The option tcp-reset can be used on rules which only
match the TCP protocol: this causes a TCP RST packet to be sent
back. This is mainly useful for blocking ident (113/tcp) probes which
frequently occur when sending mail to broken mail hosts (which
won't accept your mail otherwise).

(*) Using icmp-admin-prohibited with kernels that do not support it
will result in a plain DROP instead of REJECT

Page 92

ROUTE
This is used to explicitly override the core network stack's routing decision.
mangle table.

The ROUTE target lets you route a received packet through an interface or
towards a host, even if the regular destination of the packet is the router
itself. The ROUTE target is also able to change the incoming interface of a
packet. Packets are directly put on the wire and do not traverse any other
table.

This target does not modify the packets and is a final target. It has to be
used inside the mangle table.

Whenever possible, you should use the MARK target together with iproute2
instead of this ROUTE target. However, this target is useful to force the
use of an interface or a next hop and to change the incoming interface of a
packet. People also use it for easiness and to simplify their rules (one rule
to route a packet is easier that one MARK rule + one iproute2 rule).

--oif ifname
Route the packet through `ifname' network interface

--iif ifname
Change the packet's incoming interface to `ifname'

--gw IP_address
Route the packet via this gateway

--continue
Behave like a non-terminating target and continue traversing the
rules. Not valid in combination with `--iif'

SAME
This match is similar to SNAT and will gives a client the same address for
each connection.

--to <ipaddr>-<ipaddr>
Addresses to map source to. May be specified more than once for
multiple ranges.

--nodst

Page 93

Don't use destination-ip in source selection. For example, if you want to
modify the source address of the connections to be 1.2.3.4-1.2.3.7 you can
do as follows:

iptables -t nat -A POSTROUTING -j SAME --to 1.2.3.4-1.2.3.7
iptables -t nat –list
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
SAME all -- anywhere anywhere same:1.2.3.4-1.2.3.7

SET
This modules adds and/or deletes entries from IP sets which can be defined
by ipset(8).

--add-set setname flag[,flag...]
Add the address(es)/port(s) of the packet to the sets

--del-set setname flag[,flag...]
Delete the address(es)/port(s) of the packet from the sets, where
flags are src and/or dst and there can be no more than six of them.

The bindings to follow must previously be defined in order to use multilevel
adding/deleting by the SET target.

SNAT
This target is only valid in the nat table, in the POSTROUTING chain. It
specifies that the source address of the packet should be modified (and all
future packets in this connection will also be mangled), and rules should
cease being examined. It takes one type of option:

--to-source ipaddr[-ipaddr][:port-port]
This specifies a single new source IP address, an inclusive range of IP
addresses, and optionally, a port range (which is only valid if the rule
also specifies -p tcp or -p udp). If no port range is specified, then
source ports below 512 will be mapped to other ports below 512:
those between 512 and 1023 inclusive will be mapped to ports below
1024, and other ports will be mapped to 1024 or above. Where
possible, no port alteration will occur.

You can add several --to-source options. If you specify more than one

Page 94

source address, either via an address range or multiple --to-source
options, a simple round-robin (one after another in cycle) takes place
between these addresses.

TCPMSS
This target allows to alter the MSS value of TCP SYN packets, to control
the maximum size for that connection (usually limiting it to your outgoing
interface's MTU minus 40). Of course, it can only be used in conjunction
with -p tcp.

--set-mss value
Explicitly set MSS option to specified value.

--clamp-mss-to-pmtu
Automatically clamp MSS value to (path_MTU – 40).

These options are mutually exclusive.

This target is used to overcome criminally braindead ISPs or servers which
block ICMP Fragmentation Needed packets. The symptoms of this problem
are that everything works fine from your Linux firewall/router, but
machines behind it can never exchange large packets:

1. Web browsers connect, then hang with no data received.
2. Small mail works fine, but large emails hang.
3. ssh works fine, but scp hangs after initial handshaking.

Workaround: activate this option and add a rule to your firewall
configuration like:

iptables -A FORWARD -p tcp --tcp-flags SYN,RST SYN \
-j TCPMSS –clamp-mss-to-pmtu

TOS
This is used to set the 8-bit Type of Service field in the IP header. It is only
valid in the mangle table.

--set-tos tos
You can use a numeric TOS values, or use
iptables -j TOS -h
to see the list of valid TOS names.

Page 95

TRACE
This target has no options. It just turns on packet tracing for all packets
that match this rule.

TTL
This is used to modify the IPv4 TTL header field. The TTL field determines
how many hops (routers) a packet can traverse until it's time to live is
exceeded.

Setting or incrementing the TTL field can potentially be very dangerous, so
it should be avoided at any cost.

Don't ever set or increment the value on packets that leave your
local network!

--ttl-set value
Set the TTL value to `value'.

--ttl-dec value
Decrement the TTL value `value' times.

--ttl-inc value
Increment the TTL value `value' times.

For example, if you want to set the TTL of all outgoing connections to 126,
you can do as follows:

iptables -t mangle -A OUTPUT -j TTL --ttl-set 126
iptables -t mangle --list
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
TTL all -- anywhere anywhere TTL set to 126

ULOG
This target provides userspace logging of matching packets. When this
target is set for a rule, the Linux kernel will multicast this packet through a
netlink socket. One or more userspace processes may then subscribe to
various multicast groups and receive the packets. Like LOG, this is a "non-
terminating target", i.e. rule traversal continues at the next rule.

Page 96

--ulog-nlgroup nlgroup
This specifies the netlink group (1-32) to which the packet is sent.
Default value is 1.

--ulog-prefix prefix
Prefix log messages with the specified prefix; up to 32 characters
long, and useful for distinguishing messages in the logs.

--ulog-cprange size
Number of bytes to be copied to userspace. A value of 0 always
copies the entire packet, regardless of its size. Default is 0.

--ulog-qthreshold size
Number of packet to queue inside kernel. Setting this value to, e.g.
10 accumulates ten packets inside the kernel and transmits them as
one netlink multipart message to userspace. Default is 1 (for
backwards compatibility).

Special Built-In Targets
There are two special built-in targets: RETURN and QUEUE.

RETURN
has the same effect of falling off the end of a chain: for a rule in a built-in
chain, the policy of the chain is executed. For a rule in a user-defined
chain, the traversal continues at the previous chain, just after the rule
which jumped to this chain.

QUEUE
is a special target, which queues the packet for userspace processing. For
this to be useful, two further components are required:

● a "queue handler", which deals with the actual mechanics of passing
packets between the kernel and userspace; and

● a userspace application to receive, possibly manipulate, and issue
verdicts on packets.

The standard queue handler for IPv4 iptables is the ip_queue module, which is
distributed with the kernel and marked as experimental.

The following is a quick example of how to use iptables to queue packets for

Page 97

userspace processing:

modprobe iptable_filter
modprobe ip_queue
iptables -A OUTPUT -p icmp -j QUEUE

With this rule, locally generated outgoing ICMP packets (as created with, say,
ping) are passed to the ip_queue module, which then attempts to deliver the
packets to a userspace application. If no userspace application is waiting, the
packets are dropped.

The status of ip_queue may be checked via:

/proc/net/ip_queue

The maximum length of the queue (i.e. the number packets delivered to
userspace with no verdict issued back) may be controlled via:

/proc/sys/net/ipv4/ip_queue_maxlen

The default value for the maximum queue length is 1024. Once this limit is
reached, new packets will be dropped until the length of the queue falls below
the limit again. Nice protocols such as TCP interpret dropped packets as
congestion, and will hopefully back off when the queue fills up. However, it may
take some experimenting to determine an ideal maximum queue length for a
given situation if the default value is too small.

Operations on an Entire Chain
A very useful feature of iptables is the ability to group related rules into chains.
You can call the chains whatever you want, but I recommend using lower-case
letters to avoid confusion with the built-in chains and targets. Chain names can
be up to 31 letters long.

Creating a New Chain
Let's create a new chain. Because I am such an imaginative fellow, I'll call
it test. We use the `-N' or `--new-chain' options:

iptables -N test

Page 98

It's that simple. Now you can put rules in it as detailed above.

Deleting a Chain
Deleting a chain is simple as well, using the `-X' or `--delete-chain' options.
Why `-X'? Well, all the good letters were taken.

iptables -X test

There are a couple of restrictions to deleting chains: they must be empty
and they must not be the target of any rule. You can't delete any of the
three built-in chains.

If you don't specify a chain, then all user-defined chains will be deleted, if
possible.

Flushing a Chain
There is a simple way of emptying all rules out of a chain, using the `-F' (or
`--flush') commands.

iptables -F FORWARD

If you don't specify a chain, then all chains will be flushed.

Listing a Chain
You can list all the rules in a chain by using the `-L' (or `--list') command.

The `refcnt' listed for each user-defined chain is the number of rules which
have that chain as their target. This must be zero (and the chain be empty)
before this chain can be deleted.

If the chain name is omitted, all chains are listed, even empty ones.

There are three options which can accompany `-L'. The `-n' (numeric)
option is very useful as it prevents iptables from trying to lookup the IP
addresses, which (if you are using DNS like most people) will cause large
delays if your DNS is not set up properly, or you have filtered out DNS
requests. It also causes TCP and UDP ports to be printed out as numbers
rather than names.

The `-v' options shows you all the details of the rules, such as the the
packet and byte counters, the TOS comparisons, and the interfaces.

Page 99

Otherwise these values are omitted.

Note that the packet and byte counters are printed out using the suffixes
`K', `M' or `G' for 1000, 1,000,000 and 1,000,000,000 respectively. Using
the `-x' (expand numbers) flag as well prints the full numbers, no matter
how large they are.

Resetting (Zeroing) Counters
It is useful to be able to reset the counters. This can be done with the `-Z'
(or `--zero') option.

Consider the following:

iptables -L FORWARD
iptables -Z FORWARD

In the above example, some packets could pass through between the `-L'
and `-Z' commands. For this reason, you can use the `-L' and `-Z' together,
to reset the counters while reading them.

Setting Policy
We glossed over what happens when a packet hits the end of a built-in
chain when we discussed how a packet walks through chains earlier. In
this case, the policy of the chain determines the fate of the packet. Only
built-in chains (INPUT, OUTPUT and FORWARD) have policies, because if
a packet falls off the end of a user-defined chain, traversal resumes at the
previous chain.

The policy can be either ACCEPT or DROP, for example:

iptables -P FORWARD DROP

Page 100

Layer-7 Traffic Classification

L7-filter is a new packet classifier for the Linux kernel. Unlike other classifiers, it
doesn't just look at simple values such as port numbers. Instead, it does regular
expression matching on the application layer data to determine what protocols
are being used.

Since this classifier is much more processor and memory intensive than others,
we recommend that you only use it if you have reason to believe that matching
by port (or IP number, etc.) is insufficient for your purposes.

Blocking... Don't! Why?
• l7-filter matching isn't foolproof: there may be both false positives

(one protocol looking like another) and false negatives (applications
can do obscure things that we didn't count on).

• With the exception of worms and viruses, almost every type of
Internet traffic has legitimate uses. For instance, P2P protocols,
while widely used to violate copyright, are also an efficient way to
distribute open source software and legally free music.

• Insidious programs can respond to being blocked by port-hopping,
switching between TCP and UDP, opening a new connection for
every trivial operation, or using other evasion tactics. This can make
them very hard to identify. Don't encourage program authors to
include these "features"!

• When you block a program, you are providing the program authors
with a strong incentive to make their protocol impossible to identify
by encrypting it end-to-end.

• Blocking with l7-filter provides no security, since any reasonably
determined person can easily circumvent it.

Instead of dropping packets you don't like, we recommend using Linux to restrict
their bandwidth usage. See the next section.

If you insist on using l7-filter to drop packets, make sure you have investigated
other options first, such as the features of your HTTP proxy (useful for worms).
Still reading this section? Fine, then. Blocking is easy. Simply use "-j DROP" or "-j
REJECT".

Bandwidth Restriction Using Traditional Methods
To control the bandwidth that a protocol uses, you can use Netfilter to
"mark" the packets and QoS to filter on that mark. To mark:

Page 101

iptables -t mangle -A POSTROUTING -m layer7 --l7proto imap \
-j MARK --set-mark 3

The number "3" is arbitrary. It can be any integer. Then use tc to filter on
that mark:

tc filter add dev eth0 protocol ip parent 1:0 prio 1 handle 3 \
fw flowid 1:3

Dealing with FTP, IRC, etc.
Some protocols open child connections to transfer data. FTP is the most
familiar example. If you have loaded the ip_conntrack_ftp kernel module,
l7-filter will classify FTP and all its child connections as FTP. The same
goes for IRC/IRC-DCC, etc.

If you wish to classify the children differently, use the standard iptables
"helper" match. You can use "-m --helper ftp" to match ftp child
connections. This is a little silly, of course, because if this works, you don't
need l7-filter, at least for the children.

The "unknown" match
l7-filter marks connections that it has given up trying to match as
"unknown". In contrast, connections which are unidentified, but still being
examined, have no classification. You can match on "unknown" as though it
were a normal protocol.
This is useful, because you may want to do something to packets from
unidentified connections. But since l7-filter usually must examine several
packets of a connection before a match is made, some care is needed. You
don't want to say "if not HTTP and not DNS, do X", because that will do X
to the TCP handshakes of HTTP, which is probably not what you want.
Rather, you want to say "check for HTTP and DNS. If 'unknown', do X".
More concretely:

iptables -t mangle -A POSTROUTING -m layer7 --l7proto http
iptables -t mangle -A POSTROUTING -m layer7 --l7proto dns
iptables -t mangle -A POSTROUTING -m layer7 --l7proto \

unknown -j [...]

Something else to know
If you want to update the protocols, you will need to clear the relevant

Page 102

iptables rules and re-enter them. This is because the pattern files are only
read by iptables, not directly the kernel.

Page 103

Bridging

What does a bridge do?
A bridge transparently relays traffic between multiple network interfaces. In
plain English this means that a bridge connects two or more physical Ethernets
together to form one bigger (logical) Ethernet.

Is it protocol independent?
Yes. The bridge knows nothing about protocols, it only sees Ethernet frames. As
such, the bridging functionality is protocol independent, and there should be no
trouble relaying IPX, NetBEUI, IP, IPv6, etc.

Why is this code better than a switch?
Please note that this code wasn't written with the intent of having Linux boxen
take over from dedicated networking hardware. Don't see the Linux bridging
code as a replacement for switches, but rather as an extension of the Linux
networking capabilities. Just as there are situations where a Linux router is
better than a dedicated router (and vice versa), there are situations where a
Linux bridge is better than a dedicated bridge (and vice versa).

Most of the power of the Linux bridging code lies in its flexibility. There is a
whole lot of bizarre stuff you can do with Linux already (read Linux Advanced
Routing and Traffic Control document to see some of the possiblities), and the
bridging code adds some more filter into the mix.

One of the most significant advantages of a Linux solution over a dedicated
solution that come to mind is Linux' extensive firewalling capabilities. It is
possible to use the full functionality of netfilter (iptables) in combination with
bridging, which provides way more functionality than most proprietary offerings
do.

Why is this code worse than a switch?
In order to act a a bridge, the network device must be placed into promiscuous
mode which means it receives all traffic on a network. On a really busy network,
this can eat significant bandwidth out of the processor, memory slowing the
system down. The answer is to setup either a separate dedicated Linux box as
the bridge, or use a hardware switch.

What is the performance of the bridge?
The performance is limited by the network cards used and the processor. A

Page 104

research paper was done by James Yu at Depaul University comparing Linux
bridging with a Catalyst switch: http://facweb.cti.depaul.edu/jyu/Publications/Yu-
Linux-TSM2004.pdf

What can be bridged?
Linux bridging is very flexible; the LAN's can be either traditional Ethernet
device's, or pseudo-devices such as PPP, VPN's or VLAN's. The only restrictions
are that the devices:

● All devices same maximum packet size (MTU). The bridge doesn't fragment
packets.

● Devices must look like Ethernet. i.e have 6 byte source and destination
address.

● Support promiscuous operation. The bridge needs to be able to receive all
network traffic, not just traffic destined for its own address.

● Allow source address spoofing. The bridge must be able to send data over
network as if it came from another host.

What is bridge-nf?
It is the infrastructure that enables {ip,ip6,arp}tables to see bridged IPv4, resp.
IPv6, resp. ARP packets. Thanks to bridge-nf, you can use these tools to filter
bridged packets, letting you make a transparent firewall. Note that bridge-nf is
also referred to as bridge-netfilter and br-nf, the term bridge-nf should be
preferred.

Why do I need bridge-nf?
Ebtables only allows basic filtering of the IPv4 and ARP packets, for more
advanced filtering you need to use the {ip,ip6,arp}tables applications. Iptables in
combination with bridge-nf also allows you to do things like transparent IP NAT.

Connection tracking
What happens when I enable connection tracking (for IPv4 traffic)?

By default, when IPv4 connection tracking is loaded in the kernel (if your kernel
is modular, it is the nf_conntrack module), all IP packets will be seen by the
connection tracking code. This code is called on the PF_INET/PRE_ROUTING and
PF_INET/LOCAL_OUT hooks. For bridged packets, only the PRE_ROUTING
connection tracking is important.

What are the disadvantages of connection tracking on a bridging firewall?

Page 105

1. For an IP packet entering a bridge device, connection tracking is called
before the bridge code decides what to do with the packet. This means that
IP packets that will be discarded by the bridge code are tracked by
connection tracking. For a router, the same is true, but a bridge also sees
the traffic between hosts on the same side of a network. It's possible to
prevent these packets from being seen by connection tracking: you can
either drop them in the ebtables nat PREROUTING chain or use the
iptables NOTRACK target.

2. Fragmented IP packets (typically UDP traffic like NFS) are defragmented
by the connection tracking code and refragmented before sending them
out. This slows down traffic, but the transparency of the firewall isn't
diminished.

What happens with IP DNAT on a to be bridged packet?
If IP DNAT happened then the bridge-nf code asks the routing table where the
packet should be sent. If it has to be sent over another device (not the bridge
device) then the packet is routed (an implicit redirect). If the routing table sends
the packet to the bridge device, then the packet is bridged but the MAC
destination is correctly changed. To do IP DNAT, you therefore need a correct
routing table.

Page 106

ebtables

What is ebtables?
The ebtables utility enables basic Ethernet frame filtering on a Linux bridge,
logging, MAC NAT and brouting. It only provides basic IP filtering, the full-
fledged IP filtering on a Linux bridge is done with iptables. The so-called bridge-
nf code makes iptables see the bridged IP packets and enables transparent IP
NAT. The firewalling tools iptables and ebtables can be used together and are
complementary. ebtables tries to provide the bridge firewalling that iptables
cannot provide, namely the filtering of non-IP traffic.

Main features:
• Usage analogous to iptables.
• Ethernet filtering.
• MAC NAT: ability to alter the MAC Ethernet source and destination

address. This can be useful in some very strange setups (a real-life example
is available).

• Brouting: decide which traffic to bridge between two interfaces and which
traffic to route between the same two interfaces. The two interfaces belong
to a logical bridge device but have their own IP address and can belong to
a different subnet.

• Pass packets to userspace programs, using netlink sockets (the ulog
watcher).

What can ebtables do?
• Ethernet protocol filtering.
• MAC address filtering.
• Simple IP header filtering.
• ARP header filtering.
• 802.1Q VLAN filtering.
• In/Out interface filtering (logical and physical device).
• MAC address nat.
• Logging.
• Frame counters.
• Ability to add, delete and insert rules; flush chains; zero counters.
• Brouter facility.
• Ability to atomically load a complete table, containing the rules you made,

into the kernel. See the man page and the examples section.
• Support for user defined chains.
• Support for marking frames and matching marked frames.

Page 107

CHAINS
There are three Ethernet frame tables with built-in chains in the Linux
kernel. The kernel tables are used to divide functionality into different sets
of rules. Each set of rules is called a chain. Each chain is an ordered list of
rules that can match Ethernet frames. If a rule matches an Ethernet frame,
then a processing specification tells what to do with that matching frame.
The processing specification is called a 'target'. However, if the frame
does not match the current rule in the chain, then the next rule in the
chain is examined and so forth. The user can create new (user-defined)
chains which can be used as the 'target' of a rule.

TARGETS
A firewall rule specifies criteria for an Ethernet frame and a frame
processing specification called a target. When a frame matches a rule,
then the next action performed by the kernel is specified by the target.
The target can be one of these values: ACCEPT, DROP, CONTINUE,
RETURN, an 'extension' (see below) or a user-defined chain.

ACCEPT means to let the frame through. DROP means the frame has to be
dropped. CONTINUE means the next rule has to be checked. This can be
handy to know how many frames pass a certain point in the chain or to
log those frames. RETURN means stop traversing this chain and resume at
the next rule in the previous (calling) chain. For the extension targets
please see the TARGET EXTENSIONS section of this man page.

TABLES
As stated earlier, there are three Ethernet frame tables in the Linux kernel.
The tables are filter, nat and broute. Of these three tables, the filter
table is the default table that the ebtables command operates on. If you
are working with the filter table, then you can drop the '-t filter' argument
to the ebtables command. However, you will need to provide the -t
argument for the other two tables. The -t argument must be the first
argument on the ebtables command line, if used.

-t, --table tablename

filter
The default table and contains three built-in chains: INPUT (for
frames destined for the bridge itself), OUTPUT (for locally-
generated frames) and FORWARD (for frames being bridged).

nat
Used to change the mac addresses and contains three built-in

Page 108

chains: PREROUTING (for altering frames as soon as they come
in), OUTPUT (for altering locally generated frames before they
are bridged) and POSTROUTING (for altering frames as they
are about to go out). A small note on the naming of chains
POSTROUTING and PREROUTING: it would be more accurate
to call them PREFORWARDING and POSTFORWARDING, but
for all those who come from the iptables world to ebtables it is
easier to have the same names.

broute
Used to make a brouter, it has one built-in chain: BROUTING.
The targets DROP and ACCEPT have special meaning in the
broute table. DROP actually means the frame has to be routed,
while ACCEPT means the frame has to be bridged. The
BROUTING chain is traversed very early. It is only traversed by
frames entering on a bridge enslaved NIC that is in forwarding
state. Normally those frames would be bridged, but you can
decide otherwise here. The redirect target is very handy here.

COMMAND LINE ARGUMENTS
After the initial ebtables -t, table command line argument, the remaining
arguments can be divided into several different groups. These groups are
commands, miscellaneous commands, rule-specifications, match
extensions, and watcher extensions.

COMMANDS
The ebtables command arguments specify the actions to perform on the
table defined with the -t argument. If you do not use the -t argument to
name a table, the commands apply to the default filter table. With the
exception of both the -Z and --atomic-file commands, only one command
may be used on the command line at a time.

-A, --append chain
Append a rule to the end of the selected chain.

-D, --delete start[:end] or rule_spec
Delete the specified rule from the selected chain. There are two
ways to use this command. The first is by specifying an interval of
rule numbers to delete. Using negative numbers is allowed, for more
details about using negative numbers, see the -I command. The
second usage is by specifying the complete rule as it would have been
specified when it was added.

Page 109

-I, --insert number rule_spec
Insert the specified rule into the selected chain at the specified rule
number. If the current number of rules equals N, then the specified
number can be between -N and N+1. For a positive number i, it holds
that i and i-N-1 specify the same place in the chain where the rule
should be inserted. The number 0 specifies the place past the last
rule in the chain and using this number is therefore equivalent with
using the -A command.

-P, --policy policy
Set the policy for the chain to the given target. The policy can be
ACCEPT, DROP or RETURN.

-F, --flush chain
Flush the selected chain. If no chain is selected, then every chain will
be flushed. Flushing the chain does not change the policy of the
chain, however.

-Z, --zero chain
Set the counters of the selected chain to zero. If no chain is selected,
all the counters are set to zero. The -Z command can be used in
conjunction with the -L command. When both the -Z and -L
commands are used together in this way, the rule counters are
printed on the screen before they are set to zero.

-L, --list [chain]
List all rules in the selected chain. If no chain is selected, all chains
are listed.

The following three options change the output of the -L list command:

--Ln
Places the rule number in front of every rule.

--Lc
Shows the counters at the end of each rule displayed by the -L
command. Both a frame counter (pcnt) and a byte counter (bcnt) are
displayed.

--Lx
The output of the --Lx option may be used to create a set of
ebtables commands. You may use this set of commands in an
ebtables boot or reload script. For example the output could be used
at system startup. The --Lx option is incompatible with both of the

Page 110

other --Ln and --Lc chain listing options.

--Lmac2
Shows all MAC addresses with the same length, adding leading
zeroes if necessary. The default representation omits zeroes in the
addresses when they are not needed.

All necessary ebtables commands for making the current list of user-
defined chains in the kernel and any commands issued by the user to
rename the standard ebtables chains will be listed, when no chain
name is supplied for the -L command while using the --Lx option.

-N, --new-chain chain
Create a new user-defined chain with the given name. The number of
user-defined chains is unlimited. A user-defined chain name has
maximum length of 31 characters.

-X, --delete-chain chain
Delete the specified user-defined chain. There must be no remaining
references to the specified chain, otherwise ebtables will refuse to
delete it. If no chain is specified, all user-defined chains that aren't
referenced will be removed.

-E, --rename-chain old_chain nmew chain
Rename the specified chain to a new name. Besides renaming a
user-defined chain, you may rename a standard chain name to a
name that suits your taste. For example, if you like PREBRIDGING
more than PREROUTING, then you can use the -E command to
rename the PREROUTING chain. If you do rename one of the
standard ebtables chain names, please be sure to mention this fact
should you post a question on the ebtables mailing lists. It would be
wise to use the standard name in your post. Renaming a standard
ebtables chain in this fashion has no effect on the structure or
function of the ebtables kernel table.

--init-table
Replace the current table data by the initial table data.

--atomic-init file
Copy the kernel's initial data of the table to the specified file. This
can be used as the first action, after which rules are added to the file.
The file can be specified using the --atomic-file command or through
the EBTABLES_ATOMIC_FILE environment variable.

Page 111

--atomic-save file
Copy the kernel's current data of the table to the specified file. This
can be used as the first action, after which rules are added to the
file. The file can be specified using the --atomic-file command or
through the EBTABLES_ATOMIC_FILE environment variable.

--atomic-commit file
Replace the kernel table data with the data contained in the
specified file. This is a useful command that allows you to load all
your rules of a certain table into the kernel at once, saving the kernel
a lot of precious time and allowing atomic updates of the tables. The
file which contains the table data is constructed by using either the
--atomic-init or the --atomic-save command to generate a starting file.
After that, using the --atomic-file command when constructing rules
or setting the EBTABLES_ATOMIC_FILE environment variable allows
you to extend the file and build the complete table before committing
it to the kernel.

--atomic-file File -Z
The counters stored in a file with, say, --atomic-init can be
optionally zeroed by supplying the -Z command. You may also zero
the counters by setting the EBTABLES_ATOMIC_FILE environment
variable.

RULE-SPECIFICATIONS

The following command line arguments make up a rule specification (as used in
the add and delete commands). A "!" option before the specification inverts the
test for that specification. Apart from these standard rule specifications there
are some other command line arguments of interest. See both the MATCH-
EXTENSIONS and the WATCHER-EXTENSION(S) below.

-p, --protocol [!] protocol
The protocol that was responsible for creating the frame. This can be
a hexadecimal number, above 0x0600, a name (e.g. ARP) or
LENGTH. The protocol field of the Ethernet frame can be used to
denote the length of the header (802.2/802.3 networks). When the
value of that field is below (or equals) 0x0600, the value equals the
size of the header and shouldn't be used as a protocol number.
Instead, all frames where the protocol field is used as the length
field are assumed to be of the same 'protocol'. The protocol name
used in ebtables for these frames is LENGTH. The file
/etc/ethertypes can be used to show readable characters instead of

Page 112

hexadecimal numbers for the protocols. For example, 0x0800 will be
represented by IPV4. The use of this file is not case sensitive. See
that file for more information. The flag --proto is an alias for this
option.

-i, --in-interface [!] name
The interface via which a frame is received (for the INPUT,
FORWARD, PREROUTING and BROUTING chains). The flag --in-if is
an alias for this option.

--logical-in [!] name
The (logical) bridge interface via which a frame is received (for the
INPUT, FORWARD, PREROUTING and BROUTING chains).

-o, --out-interface [!] name
The interface via which a frame is going to be sent (for the OUTPUT,
FORWARD and POSTROUTING chains). The flag --out-if is an alias
for this option.

--logical-out [!] name
The (logical) bridge interface via which a frame is going to be sent
(for the OUTPUT, FORWARD and POSTROUTING chains).

-s, --source [!] address[/mask]
The source mac address. Both mask and address are written as 6
hexadecimal numbers separated by colons. Alternatively one can
specify Unicast, Multicast, Broadcast or BGA (Bridge Group Address).

Unicast = 00:00:00:00:00:00/01:00:00:00:00:00

Multicast = 01:00:00:00:00:00/01:00:00:00:00:00

Broadcast = ff:ff:ff:ff:ff:ff/ff:ff:ff:ff:ff:ff or

BGA = 01:80:c2:00:00:00/ff:ff:ff:ff:ff:ff.

Note that a broadcast address will also match the multicast
specification. The flag --src is an alias for this option.

-d, --destination [!] address[/mask]
The destination mac address. See -s (above) for more details. The flag
--dst is an alias for this option.

Page 113

MATCH-EXTENSIONS
ebtables extensions are precompiled into the userspace tool. So there is no need
to explicitly load them with a -m option like in iptables. However, these
extensions deal with functionality supported by supplemental kernel modules.

802.3
Specify 802.3 DSAP/SSAP fields or SNAP type. The protocol must be
specified as LENGTH (see protocol above).

--802_3-sap [!] sap
DSAP and SSAP are two one byte 802.3 fields. The bytes are always
equal, so only one byte (hexadecimal) is needed as an argument.

--802_3-type [!] type
If the 802.3 DSAP and SSAP values are 0xaa then the SNAP type
field must be consulted to determine the payload protocol. This is a
two byte (hexadecimal) argument. Only 802.3 frames with
DSAP/SSAP 0xaa are checked for type.

arp
Specify arp fields. The protocol must be specified as ARP or RARP.

--arp-opcode [!] opcode
The (r)arp opcode (decimal or a string, for more details see ebtables
-h arp).

--arp-htype [!] hardware type
The hardware type, this can be a decimal or the string "Ethernet".
This is normally Ethernet (value 1).

--arp-ptype [!] protocol type
The protocol type for which the (r)arp is used (hexadecimal or the
string "IPv4"). This is normally IPv4 (0x0800).

--arp-ip-src [!] address[/mask]
The ARP IP source address specification.

--arp-ip-dst [!] address[/mask]
The ARP IP destination address specification.

--arp-mac-src [!] address[/mask]
The ARP MAC source address specification.

Page 114

--arp-mac-dst [!] address[/mask]
The ARP MAC destination address specification.

ip
Specify ip fields. The protocol must be specified as IPv4.

--ip-source [!] address[/mask]
The source ip address. The flag --ip-src is an alias for this option.

--ip-destination [!] address[/mask]
The destination ip address. The flag --ip-dst is an alias for this option.

--ip-tos [!] tos
The ip type of service, in hexadecimal numbers. IPv4.

--ip-protocol [!] protocol
The ip protocol. The flag --ip-proto is an alias for this option.

--ip-source-port [!] port[:port]
The source port or port range for the ip protocols 6 (TCP) and 17
(UDP). If the first port is omitted, "0" is assumed; if the last is
omitted, “65535” is assumed. The flag --ip-sport is an alias for this
option.

--ip-destination-port [!] port[:port]
The destination port or port range for ip protocols 6 (TCP) and 17
(UDP). The flag --ip-dport is an alias for this option.

mark_m
--mark [!] [value][/mask]

Matches frames with the given unsigned mark value. If a mark value
and mask is specified, the logical AND of the mark value of the frame
and the user-specified mask is taken before comparing it with the
user-specified mark value. If only a mask is specified (start with '/')
the logical AND of the mark value of the frame and the user-specified
mark is taken and the result is compared with zero.

pkttype
--pkttype-type [!] type

Matches on the Ethernet "class" of the frame, which is determined

Page 115

by the generic networking code. Possible values: broadcast (MAC
destination is broadcast address), multicast (MAC destination is
multicast address), host (MAC destination is the receiving network
device) or otherhost (none of the above).

stp
Specify stp BPDU (bridge protocol data unit) fields. The destination
address must be specified as the bridge group address (BGA).

--stp-type [!] type
The BPDU type (0-255), special recognized types: config:
configuration BPDU (=0) and tcn: topology change notification BPDU
(=128).

--stp-flags [!] flag
The BPDU flag (0-255), special recognized flags: topology-change:
the topology change flag (=1) topology-change-ack: the topology
change acknowledgement flag (=128).

--stp-root-prio [!] [prio][:prio]
The root priority (0-65535) range.

--stp-root-addr [!] [address][/mask]
The root mac address, see the option -s for more details.

--stp-root-cost [!] [cost][:cost]
The root path cost (0-4294967295) range.

--stp-sender-prio [!] [prio][:prio]
The BPDU's sender priority (0-65535) range.

--stp-sender-addr [!] [address][/mask]
The BPDU's sender mac address, see the option -s for more details.

--stp-port [!] [port][:port]
The port identifier (0-65535) range.

--stp-msg-age [!] [age][:age]
The message age timer (0-65535) range.

--stp-max-age [!] [age][:age]
The max age timer (0-65535) range.

Page 116

--stp-hello-time [!] [time][:time]
The hello time timer (0-65535) range.

--stp-forward-delay [!] [delay][:delay]
The forward delay timer (0-65535) range.

vlan
Specify 802.1Q Tag Control Information fields. The protocol must be
specified as 802_1Q (0x8100).

--vlan-id [!] id
The VLAN identifier field (VID). Decimal number from 0 to 4095.

--vlan-prio [!] prio
The user_priority field. Decimal number from 0 to 7. The VID should
be set to 0 ("null VID") or unspecified (for this case the VID is
deliberately set to 0).

--vlan-encap [!] type
The encapsulated Ethernet frame type/length. Specified as
hexadecimal number from 0x0000 to 0xFFFF or as a symbolic name
from /etc/ethertypes.

WATCHER-EXTENSION(S)

Watchers are things that only look at frames passing by. These watchers only see
the frame if the frame matches the rule.

log
The fact that the log module is a watcher lets us log stuff while giving a
target by choice. Note that the log module therefore is not a target.

--log
Use this if you won't specify any other log options, so if you want to
use the default settings: log-prefix="", no arp logging, no ip logging,
log-level=info.

--log-level level
defines the logging level. For the possible values: ebtables -h log.
The default level is info.

Page 117

--log-prefix text
defines the prefix to be printed before the logging information.

--log-ip
will log the ip information when a frame made by the ip protocol
matches the rule. The default is no ip information logging.

--log-arp
will log the (r)arp information when a frame made by the (r)arp
protocols matches the rule. The default is no (r)arp information
logging.

TARGET EXTENSIONS

arpreply
The arpreply target can be used in the PREROUTING chain of the nat
table. If this target sees an arp request it will automatically reply with an
arp reply. The used MAC address for the reply can be specified. When the
arp message is not an arp request, it is ignored by this target.

--arpreply-mac address
Specifies the MAC address to reply with: the Ethernet source MAC
and the ARP payload source MAC will be filled in with this address.

--arpreply-target target
Specifies the standard target. After sending the arp reply, the rule
still has to give a standard target so ebtables knows what to do. The
default target is DROP.

dnat
The dnat target can only be used in the BROUTING chain of the broute
table and the PREROUTING and OUTPUT chains of the nat table. It
specifies that the
destination mac address has to be changed.

--to-destination address
The flag --to-dst is an alias for this option.

--dnat-target target
Specifies the standard target. After doing the dnat, the rule still has
to give a standard target so ebtables knows what to do. The default

Page 118

target is ACCEPT. Making it CONTINUE could let you use multiple
target extensions on the same frame. Making it DROP only makes
sense in the BROUTING chain but using the redirect target is more
logical there. RETURN is also allowed. Note that using RETURN in a
base chain is not allowed.

mark
The mark target can be used in every chain of every table. It is possible to
use the marking of a frame/packet in both ebtables and iptables, if the br-
nf code is compiled into the kernel. Both put the marking at the same
place. So, you can consider this fact as a feature, or as something to watch
out for.

--set-mark value
Mark the frame with the specified unsigned value.

--mark-target target
Specifies the standard target. After marking the frame, the rule still
has to give a standard target so ebtables knows what to do. The
default target is ACCEPT. Making it CONTINUE can let you do other
things with the frame in other rules of the chain.

redirect
The redirect target will change the MAC target address to that of the
bridge device the frame arrived on. This target can only be used in the
BROUTING chain of the broute table and the PREROUTING chain of the
nat table.

--redirect-target target
Specifies the standard target. After doing the MAC redirect, the
rule still has to give a standard target so ebtables knows what to do.
The default target is ACCEPT. Making it CONTINUE could let you
use multiple target extensions on the same frame. Making it DROP in
the BROUTING chain will let the frames be routed. RETURN is also
allowed. Note that using RETURN in a base chain is not allowed.

snat
The snat target can only be used in the POSTROUTING chain of the nat
table. It specifies that the source mac address has to be changed.

--to-source address

Page 119

The flag --to-src is an alias for this option.

--snat-target target
Specifies the standard target. After doing the snat, the rule still has
to give a standard target so ebtables knows what to do. The default
target is ACCEPT. Making it CONTINUE could let you use multiple
target extensions on the same frame. Making it DROP doesn't make
sense, but you could do that too. RETURN is also allowed. Note that
using RETURN in a base chain is not allowed.

Page 120

Bridging and Firewalling
A Linux bridge is more powerful than a pure hardware bridge because it can also
filter and shape traffic.

Network cards
Before you start make sure both network cards are set up and working properly.
Don't set the IP address, and don't let the startup scripts run DHCP on the
ethernet interfaces either. The IP address needs to be set after the bridge has
been configured.

The command ifconfig should show both network cards, and they should have be
DOWN.

Module loading
In most cases, the bridge code is built as a module. If the module is configured
and installed correctly, it will get automatically loaded on the first brctl
command.

If your bridge-utilities have been correctly built and your kernel and bridge-
module are OK, then issuing a brctl should show a small command synopsis.

brctl Commands:

addbr <bridge>
This command is used to create a logical bridge instance with the
name <bridge>. You will need at least one logical instance to do any
bridging at all. You can interpret the logical bridge as a container for
the interfaces taking part in the bridging. Each bridging instance is
represented by a new network interface.

Example:

brctl addbr mybridge

delbr <bridge>
Delete instance <bridge> from the ethernet bridge. The network
interface corresponding to the bridge must be down before it can be
deleted!

Example:

brctl delbr mybridge

Page 121

addif <bridge> <device>
Adds the network device device to take part in the bridging of
<bridge>. All the devices contained in a bridge act as one big
network. It is not possible to add a device to multiple bridges or
bridge a bridge device, because it just wouldn't make any sense! The
bridge will take a short amount of time when a device is added to
learn the Ethernet addresses on the segment before starting to
forward.

Example:

brctl addif mybridge eth0

delif <bridge> <device>
Detatch interface <device> from bridge.

Example:

brctl delif mybridge eth0

setageing <bridge> <time>
Sets the ethernet (MAC) address ageing time, in seconds. After
<time> seconds of not having seen a frame coming from a certain
address, the bridge will time out (delete) that address from the
Forwarding DataBase (fdb).

Example:

brctl setaging mybridge 5

setbridgeprio <bridge> <prio>
Each bridge has a relative priority and cost. Each interface is
associated with a port (number) in the STP code. Each has a priority
and a cost, that is used to decide which is the shortest path to
forward a packet. The lowest cost path is always used unless the
other path is down. If you have multiple bridges and interfaces then
you may need to adjust the priorities to achieve optimum
performance. The priority value is an unsigned 16-bit quantity (a
number between 0 and 65535), and has no dimension. Lower

Page 122

priority values are 'better'. The bridge with the lowest priority will be
elected 'root bridge'. The root bridge is the "central" bridge in the
spanning tree.

Example:

brctl setbridgeprio mybridge 10

setfd <bridge> <time>
Forwarding delay time is the time spent in each of the Listening and
Learning states before the Forwarding state is entered. This delay is
so that when a new bridge comes onto a busy network it looks at
some traffic before participating. Time is in seconds.

Example:

brctl setfd mybridge 10

sethello <bridge> <time>
Periodically, a hello packet is sent out by the Root Bridge and the
Designated Bridges. Hello packets are used to communicate
information about the topology throughout the entire Bridged Local
Area Network. Time is in seconds.

Example:

brctl sethello mybridge 10

setmaxage <bridge> <time>
If a another bridge in the spanning tree does not send out a hello
packet for a long period of time, it is assumed to be dead. The time
value is in seconds.

Example:

brctl maxage mybridge 10

setpathcost <bridge> <port> <cost>
Each interface in a bridge could have a different speed and this value
is used when deciding which link to use. Faster interfaces should

Page 123

have lower costs. For multiple ports with the same cost there is also a
priority

Example:

brctl setpathcost mybridge eth1 5

setportprio <bridge> <port> <prio>
Each bridge port has a relative priority. The priority value is an
unsigned 16-bit quantity (a number between 0 and 65535), and has
no dimension. Lower priority values are 'better'. This metric is used
in the designated port and root port selection algorithms.

Example:

brctl setportprio mybridge eth0 3

show
Show a list of bridges.

Example:

brctl show

showmacs <bridge>
Show a list of mac addresses relating to <bridge>.

Example:

brctl showmacs mybridge

showstp <bridge>
Show <bridge>'s stp info.

Example:

brctl showstp mybridge

Page 124

stp <bridge> <state>
If you are running multiple or redundant bridges, then you need to
enable the Spanning Tree Protocol to handle multiple hops and avoid
cyclic routes.

For example:

brctl stp on

You can see the STP paramaters with:

 # brctl showstp br549

Example: Showing devices in a bridge
The brctl show command gives you a summary about the overall bridge
status, and the instances running as shown below:

brctl addbr br549
brctl addif br549 eth0
brctl addif br549 eth1
brctl show
bridge name bridge id STP enabled interfaces
br549 8000.00004c9f0bd2 no eth0 eth1

Once a bridge is running the brctl showmacs will show information about
network addresses of traffic being forwarded (and the bridge itself).

brctl showmacs br549
port no mac addr is local? ageing timer
 1 00:00:4c:9f:0b:ae no 17.84
 1 00:00:4c:9f:0b:d2 yes 0.00
 2 00:00:4c:9f:0b:d3 yes 0.00
 1 00:02:55:1a:35:09 no 53.84
 1 00:02:55:1a:82:87 no 11.53
...

The aging time is the number of seconds a MAC address will be kept in the
forwarding database after having received a packet from this MAC
address. The entries in the forwarding database are periodically timed out
to ensure they won't stay around forever. Normally there should be no
need to modify this parameter, but it can be changed with (time is in
seconds).

Page 125

brctl setageing 0

Setting ageing time to zero makes all entries permanent.

Sample setup
The basic setup of a bridge is done like:

ifconfig eth0 0.0.0.0
ifconfig eth1 0.0.0.0
brctl addbr mybridge
brctl addif mybridge eth0
brctl addif mybridge eth1
ifconfig mybridge up

This will set the host up as a pure bridge, it will not have an IP address for
itself, so it can not be remotely accessed (or hacked) via TCP/IP.

Optionally you can configure the virtual interface mybridge to take part in
your network. It behaves like one interface (like a normal network card).
Exactly that way you configure it, replacing the previous command with
something like:

ifconfig mybridge 192.168.100.5 netmask 255.255.255.0

Page 126

Using BWM Tools

Installing BWM Tools
Before you can use BWM Tools, you must make sure you have all the
dependencies installed...

• glib2 >= 2.2.0
• libxml2 >= 2.5.0
• rrdtool >= 1.0.49 (required for graphing)

Next you need to download BWM Tools, compile it and install it.

Here is step-by-step instructions on how to do this...

1. Download the latest version of BWM Tools, the latest version can be found
on the project homepage: http://bwm-tools.pr.linuxrulz.org

2. Uncompress the archive using either

tar jxvf <archive name>.tar.bz2

or

tar zxvf <archive name>.tar.gz

depending weather its a .tar.bz2 or .tar.gz respectively.

3. Run

./configure

in the source directory. Optionally a --prefix=... parameter can be passed
which will determine where BWM Tools will be installed.

4. Once the configure process is complete, issue a make command, this will
compile BWM Tools.

5. When BWM Tools has finished compiling, type

make install

This will by default install BWM Tools into /usr/local, unless of course if you

Page 127

http://bwm-tools.pr.linuxrulz.org/

specified a --prefix=... above.

BWM Tools Utilities

bwm_firewall
This utility is used to create an IPTables compatible dump file. Parameters
and usage are described below...

-c or --config=<config_file>
Specify the configuration file to use, defaults to
<prefix>/etc/bwm_tools/firewall.xml

-f or --file[=<output_file>]
Generate IPTables restore file from the BWM Tools configuration file.
If this option isn't given an optional filename it will default to
<prefix>/etc/bwm_tools/firewall.xml

-l or --load
Load configuration directly into kernel, if specified with the -f option
above, it will write the IP Tables restore file and load it. If this option
is specified alone, no IP Tables restore file will be created, the
configuration will be loaded directly into the kernel.

-r or --reset-counters
Reset iptables counters, usable with "iptables-restore -c"

bwmd
This daemon is the main bandwidth shaper, it connects to the kernel and
intercepts all packets -j QUEUE'd for shaping.

-c or --config=<config_file>
Specify the configuration file to use, defaults to
<prefix>/etc/bwm_tools/firewall.xml

-f or --foreground
Run bwmd in the foreground and print out debugging information.

bwm_monitor

Page 128

This is the bandwidth monitor which connects to the bwmd daemon and
allows one to view live bandwidth statistics. This utility has no options. The
bwmd daemon must be running before using this utility.

bwm_graph
This utility handles the logged traffic and allows one to extract RRD
datafiles and to optionally generate graphs at the same time. The usage of
this utility is described later on in the document.

Configuring BWM Tools
Configuration of BWM Tools is done via an XML configuration file, this file is
normally located in /etc/bwm_tools/firewall.xml

The layout of the file is pretty simple and is split up into various sections, these
are detailed in the following sections...

The <global> section:
This section contains global tags pertaining to either the operation of BWM Tools
or definitions used in other sections. These tags are detailed below...

<modules>: Module Management
This section is used to manage modules when bwmd starts. Valid tags
within this one are described below.

<load />: Load a module
This tag allows us to load modules when bwmd starts.

Valid parameters are as follows...

name="..."
This is the name of the module to load

params="..."
Parameters to load module with

Page 129

Here is how these tags can be used to load the ip_queue kernel module
required by bwmd for shaping. Including ftp connection tracking to allow
users to ftp through a tightly secured firewall.

<firewall>
<global>

<modules>
<load name="ip_queue"/>
<load name="ip_nat_ftp"/>
<load name="ip_conntrack_ftp"/>

</modules>
</global>

.

.

.
</firewall>

<class>: Class definitions
This tag contains matching specifications used in both firewalling, network
address translation and bandwidth shaping/graphing/logging.

Valid parameters for this tag are as follows...

name=”...”
This is the name of the class used in other tags throughout the
configuration.

Valid tags within this one are described below.

<address />: Address/match specification
Valid parameters for this tag are specified below...

name="..."
This is a descriptive name for the address, isn't really
used anywhere.

cmd-line="..."
Optional command line arguments for iptables, for
example cmd-line="-m helper --helper <string>"

Page 130

dst="..."
Optional destination IP address

dst-iface="..."
Optional destination interface

dst-port="..."
Optional destination port

proto="..."
Optional protocol specification, any valid protocol in
/etc/protocols

src="..."
Optional source IP address

src-iface="..."
Optional source interface

src-port="..."
Optional source port

Here is an example how the above tags it can be used to match connections
over a specific number...

<firewall>
<global>
.
.
.

<class name="excess_connections_to_webserver">
<address name="excess_to_server1"

dst="192.168.0.100" proto="tcp" dst-port="80"
 cmd-line="-m connlimit --connlimit-above 10"/>

</class>
</global>

.

.

.
</firewall>

The <acl> section:
This is basically the firewall section, you can add all your firewall rules here or

Page 131

just leave it blank to use your current firewall.

The following tags are valid within this one...

<table>: Specify the table to work on
This tag is used to enclose the directives you plan to use with a specific
table. Examples of tables are... filter, nat, mangle

There is only one parameter valid here..
name="..."

This is the name of the table we will be working with

Valid tags within this one can be found below...

<chain>: Specify a chain to work on
This tag is used to specify what chain the rules defined between the
starting and ending tags apply to. Examples of already defined chains
are INPUT, OUTPUT and FORWARD.

Valid parameters below...
name="..."

This is the name of the chain we will be working with
default="..."

This specifies the default target for the chain

Valid tags within this one can be found below...

<rule>: Specify a rule to apply to a set of classes
This tag is used to specify what classes apply to what rule, and
are in order inserted into the actual iptables chains as iptables
rules.

Valid parameters below...
name="..."

Optional name of rule

cmd-line="..."
Optional extra command line parameters to pass to
iptables

target="..."
This is the target for the rule, used as the -j
<target> parameter when generating iptables
rules.

Page 132

Between the opening and closing tags, classes defined in the
<global> section are listed, these classify which traffic applies
to which rule.

Multiple classes can be listed, one per line.

Using the above, here is an example of a simple firewall which allows http and
ssh traffic, assuming your IP address is 10.0.0.2 of course...

<firewall>
Global configuration and access classes
<global>

<class name="http_traffic">
<address dst="10.0.0.2" proto="tcp" dst-port="80"/>

</class>
<class name="ssh_traffic">

<address dst="10.0.0.2" proto="tcp" dst-port="22"/>
</class>

</global>

Access control lists
<acl>

<table name="filter">
<chain name="INPUT" default="DROP">

<rule name="allowed_traffic" target="ACCEPT">
http_traffic
ssh_traffic

</rule>
</chain>
<chain name="FORWARD" default="DROP">
</chain>
<chain name="OUTPUT" default="ACCEPT">
</chain>

</table>
</acl>

</firewall>

The <nat> section:
The NAT section is used to define network address translation rules, these rules
allow one to translate the source or destination IP address within packets. A
common use for this is when a webserver is behind a firewall, requests are made

Page 133

to a globally routable IP address and translated to the internal IP address of the
webserver and visa versa.

There are 3 tags available, <snat>, <dnat> and <masq>, these three tags are
used for source network address translation, destination address translation and
masquerading respectively.

Valid options for these tags are as follows...

<snat>: Source address translation
SNAT is used for source network address translation, an example of which
is again a webserver behind a firewall. Where SNAT comes in handy is
when the webserver makes a query through the firewall, instead of the
traffic on the internet comming from the webservers internal IP
192.168.1.100 which is not going to work, the firewall translates
192.168.1.100 to a globally routable IP address.

There are no parameters for this tag, although the following sub-tags and
parameters are available...

<rule>: Specify a rule
This tag is used to specify what classes apply to what rule, and are in
order inserted into the actual iptables chains as iptables rules.

This tag takes the following parameters...
name="..."

Optional name of rule

to-src="..."
Translate all traffic matched in the class specification to
this source IP address.

Between the opening and closing tags, classes defined in the
<global> section are listed, these classify which traffic applies to
which rule.

Multiple classes can be listed, one per line.

<dnat>: Destination network address translation
DNAT is used for destination network address translation, an example of
which is yet again a webserver behind a firewall. Where DNAT comes in
handy is when requests are made to the webservers globally routable IP,
this IP address is routed through the firewall and translated to the
webservers internal IP address. Optional traffic filtering can be carried out

Page 134

on the traffic, this is in most instances the case and prevents alot of
harmfull traffic from interferring with the webservers operation.

There are no parameters for this tag, although the following sub-tags and
parameters are available...

<rule>: Specify a rule
This tag is used to specify what classes apply to what rule, and are in
order inserted into the actual iptables chains as iptables rules.

This tag takes the following parameters...
name="..."

Optional name of rule

to-dst="..."
Translate all traffic matched in the class specification to
this source IP address.

Between the opening and closing tags, classes defined in the
<global> section are listed, these classify which traffic applies to
which rule.

Multiple classes can be listed, one per line.

<masq>: Masquerade
Masquerading is normally used for source address translation in the
scenario where you have a dynamic IP and never know what address to do
the translation to. An example of which is a home PC acting as a DSL
router.

There are no parameters for this tag, although the following sub-tags and
parameters are available...

<rule>: Specify a rule
This tag is used to specify what classes apply to what rule, and are in
order inserted into the actual iptables chains as iptables rules.

This tag takes the following parameters...
name="..."

Optional name of rule

to-ports="..."
This specifies a range of source ports to use, overriding

Page 135

the default SNAT source port-selection heuristics. For this
parameter to work you MUST have defined a protocol in
all the classes specified. For example proto="tcp".

Between the opening and closing tags, classes defined in the
<global> section are listed, these classify which traffic applies to
which rule.

Multiple classes can be listed, one per line.

An example using the above tags would look something like this...
<firewall>

Global configuration and access classes
<global>

<class name="traf_from_webserver">
<address src="192.168.0.100"/>

</class>
<class name="traf_to_webserver">

<address dst="<globally routable IP here>"/>
</class>

</global>

Network address translation
<nat>

<snat>
<rule to-src="<globally routable IP here>">

traf_from_webserver
</rule>

</snat>
<dnat>

<rule to-dst="192.168.0.100">
traf_to_webserver

</rule>
</dnat>

</nat>
</firewall>

Here is an example if you pc is acting as a DSL router...
<firewall>

Global configuration and access classes
<global>

<class name="traf_going_to_dsl">
<address src="192.168.0.0/24"/>

Page 136

</class>
</global>

Network address translation
<nat>

<masq>
<rule name="masq_traffic_going_out">

traf_going_to_dsl
</rule>

</masq>
</nat>

</firewall>

The <traffic> section:
This section is used to define traffic shaping rules. These traffic shaping rules
are called flows, the concept of flows is a single-parent child relationship. For
instance you can define 1 major flow, within this flow you can define separate
priorities and limits for different traffic such as mail, browsing and p2p traffic.
This example setup might be used for a DSL internet connection where one
would like to prioritize internet browsing.

This tags have no parameters.

The below tags are valid within this section.

<flow>: Specify a traffic flow
This tag is used to specify a traffic flow and takes the following
parameters...

name="..."
Mandatory flow name, this is used to identify the flow when
reporting and monitoring

nfmark="..."
Mandatory/Optional parameter to specify the NFMARK of the
traffic that applies to this flow. This must be used at the
deepest level of flow embedding to match traffic. Each nfmark
value MUST be unique!

stats-len="..."
Optional parameter to specify the period in seconds that the
average bandwidth rate and packet rate is based on. If 0 is
specified here there will be no average

Page 137

queue-size="..."
Optional parameter to specify the size of the entire packet
queue. If 0 is specified, queue size is unlimited. If -1 is
specified, the queue will not be used.

queue-len="..."
Optional parameter to specify the maximum number of packets
that can be in the entire queue at any one time. If -1 is specified
the queue will not be used.

max-rate="..."
Optional parameter to specify the maximum rate in bytes/s
before packets are queued, packets are not queued if they can
be bursted. If 0 is specified, no traffic limiting will occur. If
however the report-timeout="..." parameter is also specified
then only logging will occur.

burst-rate="..."
Optional parameter to specify the maximum rate in bytes/s
which packets can be bursted. Bursting can only occur until the
parent has maxed out its max-rate. Unlimited bursting will
occur when burst-rate = 0, remember unlimited meaning until
the parent has maxed its max-rate. This value must be greater
than max-rate.

burst-threshold="..."
Optional parameter to specify at what percentage we will stop
bursting to our parent flow with regards to the parents current
rate of usage. If this is set to 75, bursting to our parent will only
be allowed until parent has maxed out 75% of its allowed
maximum bandwidth utilization. If other flows max 70% of the
parents bandwidth, we will be allowed to max our max-rate and
burst until our parent reaches 75% of its max-rate. Remember
burst-threshold pertains to the parents max-rate parameter, not
the parents burst-rate.

report-timeout="..."
Optional parameter to specify if and in what time increments
the traffic statistics are logged to file. For example, if this
parameter is set to 60, bwmd will log traffic stats to file every
60 seconds. Minimum value for this parameter is 30.

prio-classifier="..."
Optional parameter to specify an automatic traffic prioritization

Page 138

classifier. This parameter defaults to the none classifier, where
no prioritization takes place. Available classifiers are discussed
below...

port:
Classifier With this classification prioritization happens
automatically with the following ports mapped to their
corrosponding priorities. (1 = highest, 100 = lowest)...

TCP Traffic
`port 113 (AUTH)'

`Priority 20'
`port 22, 23 (SSH, TELNET)'

`Priority 25'
`port 80, 443, 8080, 3128, 3130 (HTTP, HTTPS,
PROXY PORTS)'

`Priority 65'
`port 2401 (CVS)'

`Priority 70'
`port 110, 143 (POP3, IMAP4)'

`Priority 75'
`port 20, 21 (FTP)'

`Priority 80'

UDP Traffic
`port 53 (DNS)'

`Priority 10'
`port 123 (NTP)'

`Priority 15'
`port 1645/6, 1812/3 (RADIUS)'

`Priority 30'
`port 33434-33465 (Normally traceroute)'

`Priority 5'

The default priority for traffic not matching any of the above is
50.

none:
This classifier This is the default classifier, no priorization
will occur and all trafic will be dumped in the default
priority 50 queue.

Between the opening and closing tags, classes defined in the <global>
section can be listed, if you want to list multiple classes use one per line,
these classes classify which traffic applies to which rule.

Page 139

Please note listing classes is required only if you are using BWM Tools to
generate your firewall for you, otherwise just make sure you MARK your
traffic correctly and the MARK value matches the nfmark="..." parameter
value used above.

Alternatively <flow> ... </flow> tags can be embedded to form a more
complex hierarchy.

On a last note, if you are infact not using BWM Tools to generate your
firewall and don't want to embed flows in multiple hierarchical levels you
can specify the flow tag quickly in the following way <flow ... />.

To continue on the line of complexity, one can specify the following sub-
tags, within the <flow> ... </flow> tags...

<queue>: This tag is used to finer tune queuing
This tag can be specified to finer tune into which queue the traffic is
put and has the following parameters...

prio="..."
Mandatory parameter to specify the priority of the
matched traffic. (1 = highest, 100 = lowest).

nfmark="..."
Mandatory parameter to specify the mark value of the
traffic.

Below is an example of using the <queue> ... </queue> tags to give
VNC traffic highest priority...

<flow name="line_in" max-rate="32000">
<flow name="p2p_traffic_in" max-rate="8000" burst-
rate="24000" nfmark="100">

class_p2p_traffic_in
</flow>
<flow name="vnc_in" max-rate="24000" burst-rate="32000">

<queue prio="1" nfmark="101">
class_vnc_in

</queue>
</flow>

</flow>

Between the opening and closing tags, classes defined in the

Page 140

<global> section can be listed, if you want to list multiple classes use
one per line, these classes classify which traffic applies to which rule
or queue.

Please note listing classes is required only if you are using BWM
Tools to generate your firewall for you, otherwise just make sure you
MARK your traffic correctly and the MARK value matches the
nfmark="..." parameter value used above.

On a last note, if you are infact not using BWM Tools to generate
your firewall and want to specify a queue quickly, you can do so in
the following way <queue ... />.

<group>: Group flows for reporting
The <group> tag is used for reporting only. It is for grouping flows
together into 1 reporting name. This tag takes the following parameters...

name="..."
Mandatory flow name, this is used to identify the flow when
reporting and monitoring.

report-timeout="..."
Optional parameter to specify if and in what time increments
the traffic statistics are logged to file. For example, if this
parameter is set to 60, bwmd will log traffic stats to file every
60 seconds.

Minimum value for this parameter is 30.

stats-len="..."
Optional parameter to specify the period in seconds that the
average bandwidth rate and packet rate is based on. If 0 is
specified here there will be no average.

Integrating BWM Tools with your system
This section will describe how to integrate BWM Tools into your system, be it you
use BWM Tools to entirely manage your firewall, NAT and traffic shaping or just
to do the traffic shaping.

There are two possible scenarios here detailed below...

Page 141

Scenario 1:
You want to use BWM Tools for both your firewall and traffic shaping.

This is the easiest scenario to deal with, only having 4 steps below to get
your firewall, NAT and traffic shaping up and running...

1. Configure your classes, ACL's, NAT and traffic shaping rules as
described in the previous sections. The end target for all accepted
traffic must be bwmd in the INPUT chain or OUTPUT chain if you
doing single box or a router configuration respectively.

2. Run BWM Firewall to generate an iptables-restore compatible
configuration file.

BWM Firewall takes the BWM Tools XML configuration file and
translates the various sections and tags into a firewall which can be
loaded directly with iptables-restore.

bwm_firewall -c <config file> -f <output file>

3. Once you've generated the iptables restore file you must load it
atomically into the kernel with the following command...

iptables-restore < output_file_above

4. The last step is to fire up bwmd with your choice of options.

bwmd -c <config file>

Scenario 2:
You want to use another firewalling application and have BWM Tools do
only the traffic shaping.

Here there are a few things to remember...

1. BWM Tools works with the NFMARK parameter attached to packets.
Marking packets can only be done in the mangle table in iptables.

2. BWM Tools uses the userpace queuing mechanism, all packets to be
shaped must be targeted at QUEUE in the filter table. This is done by
either adding a rule to the INPUT and OUTPUT chain in the case of a
single box which you need to shape traffic to and from respectively.
While in the case of a firewall where traffic passes through you would

Page 142

add a rule to the FORWARD chain.

3. Therefore in order for BWM Tools to shape traffic, packets must be
MARK'ed with a number corresponding to the number specified in
the nfmark="..." parameter defined in the <flow> tag and targeted in
iptables to QUEUE instead of ACCEPT as per above.

Imagine you would like your Linux router to rate limit all traffic from and
to IP 192.168.1.100, an example of this can be found below...

Configuring iptables:

iptables -t filter -A FORWARD -m mark ! --mark 0x0 -j QUEUE
iptables -t mangle -A FORWARD -s 192.168.1.100 -j MARK \
 --set-mark 100
iptables -t mangle -A FORWARD -d 192.168.1.100 -j MARK \
 --set-mark 101

Configuring bwmd:

<firewall>
 <global>
 <modules>
 <load name="ip_queue"/>
 </modules>
 </global>
 # Traffic flows
 <traffic>
 <flow name="pc_in" max-rate="64000" report-timeout="60"
 nfmark="100" />
 <flow name="pc_out" max-rate="64000" report-timeout="60"
 nfmark="101" />
 </traffic>
</firewall>

Graphing
BWM Tools supports graphing of traffic flows which have been specified with the
report-timeout="".

Generating a graph can be achieved using bwm_graph or by using the RRD files

Page 143

generated by bwm_graph.

These two methods are discussed below...

Generating RRD files
The following section will explain how to have bwm_graph generate only
RRD files and not graphs. This can be done quickly and simply using the
following command-line options...

-f or --flows:
This option is used to specify the flows to include when generating
the RRD files.

An example of this option can be found below...

bwm_graph \
--flows="flow_name_1,flow_name2,flow_name3" ...

There is an optional parameter to specify which counter will be used
when outputting the RRD file. For this there are 3 possibilities, all 3
are the totals per report-timeout="..." seconds specified in the
relevant flow tag.

pkt
Number of packets processed

size_bit
Bits transferred in above period

size_byte
Bytes transferred

dropped
Packets dropped

bursted
Packets bursted

The counter to use is specified in the following manner...

bwm_graph \
--flows="flow_name_1(size_bit),flow_name_2(size_byte)”

Page 144

-s or --start="YYYY/MM/DD HH:MM:SS"
This option is used to specify the date and/or time which to start our
report from.

The format for date and/or time specification is yyyy/mm/dd
hh:mm:ss.

An example of this option is as follows...
bwm_graph ... --start="2003/01/20 01:20" ...

-e or --end="YYYY/MM/DD HH:MM:SS"
This option is used to specify the date and/or time which our report
will end.

The format for this option is the same as the -s and --start options.

An example of how to use all 3 above options to specify both the flows
to work on and the reporting period can be done something like
this...

bwm_graph \
--flows="flow_name_1(size_bit),flow_name_2(size_bit)" \
--start="2003/01/20" --end="2003/01/21"

Creating a pretty graph using bwm_graph
bwm_graph has a builtin interface to rrdtool. Using this interface one can
easily have bwm_graph generate pretty looking graphs itself.

The graphing capability of bwm_graph is in addition to the generation of
RRD files, meaning that you are required to use all 3 mandatory options
discussed in "Generating RRD files" above.

The following graphing options can be used...

--graph-filename=<filename>
This parameter is used to specify an output filename for the
generated .png image.

--graph-avg

Page 145

Write counter averages on the graph.

--graph-date
Write the start datetime and end datetime of the reporting
period on the graph.

--graph-title=<graph_title>
Specify a title for your graph

--graph-total
Write out counter totals on the graph

--graph-vert-title=<graph_title>
Specify a vertical title for the graph

Page 146

RRDTool

What is RRDtool?
RRDtool refers to Round Robin Database tool. Round robin is a technique that
works with a fixed amount of data, and a pointer to the current element. Think of
a circle with some dots plotted on the edge -- these dots are the places where
data can be stored. Draw an arrow from the center of the circle to one of the dots
-- this is the pointer. When the current data is read or written, the pointer moves
to the next element. As we are on a circle there is neither a beginning nor an
end, you can go on and on and on. After a while, all the available places will be
used and the process automatically reuses old locations. This way, the dataset
will not grow in size and therefore requires no maintenance. RRDtool works with
with Round Robin Databases (RRDs). It stores and retrieves data from them.

What data can be put into an RRD?
You name it, it will probably fit as long as it is some sort of time-series data. This
means you have to be able to measure some value at several points in time and
provide this information to RRDtool. If you can do this, RRDtool will be able to
store it. The values must be numerical but don't have to be integers.

What can I do with this tool?
RRDtool originated from MRTG (Multi Router Traffic Grapher). MRTG started as
a tiny little script for graphing the use of a university's connection to the
Internet. MRTG was later (ab-)used as a tool for graphing other data sources
including temperature, speed, voltage, number of printouts and the like.
Most likely you will start to use RRDtool to store and process data collected via
SNMP. The data will most likely be bytes (or bits) transfered from and to a
network or a computer. But it can also be used to display tidal waves, solar
radiation, power consumption, number of visitors at an exhibition, noise levels
near an airport, temperature on your favorite holiday location, temperature in
the fridge and whatever you imagination can come up with.

You only need a sensor to measure the data and be able to feed the numbers into
RRDtool. RRDtool then lets you create a database, store data in it, retrieve that
data and create graphs in PNG format for display on a web browser. Those PNG
images are dependent on the data you collected and could be, for instance, an
overview of the average network usage, or the peaks that occurred.

It is pretty easy to gather status information from all sorts of things, ranging
from the temperature in your office to the number of octets which have passed
through the FDDI interface of your router. But it is not so trivial to store this
data in an efficient and systematic manner. This is where RRDtool comes in
handy. It lets you log and analyze the data you gather from all kinds of data-
sources (DS). The data analysis part of RRDtool is based on the ability to quickly

Page 147

generate graphical representations of the data values collected over a definable
time period.

Functions
While the man pages talk of command line switches you have to set in
order to make RRDtool work it is important to note that RRDtool can be
remotely controlled through a set of pipes. This saves a considerable
amount of startup time when you plan to make RRDtool do a lot of things
quickly. There is also a number of language bindings for RRDtool which
allow you to use it directly from perl, python, tcl, php, etc.

create
Set up a new Round Robin Database (RRD).

update
Store new data values into an RRD.

updatev
Operationally equivalent to update except for output.

graph
Create a graph from data stored in one or several RRDs. Apart from
generating graphs, data can also be extracted to stdout.

dump
Dump the contents of an RRD in plain ASCII. In connection with
restore you can use this to move an RRD from one computer
architecture to another.

restore
Restore an RRD in XML format to a binary RRD.

fetch
Get data for a certain time period from a RRD. The graph function
uses fetch to retrieve its data from an RRD.

tune
Alter setup of an RRD.

last
Find the last update time of an RRD.

info

Page 148

Get information about an RRD.

rrdresize
Change the size of individual RRAs. This is dangerous!

xport
Export data retrieved from one or several RRDs.

rrdcgi
This is a standalone tool for producing RRD graphs on the fly.

How does rrdtool work?

Data Acquisition
When monitoring the state of a system, it is convenient to have the data
available at a constant time interval. Unfortunately, you may not always be
able to fetch data at exactly the time you want to. Therefore RRDtool lets
you update the logfile at any time you want. It will automatically
interpolate the value of the data-source (DS) at the latest official time-slot
(intervall) and write this interpolated value to the log. The original value
you have supplied is stored as well and is also taken into account when
interpolating the next log entry.

Consolidation
You may log data at a 1 minute interval, but you might also be interested to
know the development of the data over the last year. You could do this by
simply storing the data in 1 minute intervals for the whole year. While this
would take considerable disk space it would also take a lot of time to
analyze the data when you wanted to create a graph covering the whole
year. RRDtool offers a solution to this problem through its data
consolidation feature. When setting up an Round Robin Database (RRD),
you can define at which interval this consolidation should occur, and what
consolidation function (CF) (average, minimum, maximum, total, last)
should be used to build the consolidated values (see rrdcreate). You can
define any number of different consolidation setups within one RRD. They
will all be maintained on the fly when new data is loaded into the RRD.

Round Robin Archives
Data values of the same consolidation setup are stored into Round Robin
Archives (RRA). This is a very efficient manner to store data for a certain
amount of time, while using a known and constant amount of storage
space.

Page 149

It works like this: If you want to store 1'000 values in 5 minute interval,
RRDtool will allocate space for 1'000 data values and a header area. In the
header it will store a pointer telling which slots (value) in the storage area
was last written to. New values are written to the Round Robin Archive in,
you guessed it, a round robin manner. This automatically limits the history
to the last 1'000 values (in our example). Because you can define several
RRAs within a single RRD, you can setup another one, for storing 750 data
values at a 2 hour interval, for example, and thus keep a log for the last
two months at a lower resolution.

The use of RRAs guarantees that the RRD does not grow over time and that
old data is automatically eliminated. By using the consolidation feature,
you can still keep data for a very long time, while gradually reducing the
resolution of the data along the time axis.

Using different consolidation functions (CF) allows you to store exactly the
type of information that actually interests you: the maximum one minute
traffic on the LAN, the minimum temperature of your wine cellar, the total
minutes of down time, etc.

Unknown Data
As mentioned earlier, the RRD stores data at a constant interval.
Sometimes it may happen that no new data is available when a value has to
be written to the RRD. Data acquisition may not be possible for one reason
or other. With RRDtool you can handle these situations by storing an
UNKNOWN value into the database. The value '*UNKNOWN*' is
supported through all the functions of the tool. When consolidating a data
set, the amount of *UNKNOWN* data values is accounted for and when a
new consolidated value is ready to be written to its Round Robin Archive
(RRA), a validity check is performed to make sure that the percentage of
unknown values in the data point is above a configurable level. If not, an
UNKNOWN value will be written to the RRA.

Graphing
RRDtool allows you to generate reports in numerical and graphical form
based on the data stored in one or several RRDs. The graphing feature is
fully configurable. Size, color and contents of the graph can be defined
freely.

rrdcreate

Page 150

Usage
rrdtool create filename [--start|-b start_time] [--step|-s step] [DS:ds-
name:DST:dst_arguments] [RRA:CF:cf_arguments]

Options
The create function of RRDtool lets you set up new Round Robin Database
(RRD) files. The file is created at its final, full size and filled with
UNKNOWN data.

filename
The name of the RRD you want to create. RRD files should end with
the extension .rrd. However, RRDtool will accept any filename.

--start|-b start time (default: now - 10s)
Specifies the time in seconds since 1970-01-01 UTC when the first
value should be added to the RRD. RRDtool will not accept any data
timed before or at the time specified.
See also AT-STYLE TIME SPECIFICATION section in the rrdfetch
documentation for other ways to specify time.

--step|-s step (default: 300 seconds)
Specifies the base interval in seconds with which data will be fed into
the RRD.

DS:ds-name:DST:dst_arguments
A single RRD can accept input from several data sources (DS), for
example incoming and outgoing traffic on a specific communication
line. With the DS configuration option you must define some basic
properties of each data source you want to store in the RRD.

ds-name
The name you will use to reference this particular data source
from an RRD. A ds-name must be 1 to 19 characters long in the
characters [a-zA-Z0-9_].

DST
This defines the Data Source Type. The remaining arguments of
a data source entry depend on the data source type. For
GAUGE, COUNTER, DERIVE, and ABSOLUTE the format for a
data source entry is:

DS:ds-name:GAUGE | COUNTER | DERIVE | \
ABSOLUTE:heartbeat:min:max

For COMPUTE data sources, the format is:

Page 151

DS:ds-name:COMPUTE:rpn-expression

In order to decide which data source type to use, review the
definitions that follow. Also consult the section on ``HOW TO
MEASURE'' for further insight.

Data sources:

GAUGE
This is used for things like temperatures or number of
people in a room or the value of a RedHat share.

COUNTER
This is for continuous incrementing counters like the
ifInOctets counter in a router. The COUNTER data source
assumes that the counter never decreases, except when a
counter overflows.

The update function takes the overflow into account. The
counter is stored as a per-second rate. When the counter
overflows, RRDtool checks if the overflow happened at
the 32bit or 64bit border and acts accordingly by adding
an appropriate value to the result.

DERIVE
will store the derivative of the line going from the last to
the current value of the data source. This can be useful
for gauges, for example, to measure the rate of people
entering or leaving a room. Internally, derive works
exactly like COUNTER but without overflow checks. So if
your counter does not reset at 32 or 64 bit you might
want to use DERIVE and combine it with a MIN value of
0.

NOTE on COUNTER vs DERIVE
If you cannot tolerate ever mistaking the occasional
counter reset for a legitimate counter wrap, and would
prefer ``Unknowns'' for all legitimate counter wraps and
resets, always use DERIVE with min=0. Otherwise, using
COUNTER with a suitable max will return correct values
for all legitimate counter wraps, mark some counter
resets as ``Unknown'', but can mistake some counter
resets for a legitimate counter wrap.

Page 152

For a 5 minute step and 32-bit counter, the probability of
mistaking a counter reset for a legitimate wrap is
arguably about 0.8% per 1Mbps of maximum bandwidth.
Note that this equates to 80% for 100Mbps interfaces, so
for high bandwidth interfaces and a 32bit counter,
DERIVE with min=0 is probably preferable. If you are
using a 64bit counter, just about any max setting will
eliminate the possibility of mistaking a reset for a counter
wrap.

ABSOLUTE
We use this for counters which get reset upon reading.
This is used for fast counters which tend to overflow. So
instead of reading them normally you reset them after
every read to make sure you have a maximum time
available before the next overflow. Another usage is for
things you count like number of messages since the last
update.

COMPUTE
This for storing the result of a formula applied to other
data sources in the RRD. This data source is not supplied
a value on update, but rather its Primary Data Points
(PDPs) are computed from the PDPs of the data sources
according to the rpn-expression that defines the formula.
Consolidation functions are then applied normally to the
PDPs of the COMPUTE data source (that is the rpn-
expression is only applied to generate PDPs). In database
software, such data sets are referred to as ``virtual'' or
``computed'' columns.

heartbeat
Defines the maximum number of seconds that may pass
between two updates of this data source before the value
of the data source is assumed to be *UNKNOWN*.

min and max
Defines the expected range values for data supplied by a
data source. If min and/or max any value outside the
defined range will be regarded as *UNKNOWN*. If you do
not know or care about min and max, set them to U for
unknown. Note that min and max always refer to the
processed values of the DS. For a traffic-COUNTER type
DS this would be the maximum and minimum data-rate
expected from the device.

Page 153

If information on minimal/maximal expected values is
available, always set the min and/or max properties. This
will help RRDtool in doing a simple sanity check on the
data supplied when running update.

rpn-expression
Defines the formula used to compute the PDPs of a
COMPUTE data source from other data sources in the
same <RRD>. It is similar to defining a CDEF argument
for the graph command. Please refer to that manual page
for a list and description of RPN operations supported.
For COMPUTE data sources, the following RPN
operations are not supported: COUNT, PREV, TIME, and
LTIME. In addition, in defining the RPN expression, the
COMPUTE data source may only refer to the names of
data source listed previously in the create command. This
is similar to the restriction that CDEFs must refer only to
DEFs and CDEFs previously defined in the same graph
command.

RRA:CF:cf arguments
The purpose of an RRD is to store data in the round robin archives
(RRA). An archive consists of a number of data values or statistics for
each of the defined data-sources (DS) and is defined with an RRA
line.

When data is entered into an RRD, it is first fit into time slots of the
length defined with the -s option, thus becoming a primary data
point.

The data is also processed with the consolidation function (CF) of the
archive. There are several consolidation functions that consolidate
primary data points via an aggregate function: AVERAGE, MIN, MAX,
LAST. The format of RRA line for these consolidation functions is:

RRA:AVERAGE | MIN | MAX | LAST:xff:steps:rows

xff The xfiles factor defines what part of a consolidation interval may
be made up from *UNKNOWN* data while the consolidated value is
still regarded as known. It is given as the ratio of allowed
UNKNOWN PDPs to the number of PDPs in the interval. Thus, it
ranges from 0 to 1 (exclusive).

Page 154

steps defines how many of these primary data points are used to
build a consolidated data point which then goes into the archive.
Rows define how many generations of data values are kept in an
RRA.

Aberrant behavior detection with holt-winters forecasting
In addition to the aggregate functions, there are a set of specialized
functions that enable RRDtool to provide data smoothing (via the Holt-
Winters forecasting algorithm), confidence bands, and the flagging
aberrant behavior in the data source time series:

RRA:HWPREDICT:rows:alpha:beta:seasonal period[:rra-num]
RRA:SEASONAL:seasonal period:gamma:rra-num
RRA:DEVSEASONAL:seasonal period:gamma:rra-num
RRA:DEVPREDICT:rows:rra-num
RRA:FAILURES:rows:threshold:window length:rra-num

These RRAs differ from the true consolidation functions in several ways.
First, each of the RRAs is updated once for every primary data point.
Second, these RRAs are interdependent. To generate real-time confidence
bounds, a matched set of HWPREDICT, SEASONAL, DEVSEASONAL, and
DEVPREDICT must exist. Generating smoothed values of the primary data
points requires both a HWPREDICT RRA and SEASONAL RRA. Aberrant
behavior detection requires FAILURES, HWPREDICT, DEVSEASONAL, and
SEASONAL.

The actual predicted, or smoothed, values are stored in the HWPREDICT
RRA. The predicted deviations are stored in DEVPREDICT (think a
standard deviation which can be scaled to yield a confidence band). The
FAILURES RRA stores binary indicators. A 1 marks the indexed
observation as failure; that is, the number of confidence bounds violations
in the preceding window of observations met or exceeded a specified
threshold.

The SEASONAL and DEVSEASONAL RRAs store the seasonal coefficients
for the Holt-Winters forecasting algorithm and the seasonal deviations,
respectively. There is one entry per observation time point in the seasonal
cycle. For example, if primary data points are generated every five minutes
and the seasonal cycle is 1 day, both SEASONAL and DEVSEASONAL will
have 288 rows.

In order to simplify the creation for the novice user, in addition to
supporting explicit creation of the HWPREDICT, SEASONAL,
DEVPREDICT, DEVSEASONAL, and FAILURES RRAs, the RRDtool create

Page 155

command supports implicit creation of the other four when HWPREDICT is
specified alone and the final argument rra-num is omitted.

rows
This specifies the length of the RRA prior to wrap around. Remember
that there is a one-to-one correspondence between primary data
points and entries in these RRAs. For the HWPREDICT CF, rows
should be larger than the seasonal period. If the DEVPREDICT RRA is
implicitly created, the default number of rows is the same as the
HWPREDICT rows argument. If the FAILURES RRA is implicitly
created, rows will be set to the seasonal period argument of the
HWPREDICT RRA. Of course, the RRDtool resize command is
available if these defaults are not sufficient and the creator wishes to
avoid explicit creations of the other specialized function RRAs.

seasonal period
This is the number of primary data points in a seasonal cycle. If
SEASONAL and DEVSEASONAL are implicitly created, this argument
for those RRAs is set automatically to the value specified by
HWPREDICT. If they are explicitly created, the creator should verify
that all three seasonal period arguments agree.

alpha
This is the adaption parameter of the intercept (or baseline)
coefficient in the Holt-Winters forecasting algorithm. alpha must lie
between 0 and 1. A value closer to 1 means that more recent
observations carry greater weight in predicting the baseline
component of the forecast. A value closer to 0 means that past
history carries greater weight in predicting the baseline component.

beta
This is the adaption parameter of the slope (or linear trend)
coefficient in the Holt-Winters forecasting algorithm. beta must lie
between 0 and 1 and plays the same role as alpha with respect to the
predicted linear trend.

gamma
This is the adaption parameter of the seasonal coefficients in the
Holt-Winters forecasting algorithm (HWPREDICT) or the adaption
parameter in the exponential smoothing update of the seasonal
deviations. It must lie between 0 and 1. If the SEASONAL and
DEVSEASONAL RRAs are created implicitly, they will both have the
same value for gamma: the value specified for the HWPREDICT alpha
argument. Note that because there is one seasonal coefficient (or

Page 156

deviation) for each time point during the seasonal cycle, the
adaptation rate is much slower than the baseline. Each seasonal
coefficient is only updated (or adapts) when the observed value
occurs at the offset in the seasonal cycle corresponding to that
coefficient.

If SEASONAL and DEVSEASONAL RRAs are created explicitly,
gamma need not be the same for both. Note that gamma can also be
changed via the RRDtool tune command.

rra-num
This parameter provides the links between related RRAs. If
HWPREDICT is specified alone and the other RRAs are created
implicitly, then there is no need to worry about this argument. If
RRAs are created explicitly, then carefully pay attention to this
argument. For each RRA which includes this argument, there is a
dependency between that RRA and another RRA. The rra-num
argument is the 1-based index in the order of RRA creation (that is,
the order they appear in the create command). The dependent RRA
for each RRA requiring the rra-num argument is listed here:

HWPREDICT rra-num is the index of the SEASONAL RRA.
SEASONAL rra-num is the index of the HWPREDICT RRA.
DEVPREDICT rra-num is the index of the DEVSEASONAL RRA.
DEVSEASONAL rra-num is the index of the HWPREDICT RRA.
FAILURES rra-num is the index of the DEVSEASONAL RRA.

threshold
Is the minimum number of violations (observed values outside the
confidence bounds) within a window that constitutes a failure. If the
FAILURES RRA is implicitly created, the default value is 7.

window length
This is the number of time points in the window. Specify an integer
greater than or equal to the threshold and less than or equal to 28.
The time interval this window represents depends on the interval
between primary data points. If the FAILURES RRA is implicitly
created, the default value is 9.

The heartbeat and the step
Here is an explanation by Don Baarda on the inner workings of RRDtool. It
may help you to sort out why all this *UNKNOWN* data is popping up in
your databases:

Page 157

RRDtool gets fed samples at arbitrary times. From these it builds Primary
Data Points (PDPs) at exact times on every ``step'' interval. The PDPs are
then accumulated into RRAs.

The ``heartbeat'' defines the maximum acceptable interval between
samples. If the interval between samples is less than ``heartbeat'', then an
average rate is calculated and applied for that interval. If the interval
between samples is longer than ``heartbeat'', then that entire interval is
considered ``unknown''. Note that there are other things that can make a
sample interval ``unknown'', such as the rate exceeding limits, or even an
``unknown'' input sample.

The known rates during a PDP's ``step'' interval are used to calculate an
average rate for that PDP. Also, if the total ``unknown'' time during the
``step'' interval exceeds the ``heartbeat'', the entire PDP is marked as
``unknown''. This means that a mixture of known and ``unknown'' sample
times in a single PDP ``step'' may or may not add up to enough
``unknown'' time to exceed ``heartbeat'' and hence mark the whole PDP
``unknown''. So ``heartbeat'' is not only the maximum acceptable interval
between samples, but also the maximum acceptable amount of ``unknown''
time per PDP (obviously this is only significant if you have ``heartbeat'' less
than ``step'').

The ``heartbeat'' can be short (unusual) or long (typical) relative to the
``step'' interval between PDPs. A short ``heartbeat'' means you require
multiple samples per PDP, and if you don't get them mark the PDP
unknown. A long heartbeat can span multiple ``steps'', which means it is
acceptable to have multiple PDPs calculated from a single sample. An
extreme example of this might be a ``step'' of 5 minutes and a ``heartbeat''
of one day, in which case a single sample every day will result in all the
PDPs for that entire day period being set to the same average rate.

How to measure
Here are a few hints on how to measure:

Temperature
Usually you have some type of meter you can read to get the
temperature. The temperature is not really connected with a time.
The only connection is that the temperature reading happened at a
certain time. You can use the GAUGE data source type for this.
RRDtool will then record your reading together with the time.

Mail Messages

Page 158

Assume you have a method to count the number of messages
transported by your mailserver in a certain amount of time, giving
you data like '5 messages in the last 65 seconds'. If you look at the
count of 5 like an ABSOLUTE data type you can simply update the
RRD with the number 5 and the end time of your monitoring period.
RRDtool will then record the number of messages per second. If at
some later stage you want to know the number of messages
transported in a day, you can get the average messages per second
from RRDtool for the day in question and multiply this number with
the number of seconds in a day. Because all math is run with
Doubles, the precision should be acceptable.

It's always a Rate
RRDtool stores rates in amount/second for COUNTER, DERIVE and
ABSOLUTE data. When you plot the data, you will get on the y axis
amount/second which you might be tempted to convert to an absolute
amount by multiplying by the delta-time between the points. RRDtool
plots continuous data, and as such is not appropriate for plotting
absolute amounts as for example ``total bytes'' sent and received in a
router. What you probably want is plot rates that you can scale to
bytes/hour, for example, or plot absolute amounts with another tool
that draws bar-plots, where the delta-time is clear on the plot for
each point (such that when you read the graph you see for example
GB on the y axis, days on the x axis and one bar for each day).

Example 1

rrdtool create temperature.rrd --step 300 \
DS:temp:GAUGE:600:-273:5000 \
RRA:AVERAGE:0.5:1:1200 \
RRA:MIN:0.5:12:2400 \
RRA:MAX:0.5:12:2400 \
RRA:AVERAGE:0.5:12:2400

This sets up an RRD called temperature.rrd which accepts one temperature
value every 300 seconds. If no new data is supplied for more than 600
seconds, the temperature becomes *UNKNOWN*. The minimum
acceptable value is -273 and the maximum is 5'000.

A few archive areas are also defined. The first stores the temperatures
supplied for 100 hours (1'200 * 300 seconds = 100 hours). The second RRA
stores the minimum temperature recorded over every hour (12 * 300

Page 159

seconds = 1 hour), for 100 days (2'400 hours). The third and the fourth
RRA's do the same for the maximum and average temperature,
respectively.

Example 2

rrdtool create monitor.rrd --step 300 \
DS:ifOutOctets:COUNTER:1800:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:1440:0.1:0.0035:288

This example is a monitor of a router interface. The first RRA tracks the
traffic flow in octets; the second RRA generates the specialized functions
RRAs for aberrant behavior detection. Note that the rra-num argument of
HWPREDICT is missing, so the other RRAs will implicitly be created with
default parameter values. In this example, the forecasting algorithm
baseline adapts quickly; in fact the most recent one hour of observations
(each at 5 minute intervals) accounts for 75% of the baseline prediction.
The linear trend forecast adapts much more slowly. Observations made
during the last day (at 288 observations per day) account for only 65% of
the predicted linear trend. Note: these computations rely on an exponential
smoothing formula described in the LISA 2000 paper.

The seasonal cycle is one day (288 data points at 300 second intervals),
and the seasonal adaption parameter will be set to 0.1. The RRD file will
store 5 days (1'440 data points) of forecasts and deviation predictions
before wrap around. The file will store 1 day (a seasonal cycle) of 0-1
indicators in the FAILURES RRA.

The same RRD file and RRAs are created with the following command,
which explicitly creates all specialized function RRAs.

rrdtool create monitor.rrd --step 300 \
DS:ifOutOctets:COUNTER:1800:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:1440:0.1:0.0035:288:3 \
RRA:SEASONAL:288:0.1:2 \
RRA:DEVPREDICT:1440:5 \
RRA:DEVSEASONAL:288:0.1:2 \
RRA:FAILURES:288:7:9:5

Of course, explicit creation need not replicate implicit create, a number of

Page 160

arguments could be changed.

Example 3

rrdtool create proxy.rrd --step 300 \
DS:Total:DERIVE:1800:0:U \
DS:Duration:DERIVE:1800:0:U \
DS:AvgReqDur:COMPUTE:Duration,Requests,0,EQ,1,Requests,IF,/ \
RRA:AVERAGE:0.5:1:2016

This example is monitoring the average request duration during each 300
sec interval for requests processed by a web proxy during the interval. In
this case, the proxy exposes two counters, the number of requests
processed since boot and the total cumulative duration of all processed
requests. Clearly these counters both have some rollover point, but using
the DERIVE data source also handles the reset that occurs when the web
proxy is stopped and restarted.
In the RRD, the first data source stores the requests per second rate during
the interval. The second data source stores the total duration of all
requests processed during the interval divided by 300. The COMPUTE data
source divides each PDP of the AccumDuration by the corresponding PDP
of TotalRequests and stores the average request duration. The remainder
of the RPN expression handles the divide by zero case.

rrdupdate

Usage
rrdtool {update | updatev} filename [--template|-t ds-name[:ds-
name]...] N|timestamp:value[:value...] at-timestamp@value[:value...]
[timestamp:value[:value...] ...]

Options
The update function feeds new data values into an RRD. The data is time
aligned (interpolated) according to the properties of the RRD to which the
data is written.

updatev
This alternate version of update takes the same arguments and
performs the same function. The v stands for verbose, which
describes the output returned. updatev returns a list of any and all
consolidated data points (CDPs) written to disk as a result of the

Page 161

invocation of update. The values are indexed by timestamp (time_t),
RRA (consolidation function and PDPs per CDP), and data source
(name). Note that depending on the arguments of the current and
previous call to update, the list may have no entries or a large
number of entries.

filename
The name of the RRD you want to update.

--template|-t ds-name[:ds-name]...
By default, the update function expects its data input in the order the
data sources are defined in the RRD, excluding any COMPUTE data
sources (i.e. if the third data source DST is COMPUTE, the third
input value will be mapped to the fourth data source in the RRD and
so on). This is not very error resistant, as you might be sending the
wrong data into an RRD.

The template switch allows you to specify which data sources you are
going to update and in which order. If the data sources specified in
the template are not available in the RRD file, the update process will
abort with an error message.

While it appears possible with the template switch to update data
sources asynchronously, RRDtool implicitly assigns non-COMPUTE
data sources missing from the template the *UNKNOWN* value.

Do not specify a value for a COMPUTE DST in the update function. If
this is done accidentally (and this can only be done using the
template switch), RRDtool will ignore the value specified for the
COMPUTE DST.

N|timestamp:value[:value...]
The data used for updating the RRD was acquired at a certain time.
This time can either be defined in seconds since 1970-01-01 or by
using the letter 'N', in which case the update time is set to be the
current time. Negative time values are subtracted from the current
time. An AT_STYLE TIME SPECIFICATION may also be used by
delimiting the end of the time specification with the '@' character
instead of a ':'. Getting the timing right to the second is especially
important when you are working with data-sources of type
COUNTER, DERIVE or ABSOLUTE.

The remaining elements of the argument are DS updates. The order
of this list is the same as the order the data sources were defined in
the RRA. If there is no data for a certain data-source, the letter U

Page 162

(e.g., N:0.1:U:1) can be specified.

The format of the value acquired from the data source is dependent
on the data source type chosen. Normally it will be numeric, but the
data acquisition modules may impose their very own parsing of this
parameter as long as the colon (:) remains the data source value
separator.

Example

rrdtool update demo1.rrd N:3.44:3.15:U:23

Update the database file demo1.rrd with 3 known and one *UNKNOWN*
value. Use the current time as the update time.

rrdtool update demo2.rrd 887457267:U 887457521:22
887457903:2.7

Update the database file demo2.rrd which expects data from a single data-
source, three times. First with an *UNKNOWN* value then with two
regular readings. The update interval seems to be around 300 seconds.

rrdgraph

Usage
rrdtool graph filename [option...] [data_definition...] [data_calculation...]
[variable_definition...] [graph_element ...] [print_element...]

Description
The graph function of RRDtool is used to present the data from an RRD to a
human viewer. Its main purpose is to create a nice graphical
representation, but it can also generate a numerical report.

Overview
rrdtool graph needs data to work with, so you must use one or more
data_definition statements to collect this data. You are not limited to one
database, it's perfectly legal to collect data from two or more databases
(one per statement, though).

If you want to display averages, maxima, percentiles, etcetera it is best to

Page 163

collect them now using the variable_definition statement. Currently this
makes no difference, but in a future version of rrdtool you may want to
collect these values before consolidation.

The data fetched from the RRA is then consolidated so that there is exactly
one datapoint per pixel in the graph. If you do not take care yourself,
RRDtool will expand the range slightly if necessary. Note, in that case the
first and/or last pixel may very well become unknown!

Sometimes data is not exactly in the format you would like to display it. For
instance, you might be collecting bytes per second, but want to display bits
per second. This is what the data_calculation command is designed for.
After consolidating the data, a copy is made and this copy is modified using
a rather powerful RPN command set.

When you are done fetching and processing the data, it is time to graph it
(or print it). This ends the rrdtool graph sequence.

Options

filename
The name and path of the graph to generate. It is recommended to
end this in .png, .svg or .eps, but RRDtool does not enforce this.

filename can be '-' to send the image to stdout. In this case, no other
output is generated.

Time range
[-s|--start time] [-e|--end time] [-S|--step seconds]

The start and end of the time series you would like to display, and
which RRA the data should come from. Defaults are: 1 day ago until
now, with the best possible resolution. Start and end can be specified
in several formats. By default, rrdtool graph calculates the width of
one pixel in the time domain and tries to get data from an RRA with
that resolution. With the step option you can alter this behaviour. If
you want rrdtool graph to get data at a one-hour resolution from the
RRD, set step to 3'600. Note: a step smaller than one pixel will
silently be ignored.

Labels
[-t|--title string] [-v|--vertical-label string]

A horizontal string at the top of the graph and/or a vertically placed
string at the left hand side of the graph.

Page 164

Size
[-w|--width pixels] [-h|--height pixels] [-j|--only-graph]

The width and height of the canvas (the part of the graph with the
actual data and such). This defaults to 400 pixels by 100 pixels.

If you specify the --only-graph option and set the height < 32 pixels
you will get a tiny graph image (thumbnail) to use as an icon for use
in an overview, for example. All labeling will be stripped off the
graph.

Limits
[-u|--upper-limit value] [-l|--lower-limit value] [-r|--rigid]

By default the graph will be autoscaling so that it will adjust the y-
axis to the range of the data. You can change this behaviour by
explicitly setting the limits. The displayed y-axis will then range at
least from lower-limit to upper-limit. Autoscaling will still permit
those boundaries to be stretched unless the rigid option is set.

[-A|--alt-autoscale]
Sometimes the default algorithm for selecting the y-axis scale is not
satisfactory. Normally the scale is selected from a predefined set of
ranges and this fails miserably when you need to graph something
like 260 + 0.001 * sin(x). This option calculates the minimum and
maximum y-axis from the actual minimum and maximum data values.
Our example would display slightly less than 260-0.001 to slightly
more than 260+0.001 (this feature was contributed by Sasha
Mikheev).

[-M|--alt-autoscale-max]
Where --alt-autoscale will modify both the absolute maximum AND
minimum values, this option will only affect the maximum value. The
minimum value, if not defined on the command line, will be 0. This
option can be useful when graphing router traffic when the WAN line
uses compression, and thus the throughput may be higher than the
WAN line speed.

[-N|--no-gridfit]
In order to avoid anti-aliasing effects gridlines are placed on integer
pixel values. This is by default done by extending the scale so that
gridlines happens to be spaced using an integer number of pixels and
also start on an integer pixel value. This might extend the scale too
much for some logarithmic scales and for linear scales where --alt-
autoscale is needed. Using --no-gridfit disables modification of the

Page 165

scale.

Grid
X-Axis

[-x|--x-grid GTM:GST:MTM:MST:LTM:LST:LPR:LFM]
[-x|--x-grid none]

The x-axis label is quite complex to configure. If you don't have
very special needs it is probably best to rely on the
autoconfiguration to get this right. You can specify the string
none to suppress the grid and labels altogether.

The grid is defined by specifying a certain amount of time in the
?TM positions. You can choose from SECOND, MINUTE, HOUR, DAY,
WEEK, MONTH or YEAR. Then you define how many of these should
pass between each line or label. This pair (?TM:?ST) needs to
be specified for the base grid (G??), the major grid (M??) and
the labels (L??). For the labels you also must define a precision
in LPR and a strftime format string in LFM. LPR defines where
each label will be placed. If it is zero, the label will be placed
right under the corresponding line (useful for hours, dates
etcetera). If you specify a number of seconds here the label is
centered on this interval (useful for Monday, January etcetera).

--x-grid MINUTE:10:HOUR:1:HOUR:4:0:%X

This places grid lines every 10 minutes, major grid lines every
hour, and labels every 4 hours. The labels are placed under the
major grid lines as they specify exactly that time.

--x-grid HOUR:8:DAY:1:DAY:1:0:%A

This places grid lines every 8 hours, major grid lines and labels
each day. The labels are placed exactly between two major grid
lines as they specify the complete day and not just midnight.

Y-Axis

[-y|--y-grid grid step:label factor]
[-y|--y-grid none]

Y-axis grid lines appear at each grid step interval. Labels are
placed every label factor lines. You can specify -y none to

Page 166

suppress the grid and labels altogether. The default for this
option is to automatically select sensible values.

[-Y|--alt-y-grid]
Place the Y grid dynamically based on the graph's Y range. The
algorithm ensures that you always have a grid, that there are
enough but not too many grid lines, and that the grid is metric.
That is the grid lines are placed every 1, 2, 5 or 10 units. This
parameter will also ensure that you get enough decimals
displayed even if your graph goes from 69.998 to 70.001.
(contributed by Sasha Mikheev).

[-o|--logarithmic]
Logarithmic y-axis scaling.

[-X|--units-exponent value]
This sets the 10**exponent scaling of the y-axis values.
Normally, values will be scaled to the appropriate units (k, M,
etc.). However, you may wish to display units always in k (Kilo,
10e3) even if the data is in the M (Mega, 10e6) range, for
instance. Value should be an integer which is a multiple of 3
between -18 and 18 inclusively. It is the exponent on the units
you wish to use. For example, use 3 to display the y-axis values
in k (Kilo, 10e3, thousands), use -6 to display the y-axis values
in u (Micro, 10e-6, millionths). Use a value of 0 to prevent any
scaling of the y-axis values.

This option is very effective at confusing the heck out of the
default rrdtool autoscaler and grid painter. If rrdtool detects
that it is not successful in labeling the graph under the given
circumstances, it will switch to the more robust --alt-y-grid
mode.

[-L|--units-length value]
How many digits should rrdtool assume the y-axis labels to be?
You may have to use this option to make enough space once
you start fideling with the y-axis labeling.

Miscellaneous

[-z|--lazy]
Only generate the graph if the current graph is out of date or
not existent.

Page 167

[-f|--imginfo printfstr]
After the image has been created, the graph function uses
printf together with this format string to create output similar
to the PRINT function, only that the printf function is supplied
with the parameters filename, xsize and ysize. In order to
generate an IMG tag suitable for including the graph into a web
page, the command line would look like this:

--imginfo '<IMG SRC="/img/%s" WIDTH="%lu" \
HEIGHT="%lu" ALT="Demo">'

[-c|--color COLORTAG#rrggbb[aa]]
Override the default colors for the standard elements of the
graph. The COLORTAG is one of BACK background, CANVAS
for the background of the actual graph, SHADEA for the left
and top border, SHADEB for the right and bottom border,
GRID, MGRID for the major grid, FONT for the color of the
font, AXIS for the axis of the graph, FRAME for the line around
the color spots and finally ARROW for the arrow head pointing
up and forward. Each color is composed out of three
hexadecimal numbers specifying its rgb color component (00 is
off, FF is maximum) of red, green and blue. Optionally you may
add another hexadecimal number specifying the transparency
(FF is solid). You may set this option several times to alter
multiple defaults.

A green arrow is made by: --color ARROW#00FF00

[--zoom factor]
Zoom the graphics by the given amount. The factor must be > 0

[-n|--font FONTTAG:size:[font]]
This lets you customize which font to use for the various text
elements on the RRD graphs. DEFAULT sets the default value
for all elements, TITLE for the title, AXIS for the axis labels,
UNIT for the vertical unit label, LEGEND for the graph legend.

Use Times for the title:
--font TITLE:13:/usr/lib/fonts/times.ttf

If you do not give a font string you can modify just the sice of
the default font: --font TITLE:13:.

If you specify the size 0 then you can modify just the font

Page 168

without touching the size. This is especially usefull for altering
the default font without resetting the default fontsizes: --font
DEFAULT:0:/usr/lib/fonts/times.ttf.

RRDtool comes with a preset default font. You can set the
environment variable RRD_DEFAULT_FONT if you want to
change this.

Truetype fonts are only supported for PNG output. See below.

[-R|--font-render-mode {normal,light,mono}]
This lets you customize the strength of the font smoothing, or
disable it entirely using mono. By default, normal font
smoothing is used.

[-B|--font-smoothing-threshold size]
This specifies the largest font size which will be rendered
bitmapped, that is, without any font smoothing. By default, no
text is rendered bitmapped.

[-E|--slope-mode]
RRDtool graphs are composed of stair case curves by default.
This is in line with the way RRDtool calculates its data. Some
people favor a more 'organic' look for their graphs even though
it is not all that true.

[-a|--imgformat PNG|SVG|EPS|PDF]
Image format for the generated graph. For the vector formats
you can choose among the standard Postscript fonts Courier-
Bold, Courier-BoldOblique, Courier-Oblique, Courier, Helvetica-
Bold, Helvetica-BoldOblique, Helvetica-Oblique, Helvetica,
Symbol, Times-Bold, Times-BoldItalic, Times-Italic, Times-
Roman, and ZapfDingbats.

[-i|--interlaced]
If images are interlaced they become visible on browsers more
quickly.

[-g|--no-legend]
Suppress generation of the legend; only render the graph.

[-F|--force-rules-legend]
Force the generation of HRULE and VRULE legends even if
those HRULE or VRULE will not be drawn because out of graph

Page 169

boundaries (mimics behaviour of pre 1.0.42 versions).

[-T|--tabwidth value]
By default the tab-width is 40 pixels, use this option to change
it.

[-b|--base value]
If you are graphing memory (and NOT network traffic) this
switch should be set to 1024 so that one Kb is 1024 byte. For
traffic measurement, 1 kb/s is 1000 b/s.

Data and variables
DEF:vname=rrdfile:ds-name:CF[:step=step][:start=time][:end=time]

CDEF:vname=RPN expression

VDEF:vname=RPN expression

You need at least one DEF statement to generate anything. The other
statements are useful but optional.

If you have ever used a traditional HP calculator you already know
RPN. The idea behind RPN is that you have a stack and push your
data onto this stack. Whenever you execute an operation, it takes as
many elements from the stack as needed. Pushing is done implicitly,
so whenever you specify a number or a variable, it gets pushed onto
the stack automatically.

At the end of the calculation there should be one and only one value
left on the stack. This is the outcome of the function and this is what
is put into the vname. For CDEF instructions, the stack is processed
for each data point on the graph. VDEF instructions work on an
entire data set in one run. Note, that currently VDEF instructions
only support a limited list of functions.

Example: VDEF:maximum=mydata,MAXIMUM

This will set variable ``maximum'' which you now can use in the rest
of your RRD script.

Example: CDEF:mydatabits=mydata,8,*

This means: push variable mydata, push the number 8, execute the
operator *. The operator needs two elements and uses those to return
one value. This value is then stored in mydatabits. As you may have

Page 170

guessed, this instruction means nothing more than mydatabits =
mydata * 8. The real power of RPN lies in the fact that it is always
clear in which order to process the input. For expressions like a = b
+ 3 * 5 you need to multiply 3 with 5 first before you add b to get a.
However, with parentheses you could change this order: a = (b + 3) *
5. In RPN, you would do a = b, 3, +, 5, * without the need for
parentheses.

Boolean operators

LT, LE, GT, GE, EQ, NE

Pop two elements from the stack, compare them for the
selected condition and return 1 for true or 0 for false.
Comparing an unknown or an infinite value will always result in
0 (false).

UN, ISINF

Pop one element from the stack, compare this to unknown
respectively to positive or negative infinity. Returns 1 for true
or 0 for false.

IF

Pops three elements from the stack. If the element popped last
is 0 (false), the value popped first is pushed back onto the
stack, otherwise the value popped second is pushed back. This
does, indeed, mean that any value other than 0 is considered to
be true.

Example: A,B,C,IF

Should be read as if (A) then (B) else (C)

Comparing values

MIN, MAX

Pops two elements from the stack and returns the smaller or

Page 171

larger, respectively. Note that infinite is larger than anything
else. If one of the input numbers is unknown then the result of
the operation will be unknown too.

LIMIT

Pops two elements from the stack and uses them to define a
range. Then it pops another element and if it falls inside the
range, it is pushed back. If not, an unknown is pushed.

The range defined includes the two boundaries (so: a number
equal to one of the boundaries will be pushed back). If any of
the three numbers involved is either unknown or infinite this
function will always return an unknown

Example: CDEF:a=alpha,0,100,LIMIT

This will return unknown if alpha is lower than 0 or if it is
higher than 100.

Arithmetics

+, -, *, /, %

Add, subtract, multiply, divide, modulo

SIN, COS, LOG, EXP, SQRT

Sine and cosine (input in radians), log and exp (natural
logarithm), square root.

ATAN

Arctangent (output in radians).

ATAN2

Arctangent of y,x components (output in radians). This pops one
element from the stack, the x (cosine) component, and then a

Page 172

second, which is the y (sine) component. It then pushes the
arctangent of their ratio, resolving the ambiguity between
quadrants.

Example: CDEF:angle=Y,X,ATAN2,RAD2DEG

Will convert X,Y components into an angle in degrees.

FLOOR, CEIL

Round down or up to the nearest integer.

DEG2RAD, RAD2DEG

Convert angle in degrees to radians, or radians to degrees.

Set Operations

SORT, REV

Pop one element from the stack. This is the count of items to be
sorted (or reversed). The top count of the remaining elements
are then sorted (or reversed) in place on the stack.

Example:
CDEF:x=v1,v2,v3,v4,v5,v6,6,SORT,POP,5,REV,POP,+,+,+,4,/

Will compute the average of the values v1 to v6 after removing
the smallest and largest.

TREND

Create a ``sliding window'' average of another data series.

Usage: CDEF:smoothed=x,1800,TREND

This will create a half-hour (1800 second) sliding window
average of x.

Special values

Page 173

UNKN

Pushes an unknown value on the stack

INF, NEGINF

Pushes a positive or negative infinite value on the stack. When
such a value is graphed, it appears at the top or bottom of the
graph, no matter what the actual value on the y-axis is.

PREV

Pushes an unknown value if this is the first value of a data set
or otherwise the result of this CDEF at the previous time step.
This allows you to do calculations across the data. This function
cannot be used in VDEF instructions.

PREV(vname)

Pushes an unknown value if this is the first value of a data set
or otherwise the result of the vname variable at the previous
time step. This allows you to do calculations across the data.
This function cannot be used in VDEF instructions.

COUNT

Pushes the number 1 if this is the first value of the data set, the
number 2 if it is the second, and so on. This special value allows
you to make calculations based on the position of the value
within the data set. This function cannot be used in VDEF
instructions.

Time

Time inside RRDtool is measured in seconds since the epoch.
The epoch is defined to be Thu Jan 1 00:00:00 UTC 1970.

NOW

Page 174

Pushes the current time on the stack.

TIME

Pushes the time the currently processed value was taken at
onto the stack.

LTIME

Takes the time as defined by TIME, applies the time zone offset
valid at that time including daylight saving time if your OS
supports it, and pushes the result on the stack. There is an
elaborate example in the examples section below on how to use
this.

Processing the stack directly

DUP, POP, EXC

Duplicate the top element, remove the top element, exchange
the two top elements.

Variables

These operators work only on VDEF statements. Note that
currently ONLY these work for VDEF.

MAXIMUM, MINIMUM, AVERAGE

Return the corresponding value, MAXIMUM and MINIMUM
also return the first occurrence of that value in the time
component.

Example: VDEF:avg=mydata,AVERAGE

LAST, FIRST

Return the last/first value including its time. The time for FIRST

Page 175

is actually the start of the corresponding interval, whereas
LAST returns the end of the corresponding interval.

Example: VDEF:first=mydata,FIRST

TOTAL

Returns the rate from each defined time slot multiplied with the
step size. This can, for instance, return total bytes transfered
when you have logged bytes per second. The time component
returns the number of seconds.

Example: VDEF:total=mydata,TOTAL

PERCENT

This should follow a DEF or CDEF vname. The vname is
popped, another number is popped which is a certain
percentage (0..100). The data set is then sorted and the value
returned is chosen such that percentage percent of the values
is lower or equal than the result. Unknown values are
considered lower than any finite number for this purpose so if
this operator returns an unknown you have quite a lot of them
in your data. Infinite numbers are lesser, or more, than the
finite numbers and are always more than the Unknown
numbers. (NaN < -INF < finite values < INF)

Example: VDEF:perc95=mydata,95,PERCENT

LSLSLOPE, LSLINT, LSLCORREL

Return the parameters for a Least Squares Line (y = mx +b)
which approximate the provided dataset. LSLSLOPE is the
slope (m) of the line related to the COUNT position of the data.
LSLINT is the y-intercept (b), which happens also to be the first
data point on the graph. LSLCORREL is the Correlation
Coefficient (also know as Pearson's Product Moment
Correlation Coefficient). It will range from 0 to +/-1 and
represents the quality of fit for the approximation.

Example: VDEF:slope=mydata,LSLSLOPE

Page 176

Graph and print elements
You need at least one graph element to generate an image and/or at
least one print statement to generate a report.

rrddump

Usage

rrdtool dump filename.rrd > filename.xml
or
rrdtool dump filename.rrd filename.xml

Description
The dump function writes the contents of an RRD in human readable (?)
XML format to a file or to stdout. This format can be read by rrdrestore.
Together they allow you to transfer your files from one computer
architecture to another as well to manipulate the contents of an RRD file in
a somewhat more convenient manner.

Options

filename.rrd
The name of the RRD you want to dump.

filename.xml
The (optional) filename that you want to write the XML output to. If
not specified, the XML will be printed to stdout.

Examples
To transfer an RRD between architectures, follow these steps:

• On the same system where the RRD was created, use rrdtool dump
to export the data to XML format.

• Transfer the XML dump to the target system.

• Run rrdtool restore to create a new RRD from the XML dump. See
rrdrestore for details.

Page 177

rrdrestore

Usage
rrdtool restore filename.xml filename.rrd [--range-check|-r]

Description
The restore function reads the XML representation of an RRD and
converts it to the native RRD format.

Options
filename.xml

The name of the XML file you want to restore.

filename.rrd
The name of the RRD to restore.

--range-check|-r
Make sure the values in the RRAs do not exceed the limits defined for
the various data sources.

--force-overwrite|-f
Allows RRDtool to overwrite the destination RRD.

rrdfetch

Usage
rrdtool fetch filename CF [--resolution|-r resolution] [--start|-s start] [--
end|-e end]

Description
The fetch function is normally used internally by the graph function to get
data from RRDs. fetch will analyze the RRD and try to retrieve the data in
the resolution requested. The data fetched is printed to stdout.
UNKNOWN data is often represented by the string ``NaN'' depending on
your OS's printf function.

Options

filename
The name of the RRD you want to fetch the data from.

Page 178

CF
The consolidation function that is applied to the data you want to
fetch (AVERAGE,MIN,MAX,LAST)

--resolution|-r resolution (default is the highest resolution)
The interval you want the values to have (seconds per value).
rrdfetch will try to match your request, but it will return data even if
no absolute match is possible. NB. See note below.

--start|-s start (default end-1day)
Start of the time series. A time in seconds since epoch (1970-01-01) is
required. Negative numbers are relative to the current time. By
default, one day worth of data will be fetched.

--end|-e end (default now)
the end of the time series in seconds since epoch.

RESOLUTION INTERVAL
In order to get RRDtool to fetch anything other than the finest resolution
RRA both the start and end time must be specified on boundaries that are
multiples of the desired resolution. Consider the following example:

rrdtool create subdata.rrd -s 10 DS:ds0:GAUGE:300:0:U \
RRA:AVERAGE:0.5:30:3600 \
RRA:AVERAGE:0.5:90:1200 \
RRA:AVERAGE:0.5:360:1200 \
RRA:MAX:0.5:360:1200 \
RRA:AVERAGE:0.5:8640:600 \
RRA:MAX:0.5:8640:600

This RRD collects data every 10 seconds and stores its averages over 5
minutes, 15 minutes, 1 hour, and 1 day, as well as the maxima for 1 hour
and 1 day.

Consider now that you want to fetch the 15 minute average data for the
last hour. You might try

rrdtool fetch subdata.rrd AVERAGE -r 900 -s -1h

However, this will almost always result in a time series that is NOT in the
15 minute RRA. Therefore, the highest resolution RRA, i.e. 5 minute
averages, will be chosen which in this case is not what you want.

Page 179

Hence, make sure that
1. both start and end time are a multiple of 900
2. both start and end time are within the desired RRA

So, if time now is called ``t'', do

end time == int(t/900)*900,
start time == end time - 1hour,
resolution == 900.

Using the bash shell, this could look be:

TIME=$(date +%s)
RRDRES=900
rrdtool fetch subdata.rrd AVERAGE -r $RRDRES \

-e $(echo $(($TIME/$RRDRES*$RRDRES))) -s e-1h

Or in Perl:

perl -e '$ctime = time; $rrdres = 900; \
 system "rrdtool fetch subdata.rrd AVERAGE \
 -r $rrdres -e @{[int($ctime/$rrdres)*$rrdres]} -s e-
1h"'

AT-STYLE TIME SPECIFICATION
Apart from the traditional Seconds since epoch, RRDtool does also
understand at-style time specification. The specification is called ``at-style''
after the Unix command at(1) that has moderately complex ways to
specify time to run your job at a certain date and time. The at-style
specification consists of two parts: the TIME REFERENCE specification
and the TIME OFFSET specification.

TIME REFERENCE SPECIFICATION
The time reference specification is used, well, to establish a reference
moment in time (to which the time offset is then applied to). When present,
it should come first, when omitted, it defaults to now. On its own part, time
reference consists of a time-of-day reference (which should come first, if
present) and a day reference.

The time-of-day can be specified as HH:MM, HH.MM, or just HH. You can
suffix it with am or pm or use 24-hours clock. Some special times of day are

Page 180

understood as well, including midnight (00:00), noon (12:00) and British
teatime (16:00).

The day can be specified as month-name day-of-the-month and optional a 2-
or 4-digit year number (e.g. March 8 1999). Alternatively, you can use day-
of-week-name (e.g. Monday), or one of the words: yesterday, today,
tomorrow. You can also specify the day as a full date in several numerical
formats, including MM/DD/[YY]YY, DD.MM.[YY]YY, or YYYYMMDD.

NOTE1: this is different from the original at(1) behavior, where a single-
number date is interpreted as MMDD[YY]YY.

NOTE2: if you specify the day in this way, the time-of-day is REQUIRED as
well.

Finally, you can use the words now, start, or end as your time reference.
Now refers to the current moment (and is also the default time reference).
Start (end) can be used to specify a time relative to the start (end) time for
those tools that use these categories.

Month and day of the week names can be used in their naturally
abbreviated form (e.g., Dec for December, Sun for Sunday, etc.). The words
now, start, end can be abbreviated as n, s, e.

TIME OFFSET SPECIFICATION
The time offset specification is used to add/subtract certain time intervals
to/from the time reference moment. It consists of a sign (+ or -) and an
amount. The following time units can be used to specify the amount: years,
months, weeks, days, hours, minutes, or seconds. These units can be used
in singular or plural form, and abbreviated naturally or to a single letter
(e.g. +3days, -1wk, -3y). Several time units can be combined (e.g.,
-5mon1w2d) or concatenated (e.g., -5h45min = -5h-45min = -6h+15min =
-7h+1h30m-15min, etc.)

NOTE3: If you specify time offset in days, weeks, months, or years, you will
end with the time offset that may vary depending on your time reference,
because all those time units have no single well defined time interval value
(1 year contains either 365 or 366 days, 1 month is 28 to 31 days long, and
even 1 day may be not equal to 24 hours twice a year, when DST-related
clock adjustments take place). To cope with this, when you use days,
weeks, months, or years as your time offset units your time reference date
is adjusted accordingly without too much further effort to ensure anything
about it (in the hope that mktime(3) will take care of this later). This may
lead to some surprising (or even invalid!) results, e.g. 'May 31 -1month' =

Page 181

'Apr 31' (meaningless) = 'May 1' (after mktime(3) normalization); in the
EET timezone '3:30am Mar 29 1999 -1 day' yields '3:30am Mar 28 1999'
(Sunday) which is an invalid time/date combination (because of 3am ->
4am DST forward clock adjustment, see the below example).

In contrast, hours, minutes, and seconds are well defined time intervals,
and these are guaranteed to always produce time offsets exactly as
specified (e.g. for EET timezone, '8:00 Mar 27 1999 +2 days' = '8:00 Mar
29 1999', but since there is 1-hour DST forward clock adjustment that
occurs around 3:00 Mar 28 1999, the actual time interval between 8:00
Mar 27 1999 and 8:00 Mar 29 1999 equals 47 hours; on the other hand,
'8:00 Mar 27 1999 +48 hours' = '9:00 Mar 29 1999', as expected)

NOTE4: The single-letter abbreviation for both months and minutes is m.
To disambiguate them, the parser tries to read your mind :) by applying the
following two heuristics:

1. If m is used in context of (i.e. right after the) years, months, weeks,
or days it is assumed to mean months, while in the context of hours,
minutes, and seconds it means minutes. (e.g., in -1y6m or +3w1m m
is interpreted as months, while in -3h20m or +5s2m m the parser
decides for minutes).

2. Out of context (i.e. right after the + or - sign) the meaning of m is
guessed from the number it directly follows. Currently, if the
number's absolute value is below 25 it is assumed that m means
months, otherwise it is treated as minutes. (e.g., -25m == -25
minutes, while +24m == +24 months)

Final NOTES: Time specification is case-insensitive. Whitespace can be
inserted freely or omitted altogether. There are, however, cases when
whitespace is required (e.g., 'midnight Thu'). In this case you should either
quote the whole phrase to prevent it from being taken apart by your shell
or use '_' (underscore) or ',' (comma) which also count as whitespace (e.g.,
midnight_Thu or midnight,Thu).

TIME SPECIFICATION EXAMPLES

Oct 12
October 12 this year

-1month or -1m
current time of day, only a month before (may yield surprises, see

Page 182

NOTE3 above).

noon yesterday -3hours
yesterday morning; can also be specified as 9am-1day.

23:59 31.12.1999
1 minute to the year 2000.

12/31/99 11:59pm
1 minute to the year 2000 for imperialists.

12am 01/01/01
start of the new millennium

end-3weeks or e-3w
3 weeks before end time (may be used as start time specification).

start+6hours or s+6h
6 hours after start time (may be used as end time specification).

931225537
18:45 July 5th, 1999 (yes, seconds since 1970 are valid as well).

19970703 12:45
12:45 July 3th, 1997 (my favorite, and its even got an ISO number
(8601)).

rrdtune

Usage
rrdtool tune filename [--heartbeat|-h ds-name:heartbeat] [--minimum|-i
ds-name:min] [--maximum|-a ds-name:max] [--data-source-type|-d ds-
name:DST] [--data-source-rename|-r old-name:new-name] [--deltapos
scale-value] [--deltaneg scale-value] [--failure-threshold failure-
threshold] [--window-length window-length] [--alpha adaption-
parameter] [--beta adaption-parameter] [--gamma adaption-parameter] [--
gamma-deviation adaption-parameter] [--aberrant-reset ds-name]

Description
The tune option allows you to alter some of the basic configuration values
stored in the header area of a Round Robin Database (RRD).

Page 183

One application of the tune function is to relax the validation rules on an
RRD. This allows to fill a new RRD with data available in larger intervals
than what you would normally want to permit. Be very careful with tune
operations for COMPUTE data sources. Setting the min, max, and
heartbeat for a COMPUTE data source without changing the data source
type to a non-COMPUTE DST WILL corrupt the data source header in the
RRD.

A second application of the tune function is to set or alter parameters used
by the specialized function RRAs for aberrant behavior detection.

Options

filename
The name of the RRD you want to tune.

--heartbeat|-h ds-name:heartbeat
Modify the heartbeat of a data source. By setting this to a high value
the RRD will accept things like one value per day.

--minimum|-i ds-name:min
Alter the minimum value acceptable as input from the data source.
Setting min to 'U' will disable this limit.

--maximum|-a ds-name:max
Alter the maximum value acceptable as input from the data source.
Setting max to 'U' will disable this limit.

--data-source-type|-d ds-name:DST
Alter the type DST of a data source.

--data-source-rename|-r old-name:new-name
Rename a data source.

--deltapos scale-value
Alter the deviation scaling factor for the upper bound of the
confidence band used internally to calculate violations for the
FAILURES RRA. The default value is 2. Note that this parameter is
not related to graphing confidence bounds which must be specified
as a CDEF argument to generate a graph with confidence bounds.
The graph scale factor need not to agree with the value used
internally by the FAILURES RRA.

--deltaneg scale-value

Page 184

Alter the deviation scaling factor for the lower bound of the
confidence band used internally to calculate violations for the
FAILURES RRA. The default value is 2. As with --deltapos, this
argument is unrelated to the scale factor chosen when graphing
confidence bounds.

--failure-threshold failure-threshold
Alter the number of confidence bound violations that constitute a
failure for purposes of the FAILURES RRA. This must be an integer
less than or equal to the window length of the FAILURES RRA. This
restriction is not verified by the tune option, so one can reset failure-
threshold and window-length simultaneously. Setting this option will
reset the count of violations to 0.

--window-length window-length
Alter the number of time points in the temporal window for
determining failures. This must be an integer greater than or equal to
the window length of the FAILURES RRA and less than or equal to
28. Setting this option will reset the count of violations to 0.

--alpha adaption-parameter
Alter the intercept adaptation parameter for the Holt-Winters
forecasting algorithm. This parameter must be between 0 and 1.

--beta adaption-parameter
Alter the slope adaptation parameter for the Holt-Winters forecasting
algorithm. This parameter must be between 0 and 1.

--gamma adaption-parameter
Alter the seasonal coefficient adaptation parameter for the
SEASONAL RRA. This parameter must be between 0 and 1.

--gamma-deviation adaption-parameter
Alter the seasonal deviation adaptation parameter for the
DEVSEASONAL RRA. This parameter must be between 0 and 1.

--aberrant-reset ds-name
This option causes the aberrant behavior detection algorithm to reset
for the specified data source; that is, forget all it is has learnt so far.
Specifically, for the HWPREDICT RRA, it sets the intercept and slope
coefficients to unknown. For the SEASONAL RRA, it sets all seasonal
coefficients to unknown. For the DEVSEASONAL RRA, it sets all
seasonal deviation coefficients to unknown. For the FAILURES RRA,
it erases the violation history. Note that reset does not erase past

Page 185

predictions (the values of the HWPREDICT RRA), predicted
deviations (the values of the DEVPREDICT RRA), or failure history
(the values of the FAILURES RRA). This option will function even if
not all the listed RRAs are present.

Due to the implementation of this option, there is an indirect impact
on other data sources in the RRD. A smoothing algorithm is applied
to SEASONAL and DEVSEASONAL values on a periodic basis. During
bootstrap initialization this smoothing is deferred. For efficiency, the
implementation of smoothing is not data source specific. This means
that utilizing reset for one data source will delay running the
smoothing algorithm for all data sources in the file. This is unlikely to
have serious consequences, unless the data being collected for the
non-reset data sources is unusually volatile during the reinitialization
period of the reset data source.

Use of this tuning option is advised when the behavior of the data
source time series changes in a drastic and permanent manner.

Example 1

rrdtool tune data.rrd -h in:100000 -h out:100000 -h
through:100000

Set the minimum required heartbeat for data sources 'in', 'out' and
'through' to 10'000 seconds which is a little over one day in data.rrd. This
would allow to feed old data from MRTG-2.0 right into RRDtool without
generating *UNKNOWN* entries.

Example 2

rrdtool tune monitor.rrd --window-length 5 --failure-threshold 3

If the FAILURES RRA is implicitly created, the default window-length is 9
and the default failure-threshold is 7. This command now defines a failure
as 3 or more violations in a temporal window of 5 time points.

rrdlast

Usage

Page 186

rrdtool last filenam

Description
The last function returns the UNIX timestamp of the most recent update of
the RRD.

Options

filename
The name of the RRD that contains the data.

rrdresize

Usage
rrdtool resize filename rra-num GROW|SHRINK rows

Description
The resize function is used to modify the number of rows in an RRA.

Options
filename

The name of the RRD you want to alter.

rra-num
The RRA you want to alter. You can find the number using rrdtool
info.

GROW
Used if you want to add extra rows to an RRA. The extra rows will be
inserted as the rows that are oldest.

SHRINK
Used if you want to remove rows from an RRA. The rows that will be
removed are the oldest rows.

rows
The number of rows you want to add or remove.

Notes
The new .rrd file, with the modified RRAs, is written to the file resize.rrd
in the current directory. The original .rrd file is not modified.

Page 187

It is possible to abuse this tool and get strange results by first removing
some rows and then reinserting the same amount (effectively clearing them
to be Unknown). You may thus end up with unknown data in one RRA while
at the same timestamp this data is available in another RRA.

rrdcgi

Usage
#!/path/to/rrdcgi [--filter]

Description
rrdcgi is a sort of very limited script interpreter. Its purpose is to run as a
cgi-program and parse a web page template containing special <RRD::
tags. rrdcgi will interpret and act according to these tags. In the end it will
printout a web page including the necessary CGI headers.

rrdcgi parses the contents of the template in 3 steps. In each step it looks
only for a subset of tags. This allows nesting of tags.

The argument parser uses the same semantics as you are used from your
C-shell.
--filter

Assume that rrdcgi is run as a filter and not as a cgi.

Keywords

RRD::CV name
Inserts the CGI variable of the given name.

RRD::CV::QUOTE name
Inserts the CGI variable of the given name but quotes it, ready for
use as an argument in another RRD:: tag. So even when there are
spaces in the value of the CGI variable it will still be considered to be
one argument.

RRD::CV::PATH name
Inserts the CGI variable of the given name, quotes it and makes sure

Page 188

it starts neither with a '/' nor contains '..'. This is to make sure that no
problematic pathnames can be introduced through the CGI interface.

RRD::GETENV variable
Get the value of an environment variable.

<RRD::GETENV REMOTE_USER>
might give you the name of the remote user given you are using some
sort of access control on the directory.

RRD::GOODFOR seconds
Specify the number of seconds this page should remain valid. This
will prompt the rrdcgi to output a Last-Modified, an Expire and if the
number of seconds is negative a Refresh header.

RRD::INCLUDE filename
Include the contents of the specified file into the page returned from
the cgi.

RRD::SETENV variable value
If you want to present your graphs in another time zone than your
own, you could use

<RRD::SETENV TZ UTC>

to make sure everything is presented in Universal Time. Note that
the values permitted to TZ depend on your OS.

RRD::SETVAR variable value
Analog to SETENV but for local variables.

RRD::GETVAR variable
Analog to GETENV but for local variables.

RRD::TIME::LAST rrd-file strftime-format
This gets replaced by the last modification time of the selected RRD.
The time is strftime-formatted with the string specified in the second

Page 189

argument.

RRD::TIME::NOW strftime-format
This gets replaced by the current time of day. The time is strftime-
formatted with the string specified in the argument.
Note that if you return : (colons) from your strftime format you may
have to escape them using \ if the time is to be used as an argument
to a GRAPH command.

RRD::TIME::STRFTIME START|END start-spec end-spec strftime-
format

This gets replaced by a strftime-formatted time using the format
strftime-format on either start-spec or end-spec depending on
whether START or END is specified. Both start-spec and end-spec
must be supplied as either could be relative to the other. This is
intended to allow pretty titles on graphs with times that are easier for
non RRDtool folks to figure out than ``-2weeks''.
Note that again, if you return : (colon) from your strftime format, you
may have to escape them using \ if the time is to be used as an
argument to a GRAPH command.

RRD::GRAPH rrdgraph arguments
This tag creates the RRD graph defined by its argument and then is
replaced by an appropriate tag referring to the graph. The
--lazy option in RRD graph can be used to make sure that graphs are
only regenerated when they are out of date. The arguments to the
RRD::GRAPH tag work as described in the rrdgraph manual page.

Use the --lazy option in your RRD::GRAPH tags, to reduce the load on
your server. This option makes sure that graphs are only regenerated
when the old ones are out of date.

If you do not specify your own --imginfo format, the following will be
used:

Note that %s stands for the filename part of the graph generated, all
directories given in the PNG file argument will get dropped.

Page 190

RRD::PRINT number
If the preceding RRD::GRAPH tag contained and PRINT arguments,
then you can access their output with this tag. The number argument
refers to the number of the PRINT argument. This first PRINT has
number 0.

Example 1
The example below creates a web pages with a single RRD graph.

#!/usr/local/bin/rrdcgi
<HTML>
<HEAD><TITLE>RRDCGI Demo</TITLE></HEAD>
<BODY>
<H1>RRDCGI Example Page</H1>
<P>
<RRD::GRAPH demo.png --lazy --title="Temperatures"
 DEF:cel=demo.rrd:exhaust:AVERAGE
 LINE2:cel#00a000:"D. Celsius">

</P>
</BODY>
</HTML>

Example 2
This script is slightly more elaborate, it allows you to run it from a form
which sets RRD_NAME. RRD_NAME is then used to select which RRD you
want to use as source for your graph.

#!/usr/local/bin/rrdcgi
<HTML>
<HEAD><TITLE>RRDCGI Demo</TITLE></HEAD>
<BODY>
<H1>RRDCGI Example Page for <RRD::CV RRD_NAME></H1>
<H2>Selection</H2>
<FORM><INPUT NAME=RRD_NAME TYPE=RADIO
VALUE=roomA> Room A,
 <INPUT NAME=RRD_NAME TYPE=RADIO VALUE=roomB>
Room B.
 <INPUT TYPE=SUBMIT></FORM>
<H2>Graph</H2>
<P>
<RRD::GRAPH <RRD::CV::PATH RRD_NAME>.png --lazy

Page 191

 --title "Temperatures for "<RRD::CV::QUOTE RRD_NAME>
 DEF:cel=<RRD::CV::PATH RRD_NAME>.rrd:exhaust:AVERAGE
 LINE2:cel#00a000:"D. Celsius">

</P>
</BODY>
</HTML>

Example 3
This example shows how to handle the case where the RRD, graphs and
cgi-bins are seperate directories

#!/.../bin/rrdcgi
<HTML>
<HEAD><TITLE>RRDCGI Demo</TITLE></HEAD>
<BODY>
<H1>RRDCGI test Page</H1>
<RRD::GRAPH
 /.../web/pngs/testhvt.png
 --imginfo ''
 --lazy --start -1d --end now
 DEF:http_src=/.../rrds/test.rrd:http_src:AVERAGE
 AREA:http_src#00ff00:http_src
>
</BODY>
</HTML>
Note 1: Replace /.../ with the relevant directories
Note 2: The SRC=/.../pngs should be paths from the view of the
webserver/browser

Advanced configuration example
This example demonstarates a firewall configuration which is used for an
organization connected to a Cisco router, which in turn is used as the gateway to
the internet. The server is configured to accept SMTP traffic from outside
including incoming POP3 connections. This firewall will block all smtp traffic
sourcing from inside going outside, this blocks most mass mailing worms.

<firewall>

#

Page 192

Global configuration and access classes
#
<global>

Modules we need to load
<modules>

<load name="ip_queue"/>
<load name="ip_conntrack_ftp"/>
<load name="ip_nat_ftp"/>

</modules>

#
BEGIN - STANDARD CLASSES
#
<class name="local_iface">

<address src-iface="lo"/>
</class>

<class name="valid_connections">
<address cmd-line="-m state --state

ESTABLISHED,RELATED"/>
</class>

<class name="syn_packets">
<address proto="tcp" cmd-line="--syn -m state --state NEW"/>

</class>

<class name="udp_packets">
<address proto="udp"/>

</class>

<class name="icmp_packets">
<address proto="icmp"/>

</class>

<class name="rsvp_packets">
<address proto="2"/>

</class>

<class name="invalid_tcp_packets">
<address proto="tcp" cmd-line="--tcp-flags ALL

FIN,URG,PSH"/>
<address proto="tcp" cmd-line="--tcp-flags ALL ALL"/>
<address proto="tcp" cmd-line="--tcp-flags ALL

SYN,RST,ACK,FIN,URG"/>
<address proto="tcp" cmd-line="--tcp-flags ALL NONE"/>

Page 193

<address proto="tcp" cmd-line="--tcp-flags SYN,RST
SYN,RST"/>

<address proto="tcp" cmd-line="--tcp-flags SYN,FIN
SYN,FIN"/>

</class>

<class name="valid_icmp_packets">
<address proto="icmp" cmd-line="--icmp-type 0"/>
<address proto="icmp" cmd-line="--icmp-type 3"/>
<address proto="icmp" cmd-line="--icmp-type 8"/>
<address proto="icmp" cmd-line="--icmp-type 11"/>

</class>

<class name="traceroute_packets">
<address proto="udp" dst-port="33434:33465"/>

</class>

<class name="service_ftp">
<address proto="tcp" dst-port="21"/>

</class>

<class name="service_ssh">
<address proto="tcp" dst-port="22"/>

</class>

<class name="service_smtp">
<address proto="tcp" dst-port="25"/>

</class>

<class name="service_dns">
<address proto="tcp" dst-port="53"/>
<address proto="udp" dst-port="53"/>

</class>

<class name="service_http">
<address proto="tcp" dst-port="80"/>

</class>

<class name="service_https">
<address proto="tcp" dst-port="443"/>

</class>

<class name="service_pop3">
<address proto="tcp" dst-port="110"/>

</class>

Page 194

<class name="service_tinc">
<address proto="udp" dst-port="655"/>
<address proto="tcp" dst-port="655"/>

</class>

<class name="service_ident">
<address proto="tcp" dst-port="113"/>

</class>

<class name="service_imap">
<address proto="tcp" dst-port="143"/>

</class>

<class name="service_pserver">
<address proto="tcp" dst-port="2401"/>

</class>

<class name="service_httpproxy">
<address proto="tcp" dst-port="3128"/>
<address proto="tcp" dst-port="8080"/>

</class>

<class name="service_postgresql">
<address proto="tcp" dst-port="5432"/>

</class>

<class name="service_time">
<address proto="udp" dst-port="123" src-port="123"/>

</class>

<class name="service_rip">
<address proto="udp" dst-port="520" src-port="520"/>

</class>

<class name="service_datametrics">
<address proto="udp" dst-port="1645"/>
<address proto="udp" dst-port="1646"/>

</class>

<class name="service_radius">
<address proto="udp" dst-port="1812"/>
<address proto="udp" dst-port="1813"/>

</class>

Page 195

<class name="service_dhcp">
<address proto="udp" dst-port="67:68"/>

</class>

<class name="30_per_min">
<address cmd-line="-m limit --limit 30/min --limit-burst 10"/>

</class>

<class name="blank">
<address />

</class>

#
END - STANDARD CLASSES
#

<class name="valid_internal_traffic">
<address src-iface="eth1" src="192.168.101.0/26"

dst-iface="eth0"/>
</class>

<class name="nat_internal_traffic">
<address src="192.168.101.0/26" dst="! 192.168.101.0/24"/>

</class>

<class name="internal_traffic">
<address src-iface="eth1" dst-iface="eth0"/>

</class>

<class name="proxy_redirect">
<address src="192.168.101.0/24" proto="tcp" dst="!

192.168.101.0/24" dst-port="80"/>
</class>

<class name="internal_local">
<address src="192.168.101.0/24" />

</class>

eth0 loop is normally used when doing strange NAT stuff
<class name="eth0_loop">

<address src-iface="eth0" dst-iface="eth0"/>
</class>

</global>

Page 196

#
Access control lists
#
<acl>

<table name="filter">

#
CUSTOM RULES
#

<chain name="accept_input_all">
</chain>

<chain name="accept_input_tcp">
<rule target="accept_traffic">

service_smtp;
service_pop3;

</rule>
</chain>

<chain name="accept_input_udp">
</chain>

<chain name="accept_input_icmp">
</chain>

<chain name="invalid_forwarding">
<rule target="REJECT">

service_smtp;
</rule>

</chain>

<chain name="accept_forward_all">
<rule target="invalid_forwarding">

internal_traffic;
</rule>

</chain>

<chain name="accept_forward_tcp">
<rule target="accept_traffic">

valid_internal_traffic;
</rule>

</chain>

<chain name="accept_forward_udp">

Page 197

<rule target="accept_traffic">
valid_internal_traffic;

</rule>
</chain>

<chain name="accept_forward_icmp">
<rule target="accept_traffic">

valid_internal_traffic;
</rule>

</chain>

<chain name="accept_output_all">
<rule target="accept_traffic">

blank;
</rule>

</chain>

<chain name="accept_output_tcp">
</chain>

<chain name="accept_output_udp">
</chain>

<chain name="accept_output_icmp">
</chain>

#
SYSTEM INPUT RULES - CUSTOMIZE ABOVE
#
<chain name="accept_input_all">

<rule target="accept_traffic">
local_iface;

</rule>
</chain>

<chain name="accept_input_tcp">
<rule target="accept_traffic">

service_ssh;
</rule>

</chain>

<chain name="accept_input_udp">
</chain>

Page 198

<chain name="accept_input_icmp">
<rule target="accept_traffic">

valid_icmp_packets;
traceroute_packets;

</rule>
</chain>

#
SYSTEM FORWARD RULES - CUSTOMIZE ABOVE
#
<chain name="accept_forward_all">
</chain>

<chain name="accept_forward_tcp">
</chain>

<chain name="accept_forward_udp">
</chain>

<chain name="accept_forward_icmp">
</chain>

#
SYSTEM LOGGING RULES
#
<chain name="log_input">

<rule target='LOG --log-prefix "FW:filter:INPUT "'>
30_per_min;

</rule>
</chain>

<chain name="log_forward">
<rule target='LOG --log-prefix "FW:filter:FORWARD "'>

30_per_min;
</rule>

</chain>

<chain name="log_output">
<rule target='LOG --log-prefix "FW:filter:OUTPUT "'>

30_per_min;
</rule>

</chain>

<chain name="log_drop_packets">
<rule target='LOG --log-prefix "FW:filter:check_pkts"'>

Page 199

30_per_min;
</rule>
<rule target="DROP">

blank;
</rule>

</chain>

#
MAIN SYSTEM RULES
#

Remove bwmd rule if you not using it
<chain name="accept_traffic">

<rule target="ACCEPT">
blank;

</rule>
</chain>

<chain name="accept_state">
<rule target="accept_traffic">

valid_connections;
</rule>

</chain>

<chain name="check_packets">
<rule target="log_drop_packets">

invalid_tcp_packets;
</rule>

</chain>

#
MAIN SYSTEM CHAINS
#
<chain name="INPUT" default="DROP">

<rule target="check_packets">
blank;

</rule>
<rule target="accept_state">

blank;
</rule>
<rule target="accept_input_all">

blank;
</rule>
<rule target="accept_input_tcp">

Page 200

syn_packets;
</rule>
<rule target="accept_input_udp">

udp_packets;
</rule>
<rule target="accept_input_icmp">

icmp_packets;
</rule>
<rule target="log_input">

blank;
</rule>

</chain>

<chain name="FORWARD" default="DROP">
<rule target="check_packets">

blank;
</rule>
<rule target="accept_state">

blank;
</rule>
<rule target="accept_forward_all">

blank;
</rule>
<rule target="accept_forward_tcp">

syn_packets;
</rule>
<rule target="accept_forward_udp">

udp_packets;
</rule>
<rule target="accept_forward_icmp">

icmp_packets;
</rule>
<rule target="log_forward">

blank;
</rule>

</chain>

<chain name="OUTPUT" default="DROP">
<rule target="check_packets">

blank;
</rule>
<rule target="accept_state">

blank;
</rule>
<rule target="accept_output_all">

Page 201

blank;
</rule>
<rule target="accept_output_tcp">

syn_packets;
</rule>
<rule target="accept_output_udp">

udp_packets;
</rule>
<rule target="accept_output_icmp">

icmp_packets;
</rule>
<rule target="log_output">

blank;
</rule>

</chain>
</table>

</acl>

<nat>
<snat>

<rule to-src="your.external.ip.here">
nat_internal_traffic;

</rule>
</snat>

</nat>

</firewall>

Page 202

Credits

Parts of this document were composed from the sources listed below...

Linux Advanced Routing & Traffic Control – http://www.lartc.org

Netfilter Howto's – http://www.netfilter.org/

iptables(8)

ebtables website – http://ebtables.sourceforge.net

ebtables(8)

Ethernet bridge – http://bridge.sourceforge.net

Application Layer Packet Classifier for Linux – http://l7-filter.sourceforge.net

BWM Tools – http://bwm-tools.pr.linuxrulz.org

Squid – http://www.squid-cache.org

Dante – http://www.inet.no/dante/

ISC Bind (named) – http://www.isc.org/sw/bind/

DJBDNS – http://cr.yp.to/djbdns.html

“BWM Tools, How to use it?” (by Kobe Lenjou) – http://www.murder4al.be

RRDTool - http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

brctl(8)

Page 203

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
http://www.murder4al.be/
http://cr.yp.to/djbdns.html
http://www.isc.org/sw/bind/
http://www.inet.no/dante/
http://www.squid-cache.org/
http://bwm-tools.pr.linuxrulz.org/
http://l7-filter.sourceforge.net/
http://bridge.sourceforge.net/
http://ebtables.sourceforge.net/
http://www.netfilter.org/
http://www.lartc.org/

