SIPp

SIPp 2.0 reference documentation

by Richard GAYRAUD [initial code], Olivier JACQUES [code/documentation], Many contributors [code]
Table of contents

0 =Y 1o o USSP 4
28 1S = 1 = 1o o SRS 5
2 T A1 S OSSPSR 6
A = o L = = SRS 6
P L = o L = = SRS 6
2 N = T = o Lo 10 g SRS 6
2.5 COMPIliNG SIPP frOM the SOUICE COOE.......ceeiuieieieie ettt ettt e e e s te et e e s e s teeatesseesseeaseaae e seeasease e seanseeseesseenseese e seaneeeseenseaneeaseenseanseaaeenseeneenneenseansenneentenneenren 7
A 1S = LT o S o T TSSO PRRSOPPRTIN 8
2.7 INCreasiNg Fil@ DESCITPLOIS LIMIT.......couiiiitiiieiieieiee ettt ettt b e bbbt e he e s e e s e e e e e Rt e E e oh e eh £ 2he 2R e e a e 2 e e E e R e HE e AR £ eh e 2R £ 2R e e e e a e e nE e b e nE e eheeReeheese e e et e b e nbenbenbennenneas 8
RO o RS o TSP USRS TP TPTPTPRTRPRR 9
I I 1Y T I = =S RRN 9
A 1= 0= =0 0= 7= 01O USOSSRTRR 10
725 U RS 10
2 0 1 N O 1 1 o 2T [S 10
70 T L S SRSSSN 11

SIPp

2L o =100 o SRS 12
G | SRR 12
IR | O O o q =00 (<o USRS RP PPN 15
K0 I = T o oo S 16
LT (= 010101 (=X 011 (o 17
O U 0 o IS oI T 0= ot Ko o o PR RORRR 18
3.7 Create YOUI OWIN XIMIL SCEINAITOS. ... uveeteeiuieeiteeiteesteesteesteessteesseessseeaseesaseeaseeasseeaseesaseeaseeaaseeseeaabeeaseeasse e seeeaseeaseeesseeaseeeaeeeaseeeRe e e s eeeaseeaseeanse et eeeateenbeeeaneeseesneeeneennns 18
3.7.1 Structure Of ClIENt (UAC [IKE) XIMIL SCENGITOS.......ecueiueeieiieiteeiteetesteesteetesteesseesesseesseessesseesseesseaseeseeasesseeaseasseassaaseeaseaseeaseesseaseeseenseaneeaseenseansenseensennsesseeseannans 28
3.7.2 Structure Of SErVEr (UASITKE) XIML SCENEITOS........ecueeueeeeitiesieeeesteesteeseesseesseassesseesseaseesseesseaseeaseesseasessseesseasssaseesseassssseessessssssesnsenssssseessesssssseessenesssenssenssesseesses 35
Tk 37 N o 10 11 35
3.7.4 Injecting values from an eXterNal CSV AUITNG CaAllS........c.i ittt bt b a e e e e e e e e e b e e b e eh £ e b £ e s £ e s e e s e e e A e eb e e b e ehe e s e e st e s e e e s e nb e beebenreenes 40
AT @CoTaTe 10T r= I o= 1o 1 oo TSRS 41
AR = U= 1o o PR 45
TR TR o < 0 PRSPPI 47
I T I = 101500 00 1100 - 51
e T L 1 1070 00 TR0 (<. O 51
e 2 | 00 o o 1= R 52
3.9.3 UDP With ONE SOCKEL PEI [P GOUIESS.........eoiiiiieiieeieeiestie sttt ae e s be e ee s st e beeaeesaeesbeeaseeae e beeaeeeaeeaEeaa s e es e e beembe SR e e sEeemeeeRe e beembeeaeenEeanbeeneeabeenbenneeseeeneennnens 52
e I O e 0700 10 o (. OSSR 53
e T IO T (S ox (= S 53
T IO = o0] 1= o £ o SO 54
e I I 1170 100 (S 54
I T I I 0 T oo (PSP 54
R K VLG T o] 0o F PSP PR ORI 54
e O LU S0 Tox B T 0] OSSR 55

Page 2

SIPp

O = To [T o T 7= T BTt IS oSSR 55
L <ot 0o SO UPO PSP PPTPRSURTUPRURPRPN 55
O O o - YT 55

T T 0 [56

312 SEBLISEICS. v veueeuvereeeesueetesseeseeseesees e seseessessesseaseeseeseeseesseseeaseaseaseeseeseeseeneeas e s s e seEeeReeReeReeReeReeneenEeReEeeReeReeReeReeAeeneenEenteEeeReeReeReeReeReeneenteseEenReeReeReeReeReentennetentenrenrenreenen 56
I o == 00 S S 10 1SR 56
NV = o = oo U (= PSPPSR 56
3.12.3 Importing statiStics iN SPreadShEet BPPIICALIONS..........cviiieie et e e e e st e e teeseeste e tesaeesse e seeseeeseesseaseeaseenseenseaseesseenseaseenseansesaeeseensesneeseansenneensen 57

T I B 0] o (T o OSSR 58
3.13.1 UNEXPECLEU IMIESSAGES. ... ueeueeueereetestestesteeseeseaseesessessessessesseaseeaeessassessesseseeaseeheeaeeaeeseea s e e e eeAEeeReeE e e Reea £ e a s e a e e e e e e HE e AR e A b e eh e e R e ea e e n e e s e b e AR e b e eb e e heeh e e a e e e et e eeneeebenbennenne e 58
3.13.2 RELANSMISSIONS (UDP ONIY)....c.eeiuiitieiietetest sttt s et ae st se e e e e s e £ e 4 b e e b e eh e eh £ £ e e £ s e e s e e s 28 £ E £ A E £ 4R £ 2R £ £ R £ £ A e e e £ 8 e A £ e AR e A E £ HE £ e R £ e R e ea s e s e b e e e e e b e ebeeheebeene e e e s e eeneennas 58
BTl oo B 1TSS (= o g ol [eTo I s o = o) TSR UURRTR PR 58

@ g 1T T o1 T o T) TSSO 59

4 PerformanCe tESLING WITN SIPP.......cc.e ettt ettt et e et e s te e teeseesteeasesaeeaaeeaseeaeeaaeeaseeseeaaeeaseeaeeaReeaseeaeeeseenseeseeaReenseesseaseenseaneeseeenseenseaneenseennenreenns 66
4.1 AdVICESTO ruN PEIfOrMANCE TESES WITN SIP.....ecieiieiice ettt e e e st e te e e s ae e teeseesseesseaseesseesteeseeaseesseanseaseesseeneeaseenseaneeaseesseensease e seenseaneensennsennennsennsens 66
S e R a1 C= = S o 1= o U oo PRSP STSRP P PRPRPRPRN 67

5 USEFUI TO0IS BSITR SIPP......e ettt ettt h bt h e a e ae et e e e bt £ E e b £ e h £ £ R £ e e e e e e s e 8 £ R e HE e 4R £ £R £ 2R e £a s e a s £ s e 8 £ R e HE e 4 E £ A h £ £ R e e R e e n s e e e E e AR e AR e e Reeh e e he e e e s e e e neeebenbeenenneennas 68

30 1o PP 68

S A L= =T L = PRSPPSO 68

IS o= 1 oSSR 68

e TS, LT 10 JES U oo 68

O e a1 g1 ol 1Tl (oIS TSRS P P TPPRR 68

Page 3

SIPp

This version of the documentation is for SIPp 2.0 branch. To access the latest version of the documentation, go to this page (../doc/reference.html) .

SIPp is a performance testing tool for the SIP protocol. It includes a few basic SipStone user agent scenarios (UAC and UAS) and establishes and releases multiple
callswith the INVITE and BY E methods. It can also reads XML scenario files describing any performance testing configuration. It features the dynamic display of

statistics about running tests (call rate, round trip delay, and message statistics), periodic CSV statistics dumps, TCP and UDP over multiple sockets or multiplexed
with retransmission management, regular expressions and variables in scenario files, and dynamically adjustable call rates.

SIPp can be used to test many real SIP equipements like SIP proxies, B2BUAS, SIP media servers, SIP/x gateways, SIP PBX, ... It is also very useful to emulate
thousands of user agents calling your SIP system.

Want to seeit?

Hereis a screenshot

Page 4

../doc/reference.html

SIPp

o ocadmin@vistaz-fsipp

é%ll—rateilengthj ey I e
10 cp= I: 0 m= :| EO&l 4. 0l

10 new calls dur in_.;r 1.000 - ariod

0 concurrent calls {(limit 30)

out-of-call msy (discarded)

opelnl Soc ket s

Betrans

INUVITE
100

E-RTD

EYE

Z00

[+1-1*151:

And hereisavideo (Windows Media Player 9 codec or above required) of SIPp in action:
Sipp-01.wmv (images/sipp-01.wmv)

2. Installation

[1-4]: Change Screen —-
Pemote-lost
1E7.0.0.1:E060(UDP)

Timeout Thexpected-M=g
1]

Page 5

images/sipp-01.wmv

H 2
Y
=]

SIPpisreleased under the GNU GPL license (http://www.gnu.org/copyleft/gpl.html) . All the terms of the license apply. It is provided to the SIP community by
Hewlett-Packard (http://www.hp.com) engineers in hope it can be useful.

We receive some support from our company to work on this tool freely, but HP does not provide any support nor warranty concer ning Sl Pp.

Like many other "open source" projects, there are two versions of SIPp: a stable and unstable release. Stable release: before being labelled as "stable”, a SIPp release
isthoroughly tested. So you can be confident that all mentioned features will work :)

Use the stable release for your everyday use and if you are not blocked by a specific feature present in the "unstable release” (see below).

Sl Pp stable download page (http://sourceforge.net/project/showfiles.php?group_id=104305)

Unstable release: all new features and bug fixes are checked in SIPp's SVN (http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/) repository as soon as they are
available. Every night, an automatic extraction is done and the source code of thisrelease is made available.

Use the unstable release if you absolutely need a bug fix or afeature that is not in the stable release.

SIPp "unstable” download page (http://sipp.sourceforge.net/snapshots/)

SIPpisavailable on aimost all UNIX platforms: HPUX, Tru64, Linux (RedHat, Debian, FreeBSD), Solaris/SunOS.

A Windows port has been contributed. Y ou can now compile SIPp under Cygwin. A binary package with aWindows installer is also available. Check the download
page (http://sourceforge.net/project/showfiles.php?group_id=104305) to download it and run SIPp under Windows.

http://www.gnu.org/copyleft/gpl.html
http://www.hp.com
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/
http://sipp.sourceforge.net/snapshots/
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sourceforge.net/project/showfiles.php?group_id=104305

SIPp

SIPp works only over Windows XP and will not work on Win2000. Thisis because of |Pv6 support. The Windows installer should prevent someone to install SIPp on Win2000.

» Prerequisitesto compile SIPp are (see Compilation tips (http://sipp.sourceforge.net/wiki/index.php/Compilation)):
e C++ Compiler

curses or ncurses library

For authentication and TL'S support: OpenSSL >= 0.9.8

For pcap play support: libpcap

For distributed pauses. Gnu Scientific Libraries (http://www.gnu.org/software/gsl/)

« You have four options to compile Sl Pp:
* Without TLS(Transport Layer Security) and authentication support: Thisisthe recommended setup if you don't need to handle SIP authentication and/or

TLS. Inthis case, there are no depenciesto install before building SIPp. It is straight forward:
gunzi p sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make
e With TLSand authentication support, you must have installed OpenSSL library (http://www.openssl.org/) (>=0.9.8) (which may come with your system).

Building SIPp consist only in adding the "ossl" option to the make command:
gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make ossl
* With PCAP play and without authentication support:
gunzi p sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make pcappl ay
» With PCAP play and authentication support:
gunzi p sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make pcappl ay_ossl

To enable GSL (http://www.gnu.org/software/gsl/) at compile time, you must install GSL and itsincludefiles, as well as un-comment the lines in the global.mk file of SIPp distribution. Then, re-compile SIPp.

Page 7

http://sipp.sourceforge.net/wiki/index.php/Compilation
http://www.gnu.org/software/gsl/
http://www.openssl.org/
http://www.gnu.org/software/gsl/

SIPp

« On Windows, SIPp is provided both with the source and the pre-compiled executable. Just execute the installer to have SIPp installed.

SIPp compiles under CY GWIN, provided that you installed IPv6 extension for CY GWIN (http://win6.jp/Cygwin/), as well as OpenSSL and libncurses.

« To compile SIPp on Windows with pcap (media support), you must:
» Copy the WinPcap developer package (http://www.winpcap.org/devel.htm) to " C:\cygwin\lib\WpdPack"
* Remove or rename "pthread.h” in " C:\cygwin\lib\WpdPack\Include", as it interfers with pthread.h from cygwin

» Compile using either "make pcapplay_cygwin" or "pcapplay_ossl_cygwin"

Binary packages are also available for severa Linux and HP_UX platforms. For each one of these platforms, the given archive contains two packages:
Those packages are incompatible to each other.

Note that there is currently no sipp-pcapplay-ossl package available for HP_UX 11.23 |A64.

First, unzip and untar the sipp archive:

si pp-[st andar d| pcappl ay-ossl]-[tool version]-[OS]-[CS rel ease version].tar.gz

Then, use the package installer of your platform:

« HPUX 11i/11.23:

swinstall -s /full_path_to_the_depot/sipp-[standard| pcappl ay-ossl]-[tool version]-[OS]-[CS rel ease version]-[processor]. depot
e Linux RedHat :

rpm-ivh sipp-[standard| pcappl ay-ossl]-[tool version]-[OS]-[CS rel ease version]-[processor].rpm

Executable islocated at
e Jusr/local/bin/sipp

The pcapplay-ossl package also provide the following directory, containg the example pcap files:
» /usr/local/share/sipp/pcap

Page 8

http://win6.jp/Cygwin/
http://www.winpcap.org/devel.htm

SIPp

If your system does not supports enough file descriptors, you may experience problems when using the TCP/TL S mode with many simultaneous calls.

Y ou have two ways to overcome this limit: either use the - max_socket command line option or change the limits of your system.

Depending on the operating system you use, different procedures allow you to increase the maximum number of file descriptors:

On Linux 2.4 kernels the default number of file descriptors can be increased by modifying the/ et ¢/ security/limts. conf andthe
[etc/ pam d/ | ogi n file.

Openthe/etc/security/limts.conf fileandadd thefollowing lines:

soft nofile 1024
hard nofil e 65535

Openthe/ et c/ pam d/ | ogi n and add the following line

session required /lib/security/pamlimts.so

The system file descriptor limitissetinthe/ proc/ sys/ fs/fil e- max file. The following command will increase the file descriptor limit:

echo 65535> /proc/sys/fs/file-nmax

To increase the number of file descriptors to its maximum limit (65535) setinthe/ et ¢/ security/limts. conf file type:

ulimt -n unlinted

Logout then login again to make the changes effective.

On HP-UX systems the default number of file descriptors can be increased by modifying the system configuration with the sam utility. In the Kernel Configuration
menu, select Configurable parameters, and change the following attributes:

maxfiles : 4096
maxfiles lim: 4096
nfiles : 4096

ni node : 4096

max_t hread_proc : 4096
nkt hread : 4096

SlIPp allows to generate one or many SIP calls to one remote system. The tool is started from the command line. In this example, two SIPp are started in front of each
other to demonstrate SIPp capabilities.

Page 9

SIPp

Run sipp with embedded server (uas) scenario:

./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario
./sipp -sn uac 127.0.0.1

Integrated scenarios? Y es, there are scenarios that are embedded in SIPp executable. While you can create your own custom S|P scenarios (see how to create your
own XML scenarios), afew basic (yet useful) scenarios are available in SIPp executable.

Scenario file: uac.xml (uac.xml.html) (original XML file (uac.xml))

SI Pp UAC Renot e
(1) INVITE

SI Pp UAC Renot e
| (1) INVITE |

Page 10

uac.xml.html
uac.xml
uac_pcap.xml.html
uac_pcap.xml

SIPp

(3) 180 (optional)

Ko m e e e e e e e m ==
(4) 200
Ko m e e e e e e e = =
(5) ACK
__________________ >
(6) RTP send (8s)

>

(7) RFC2833 DIG T 1

>
(8) BYE
__________________ >
(9) 200
<

Scenario file: uas.xml (uas.xml.html) (ariginal XML file (uas.xml))

Renot e SI Pp UAS
(1) INVITE

Scenario file: regexp.xml (regexp.xml.html) (original XML file (regexp.xml))

This scenario, which behaves as an UAC is explained in greater detailsin this section.

Page 11

uas.xml.html
uas.xml
regexp.xml.html
regexp.xml

SIPp

SI Pp regexp Renot e
(1) INVITE

Scenario files: branchc.xml (branchc.xml.html) (ariginal XML file (branchc.xml)) and branchs.xml (branchs.xml.html) (ariginal XML file (branchs.xml))

Those scenarios, which work against each other (branchc for client side and branchs for server side) are explained in greater detailsin this section.

REG STER ---------- >
200 <----------
200 <----------

INVITE ---------- >
100 <----------
180 <----------
403 <----------
200 <----------
ACK ---------- >

[5000 ns]
BYE ---------- >
200 <----------

3PCC stands for 3rd Party Call Control. 3PCC is described in REC 3725 (http://www.ietf.org/rfc/rfc3725.txt) . While this feature was first developped to alow 3PCC
like scenarios, it can also be used for every case where you would need one SIPp to talk to several remotes.

In order to keep SIPp simple (remember, it's atest tool!), one SIPp instance can only talk to one remote. Which is an issue in 3PCC call flows, like call flow | (SIPp

Page 12

branchc.xml.html
branchc.xml
branchs.xml.html
branchs.xml
http://www.ietf.org/rfc/rfc3725.txt

SIPp

beeing a controller):

A Control |l er B
(1) INVITE no SDP
K e e e e e e e e e e e = =

(2) 200 offerl
(3) INVITE offerl
(4) 200 OK answer1
e e e e e e e e —m ==

(6) ACK answer1
S,

Scenario file: 3pcc-A.xml (3pcc-A.xml.html) (original XML file (3pcc-A.xml))

Scenario file: 3pcc-B.xml (3pcc-B.xml.html) (original XML file (3pcc-B.xml))

Scenario file: 3pcc-C-A.xml (3pcc-C-A.xml.html) (ariginal XML file (3pcc-C-A.xml))

Scenario file: 3pcc-C-B.xml (3pcc-C-B.xml.html) (original XML file (3pcc-C-B.xml))

The 3PCC feature in SIPp allows to have two SIPp instances launched and synchronised together. If we take the example of call flow I, one SIPp instance will take
care of the dialog with remote A (thisinstanceis called 3PCC-C-A for 3PCC-Controller-A-Side) and another SIPp instance will take care of the dialog with remote B
(thisinstanceis called 3PCC-C-B for 3PCC-Controller-B-Side).

The 3PCC call flow I will, in redlity, look like this (Controller has been divided in two SIPp instances):

A Controller A Controller B B
(1) INVITE no SDP
O e e R

(2) 200 offerl

recvCmd
(3) INVITE offerl

(4) 200 OK answer1
K e e e e e e e e e e e = =

Page 13

3pcc-A.xml.html
3pcc-A.xml
3pcc-B.xml.html
3pcc-B.xml
3pcc-C-A.xml.html
3pcc-C-A.xml
3pcc-C-B.xml.html
3pcc-C-B.xml

SIPp

(6) ACK answer1
Eocccooocooocoooooos |
|

Asyou can see, we need to pass informations between both sides of the controller. SDP "offerl" is provided by A in message (2) and needs to be sent to B sidein
message (3). This mechanism isimplemented in the scenarios through the <sendCmd> command. This:

<sendCnd>
<! [CDATA[
Call-1D: [call_id]
[$1]

11>
</ sendCnd>

Will send a"command” to the twin SIPp instance. Note that including the Call-1D is mandatory in order to correlate the commands to actual calls. In the same manner,
this:

<r ecvCnd>
<action
<ereg regexp="Content-Type:.*"
search_i n="nsg"
assign_to="2"/>
</ action>
</ recvCnd>

Will receive a"command" from the twin SIPp instance. Using the regular expression mechanism, the content is retrieved and stored in a call variable ($2 in this case),
ready to be reinjected

<send>
<! [CDATA[

ACK sip:[servicel]@renote ip]:[renpte port] SIP/2.0

Via: SIP/2.0/[transport] [local ip]:[local _port]

From sipp <sip:sipp@Ilocal _ip]:[local _port]>;tag=[call _nunber]
To: sut <sip:[service]@renmpte ip]:[renpte port]>[peer tag_parani
Call-1D: [call_id]

CSeq: 1 ACK

Contact: sip:sipp@!local _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Page 14

SIPp

[$2]

1>
</ send>

In other words, sendCmd and recvCmd can be seen as synchronization points between two Sl Pp instances, with the ability to pass parameters between each other.

Another scenario that has been reported to be do-able with the 3PCC feature is the following:

A calsB. B answers. B and A converse

B calls C. C answers. C and B converse

B "REFER"s A to C and asks to replace A-B call with B-C call.
A accepts. A and C talk. B drops out of the calls.

An extension of the 3pcc mode isimplemented in sipp. This feature allows n twin sipp instances to communicate each other, each one of them being connected to a
remote host.

The sipp instance which initiates the call is launched in "master" mode. The others are launched in "slave" mode. Twin sipp instances have names, given in the
command line (for example, s1, s2...sn for the slaves and m for the master) Correspondances between instances names and their addresses must be stored in afile
(provided by -slave_cfg command line argument), in the following format:

s1;127.0.0. 1: 8080
s2;127.0.0.1: 7080
m 127. 0. 0. 1: 6080

Each twin sipp instance must access a different copy of thisfile.

sendCmd and recvCmd have additional attributes;

<sendCnd dest="sl1">
<! [CDATA[
Call-1D: [call _id]
From m
[$1]

11>
</ sendCnd>
Will send acommand to the "s1" peer instance, which can be either master or slave, depending on the command line argument, which must be consistent with the
scenario: a slave instance cannot have a sendCmd action before having any recvCmd. Note that the message must contain a"From" field, filled with the name of the
sender.

Page 15

SIPp

<recvCmd src="nl>
<action
<ereg regexp="Content-Type:.*"
search_i n="nsg"
assign_to="2"/>
</ action>
</ recvCnd>

Indicates that the twin command is expected to be received from the "m" peer instance.
Note that the master must be the launched at last.
Thereis no integrated scenarios for the 3pcc extended mode, but you can easily adapt those from 3pcc.

Example: the following drawing illustrate the entire procedure. The arrows that are shown between SIPp master and slaves depict only the synchronization commands
exchanged between the different SIPp instances. The SIP message exchange takes place as usual.

SIPp generates SIP traffic according to the scenario specified. Y ou can control the number of calls (scenario) that are started per second. This can be done either:

« Interactively, by pressing keys on the keyboard
* '+ keytoincrease cal rate by 1
o '-"key to decreasecall rate by 1
» *'Keytoincrease cal rate by 10
* 'I'key to decrease call rate by 10

« At starting time, by specifying parameters on the command line:
e "-r" to specify the cal rate in number of calls per seconds
o "-rp" to specify the "rate period” in milliseconds for the call rate (default is 1000ms/1sec). This alows you to have n calls every m milliseconds (by using - r

n-rp m.

} Example: run SIPp at 7 calls every 2 seconds (3.5 calls per second) ‘

./sipp -sn uac -r 7 -rp 2000 127.0.0.1

Y ou can aso pause the traffic by pressing the 'p' key. SIPp will stop placing new calls and wait until al current calls go to their end. Y ou can resume the traffic by
pressing 'p' again.

Page 16

SIPp

To quit SIPp, pressthe'q’ key. SIPp will stop placing new calls and wait until al current calls go to their end. SIPp will then exit.

Y ou can also force SIPp to quit immediatly by pressing the 'Q' key. Current calls will be terminated by sending aBY E or CANCEL message (depending if the calls
have been established or not). The same behaviour is obtained by pressing 'q' twice.

} TIP: you can place a defined number of calls and have SIPp exit when thisis done. Use the - moption on the command line. ‘

SIPp can be "remote-controlled” through a UDP socket. This allows for example

« To automate a series of actions, like increasing the call rate smoothly, wait for 10 seconds, increase more, wait for 1 minute and loop
« Have afeedback loop so that an application under test can remote control SIPp to lower the load, pause the traffic, ...

Each SIPp instanceis listening to a UDP socket. It starts to listen to port 8888 and each following SIPp instance (up to 60) will listen to base port + 1 (8889, 8890,
).

It isthen possible to control SIPp like this:

echo p >/dev/udp/x.y.z.t/8888 -> put SIPp in pause state (p key)
echo g >/dev/udp/x.y.z.t/8888 -> quit SIPp (q key)

} All keys available through keyboard are also available in the remote control interface ‘

Y ou could also have asmall shell script to automate a serie of action. For example, this script will increase the call rate by 10 more new callg/s every 5 seconds, wait
at this call rate for one minute and exit Sl Pp:

#!/bin/sh

echo "*" >/dev/udp/127.0.0. 1/ 8889

sleep 5

echo "*"

sleep 5

echo "*" >/dev/udp/127.0.0. 1/8889
?
6

>/ dev/ udp/ 127. 0. 0. 1/ 8889

sl eep

echo "*"
sl eep
echo "q" >/dev/udp/127.0.0.1/8889

>/ dev/ udp/127. 0. 0. 1/ 8889

Page 17

SIPp

SIPp can be launched in background mode (- bg command line option).

By doing so, SIPp will be detached from the current terminal and run in the background. The PID of the SIPp processis provided. If you didn't specify a number of
calls to execute with the - moption, SIPp will run forever.

There is a mechanism implemented to stop SIPp smoothly. Thecommand ki | | - SI GUSR1 [SI Pp_PI D] will instruct SIPp to stop placing any new calls and
finish all ongoing calls before exiting.

Of course embedded scenarios will not be enough. So it's time to create your own scenarios. A SIPp scenario iswritten in XML (aDTD that may help you write SIPp
scenarios does exist and has been tested with jEdit - thisis described in alater section). A scenario will always start with:

<?xm version="1.0" encodi ng="I|SO 8859-1" 7?>
<scenari o nane="Basi c Si pstone UAC'>

And end with:
</ scenari o>
Easy, huh? Ok, now let's see what can be put inside. Y ou are not obliged to read the whole table now! Just go in the next section for an example.

<send> retrans Used for UDP <send
transport only: it retrans="500">: will
specifies the T1 timer initiate T1 timer to 500
value, as described in = milliseconds (RFC3261
SIP RFC 3261, section = default).

17.1.1.2.

start_rtd Starts one of the 5 <send
"Response Time start_rtd="2">:the
Duration" timer. (see timer number 2 will
statistics section). start when the

message is sent.

rtd Stops one of the 5 <send rtd="2">:the
"Response Time timer number 2 will
Duration" timer. stop when the

Page 18

SIPp

message is sent.

crif Displays an empty line <send
after the arrow forthe crlf="true">
message in main SIPp

screen.
lost Emulate packet lost. <send | ost="10">:
The value is specified = 10% of the message
as a percentage. sent are actually not
sent).
next You can put a "next" in = Example to jump to

a send to go to another | label "12" after sending
part of the script when = an ACK:

you are done with <s e'r|1d)
sending the message. ~ nhext="12">
See conditional <!'[CDATA]
branching section for ACK
more info. sip:[service] @renpte_ip]:[renpte_port]
SIP/ 2.0
Vi a:
From
To: ...
Cal | -1D:
Cseq: ...
Cont act :

NElX Forwards: ..
Subj ect :

Cont ent - Length: O
11>

</ send>
test You can put a "test” Example to jump to
next to a "next" label "6" after sending
attribute to indicate an ACK only if variable
that you only want to 4 is set:
branch to the label <send next="6"

specified with "next" if = test="4">

Page 19

SIPp

the variable specified <! [CDATA[
in "test" is set (through ACK
regexp for example). . : Lo
-» sip:[servicel] @renote_ip]:[renote_port]
See co_ndltlonql SIP2.0
branchlng section for Vi a:
more info. From
To: ...
Call -1D:
Cseq: ...
Cont act :

I\/ax For war ds:
Subj ect :

Cont ent - Length: O

1>
</ send>
counter Increments the counter = <send
given as parameter counter="1">:
when the message is Increments counter #1
sent. A total of 5 when the message is
counter can be used. sent.
The counter are saved
in the statistic file.
<recv> response Indicates what SIP <recv
message code is response="200">:
expected. SIPp will expect a SIP
message with code
"200".
request Indicates what SIP <recv
message request is request =" ACK" >:
expected. SIPp will expect an

"ACK" SIP message.

optional Indicates if the <recv
message to receive is | response="100"
optional. In case of an opti onal ="true">:

Page 20

SIPp

optional message and | The 100 SIP message

if the message is can be received
actually received, itis without being
not seen as a considered as

unexpected message. @ "unexpected".

crlf Displays an empty line ' <recv
after the arrow forthe | crlf="true">
message in main SIPp

screen.
rrs Record Route Set. if <r ecv
this attribute is set to response="100"
"true", then the rrs="true">.

"Record-Route:"
header of the message
received is stored and
can be recalled using
the [routes] keyword.

auth Authentication. if this <recv
attribute is set to "true", | r esponse="407"
then the aut h="true">.

"Proxy-Authenticate:"
header of the message
received is stored and
is used to build the
[authentication]

keyword.
start_rtd Starts one of the 5 <recv
"Response Time start_rtd="4">:the
Duration" timer. (see timer number 4 will
statistics section). start when the
message is received.
rtd Stops one of the 5 <recv rtd="4">:the
"Response Time timer number 4 will
Duration" timer. stop when the

message is received.

Page 21

lost

action

next

test

Emulate packet lost.

The value is specified

as a percentage.

Specify an action when
receiving the message.
See Actions section for

possible actions.

You can put a "next" in
an optional receive to

go to another part of

the script if you receive

that message. See

conditional branching

section for more info.

You can put a "test" in
an optional receive to

go to another part of

the script if you receive

that message only if

<recv | ost="10">
10% of the message

received are thrown
away.

Example of a "regular

expression” action:
<recv

response="200">

<acti on>
<ereg

regexp—"([O 9]{1 3¥V.){3}[0-9]{1, 3}:

search_i n="nmnsg
check_it=" true

assign to="1,2"/>

</ action>
</recv>

Example to jump to
label "5" when
receiving a 403
message:

<recv
response="100"

optional ="true">

</recv>
<recv
response="180"

optional ="true">

</recv>
<recv
response="403"
optional ="true"
next =" 5">
</recv>
<recv

response="200">

</recv>

Example to jump to
label "5" when
receiving a 403
message only if
variable 3 is set:

SIPp

Page 22

SIPp

chance

counter

regexp_match

the variable specified
by "test" is set. See

conditional branching
section for more info.

In combination with
"test", probability to
actually branch to
another part of the
scenario. Chance can
have a value between
0 (never) and 1
(always). See

conditional branching
section for more info.

Increments the counter
given as parameter
when the message is
received. A total of 5
counter can be used.
The counter are saved
in the statistic file

Boolean. Indicates if
'request’ (‘response’ is
not available) is given
as a regular
expression. If so, the
recv command will

<recv
response="100"
optional ="true">

</recv>

<recv
response="180"
optional ="true">

</recv>

<recv
response="403"
optional ="true"
next =" 5"
test="3">

</recv>

<recv
response="200">

</recv>

<recv
response="403"
optional ="true"
next ="5" test="3"
chance="0. 90" >
</recv>
90% chance to go to
label "5" if variable "3"
is set.

<recv
counter="1">:
Increments counter #1
when the message is
received.

Example of a recv
command that
matches MESSAGE or
PUBLISH or
SUBSCRIBE requests:
<recv

Page 23

<pause>

milliseconds

min

max

normal

match against the
regular expression.
This allows to catch
several cases in the
same receive
command.

Specify the pause
delay, in milliseconds.
When this delay is not
set, the value of the - d
command line
parameter is used.

Indicates a minimum
value for a pause. A
random pause is
executed between min
and max values, using
a uniform distribution.

Indicates a maximum
value for a pause. A
random pause is
executed between min
and max values, using
a uniform distribution..

If true, use a normal
distribution pause with
a mean and standard
deviation (if GSL is
available at compile
time).

request =" MESSAGE| PUBLI SH SUBSCRI BE"
crif="true"

regexp_match="true">

</recv>

<pause

m | liseconds="5000"/>:
pause the scenario for

5 seconds.

<pause ni n="2000"
max="5000"/ > for
pauses between 2 and
5 seconds.

<pause m n="2000"
max="5000"/ > for
pauses between 2 and
5 seconds.

<pause

nor mal ="true"
mean="60000"

st dev="15000"/ >
provides a normal
pause with a mean of
60 seconds (i.e.
60,000 ms) and a
standard deviation of
15 seconds. The mean
and standard deviation
are specified as integer
milliseconds. The

SIPp

Page 24

SIPp

lognormal

exponential

If true, the pause is
specified in terms of
the mean and standard
deviation of the normal
distribution that is
exponentiated. (if GSL
is available at compile
time).

If true, the pause is
specified using an
exponential
distribution, with an
integer mean. (if GSL
is available at compile
time).

distribution will look
like:

! I
N W
<pause
| ognor mal ="t rue"
nmean="12. 28"

stdev="1" />
creates a distribution's
whose natural
logarithm has a mean
of 12.28 and a
standard deviation of
1. The mean and
standard deviation are
specified as double
values (in
milliseconds). The
distribution will look
like:

<pause
exponential ="true
nmean="900000"/ >
creates an
exponentially
distributed pause with
a mean of 15 minutes.
The distribution will

Page 25

<nop>

Weibull

crif

next

action

If true, the pause is
specified using a
Weibull distribution,
with integer scale and
shape. (if GSL is
available at compile
time).

Displays an empty line
after the arrow for the
message in main SIPp
screen.

You can put a "next" in
a pause to go to
another part of the
script when you are
done with the pause.
See conditional
branching section for
more info.

The nop command
doesn't do anything at
SIP level. It is only
there to specify an
action to execute. See
Actions section for
possible actions.

look like:
1
"
-
<pause
wei bul | ="true"
| anbda="3" k

=" 4"/ > creates an

Weibull distributed

pause with scale of 3

and a shape of 4.(See

Weibull on Wikipedia
(http://en.wikipedia.org/wiki/Weibull)
for an explanation of

the distribution.)

<pause
crlif="true">

Example to jump to

label "7" after pausing

4 seconds:

<pause
ml|iseconds="4000"
next="7"/>

Execute the
play_pcap_audio/video
action:
<n0p>
<acti on>
<exec

pl ay_pcap_audi o="pcap/ g71la. pcap"/ >

SIPp

Page 26

http://en.wikipedia.org/wiki/Weibull

SIPp

start_rtd

rtd

<sendCmd> <I[CDATA[]]>
dest
<recvCmd> action
src

Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

Stops one of the 5
"Response Time
Duration" timer.

Content to be sent to
the twin 3PCC SIPp
instance. The Call-ID
must be included in the
CDATA. In 3pcc
extended mode, the
From must be included
to.

3pcc extended mode
only: the twin sipp
instance which the
command will be sent
to

Specify an action when
receiving the
command. See Actions
section for possible
actions.

3pcc extended mode
only: indicate the twin

</ action>
</ nop>

<nop
start_rtd="1">:the
timer number 1 starts
when nop is executed.

<nop rtd="1">:the
timer number 1 will
stops when nop is
executed.

<sendCnd>
<! [CDATA[
Call -1D:
[call _id]
[$1]

11>
</ sendCnd>

<sendCnd

dest ="s1">: the
command will be sent
to the "s1" twin
instance

Example of a "regular
expression"” to retrieve
what has been send by
a sendCmd command:
<r ecvCmd>
<action
<er eg

regexp="Cont ent - Type: .

search_i n="nsg

assign_to="2"/>
</ action>

</ recvCnd>

<recvCmd src =
"s1">: the command

%N

Page 27

SIPp

sipp instance which the = will be expected to be
command is expected | received from the "s1"
to be received from twin instance

<label> id A label is used when Example: set label
you want to branchto number 13:
specific parts in your <l abel id="13"/>
scenarios. The "id"
attribute is an integer
where the maximum
value is 19. See
conditional branching
section for more info.

<Response Time value Specify the intervals, in = <ResponseTi meRepartition
Repartition> milliseconds, used to val ue="10, 20,

distribute the values of | 30"/ >: response time

response times. values are distributed

between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

<Call Length value Specify the intervals, in <Cal | Lengt hRepartition
Repartition> milliseconds, used to val ue="10, 20,
distribute the values of | 30"/ >: call length
the call length values are distributed
measures. between 0 and 10ms,

10 and 20ms, 20 and
30ms, 30 and beyond.

Table 1: List of commands with their attributes

There are not so many commands:. send, recv, sendCmd, recvCmd, pause, ResponseTimeRepartition and CallL engthRepartition. To make things even clearer, nothing
is better than an example...

A client scenario is a scenario that starts with a"send" command. So let's start:

<scenari o nane="Basi ¢ Si pstone UAC'>
<send>
<! [CDATA[

Page 28

SIPp

I NVI TE sip:[servicel]@renote ip]:[remte port] SIP/ 2.0
Via: SIP/2.0/[transport] [local ip]:[local _port]

From sipp <sip:sipp@Ilocal _ip]:[local _port]>;tag=[call _nunber]
To: sut <sip:[service]@renote ip]:[renpte _port]>
Call-1D: [call_id]

Cseq: 1 INVITE

Contact: sip:sipp@!local _ip]:[local_port]

Max- Forwards: 70

Subj ect: Performance Test

Cont ent - Type: application/sdp

Content-Length: [Ilen]

v=0

o=user 1l 53655765 2353687637 IN I P[local _ip_type] [|ocal _ip]
S=-

t=0 0

c=IN IP[nedia_ip type] [nedia_ip]

mFaudi o [nmedi a_port]|] RTP/ AVP 0O

a=rt pmap: 0 PCMJ 8000

>
</ s]end>
Inside the "send" command, you have to enclose your SIP message between the "<![CDATA" and the "]]>" tags. Everything between those tags is going to be sent
toward the remote system. Y ou may have noticed that there are strange keywords in the SIP message, like [service], [remote _ip], Those keywords are used to
indicate to SIPp that it has to do something with it.

Hereisthelist:

[service] service Service field, as passed in the
-S service_nane

[remote_ip] - Remote IP address, as passed
on the command line.

[remote_port] 5060 Remote IP port, as passed on
the command line. You can add
a computed offset
[remote_port+3] to this value.

[transport] UDP Depending on the value of -t

Page 29

[local_ip]

[local_ip_type]

[local_port]

[len]

[call_number]

[cseq]

[call_id]

Primary host IP address

Random

parameter, this will take the
values "UDP" or "TCP".

Will take the value of -i
parameter.

Depending on the address type
of -i parameter (IPv4 or IPv6),
local_ip_type will have value
"4" for IPv4 and "6" for IPv6.

Will take the value of -p
parameter. You can add a
computed offset [local_port+3]
to this value.

Computed length of the SIP
body. To be used in
"Content-Length" header. You
can add a computed offset
[len+3] to this value.

Index. The call_number starts
from "1" and is incremented by
1 for each call.

Generates automatically the
CSeq number. The initial value
is 1 by default. It can be
changed by using the

- base_cseq command line
option.

A call_id identifies a call and is
generated by SIPp for each
new call. In client mode, it is
mandatory to use the value
generated by SIPp in the
"Call-ID" header. Otherwise,
SIPp will not recognise the
answer to the message sent as
being part of an existing call.

SIPp

Page 30

SIPp

[media_ip]

[media_ip_type]

[media_port]

[auto_media_port]

[last_*]

Note: [call_id] can be
pre-pended with an arbitrary
string using '//I'. Example:
Call-ID:
ABCDEFGHIJ///[call_id] - it will
still be recognized by SIPp as
part of the same call.

Depending on the value of -mi
parameter, it is the local IP
address for RTP echo.

Depending on the address type
of -mi parameter (IPv4 or
IPv6), media_ip_type will have
value "4" for IPv4 and "6" for
IPv6. Useful to build the SDP
independently of the media IP

type.

Depending on the value of -mp
parameter, it set the local RTP
echo port number. Default is
none. RTP/UDP packets
received on that port are
echoed to their sender. You
can add a computed offset
[media_port+3] to this value.

Only for pcap. To make audio
and video ports begin from the
value of -mp parameter, and
change for each call using a
periodical system, modulo
10000 (which limits to 10000
concurrent RTP sessions for

pcap_play)

The '[last_*]' keyword is
replaced automatically by the
specified header if it was

Page 31

[field0-n]

[$n]

[authentication]

[pid]

present in the last message
received (except if it was a
retransmission). If the header
was not present or if no
message has been received,
the '[last_*]' keyword is
discarded, and all bytes until
the end of the line are also
discarded. If the specified
header was present several
times in the message, all
occurences are concatenated
(CRLF separated) to be used in
place of the '[last_*]' keyword.

Used to inject values from an
external CSV file. See
"Injecting values from an
external CSV during calls"
section.

Used to inject the value of call
variable number n. See
"Actions" section

Used to put the authentication
header. This field can have
parameters, in the following
form: [authentication
username=myusername
password=mypassword]. If no
username is provided, the
value from -s command line
parameter (service) is used. If
no password is provided, the
value from -ap command line
parameter is used. See
"Authentication" section

Provide the process ID (pid) of
the main SIPp thread.

SIPp

Page 32

SIPp

[routes] - If the "rrs" attribute in a recv
command is set to "true", then
the "Record-Route:" header of
the message received is stored
and can be recalled using the
[routes] keyword

[next_url] - If the "rrs" attribute in a recv
command is set to "true", then
the [next_url] contains the
contents of the Contact header
(i.e within the '<" and >' of
Contact)

[branch] - Provide a branch value which is
a concatenation of magic
cookie (z9hG4bK) + call
number + message index in
scenario.

[msg_index] - Provide the message number
in the scenario.

[cseq] - Provides the CSeq value of the
last request received. This
value can be incremented (e.g.
[cseg+1] adds 1 to the CSeq
value of the last request).

Table 1: Keyword list

Now that the INVITE message is sent, SIPp can wait for an answer by using the "recv" command.

<recv response="100"> optional ="true"
</recv>

<recv response="180"> optional ="true"
</recv>

<recv response="200">
</recv>

100 and 180 messages are optional, and 200 is mandatory. In a " recv" sequence, there must be one mandatory message.

Page 33

SIPp

Now, let's send the ACK:

<send>
<! [CDATA[

ACK sip:[servicel]@renote ip]:[renmote port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[local _port]

From sipp <sip:sipp@!ocal _ip]:[local_port]>;tag=[call_nunber]
To: sut <sip:[service]@renote ip]:[renpte _port]>[peer _tag_parani
Call-ID: [call_id]

Cseq: 1 ACK

Contact: sip:sipp@Ilocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Content-Length: O

11>

</ send>

We can also insert a pause. The scenario will wait for 5 seconds at this point.
<pause nilliseconds="5000"/>

And finish the call by sending a BY E and expecting the 200 OK:

<send retrans="500">
<! [CDATA[

BYE sip:[servicel] @renpte ip]:[remte port] SIP/ 2.0

Via: SIP/2.0/[transport] [local ip]:[local_port]

From sipp <sip:sipp@I|ocal _ip]:[local_port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote_ ip]:[renmote_port]>[peer_tag parani
Call-ID: [call_id]

Cseq: 2 BYE

Contact: sip:sipp@Ilocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Content-Length: O

1>
</ send>

<recv response="200">
</recv>
And thisisthe end of the scenario:

</ scenari 0>

Page 34

SIPp

Creating your own SIPp scenariosis not abig deal. If you want to see other examples, use the - sd parameter on the command line to display embedded scenarios.
Note that SIPp now supports short form headers (e.g "Call-id:" can be replaced by "i:").

A server scenario is ascenario that starts with a"recv" command. The syntax and the list of available commandsisthe same asfor "client" scenarios.

But you are more likely to use [last_*] keywords in those server side scenarios. For example, aUAS example will ook like:

<recv request="1NVITE">
</recv>

<send>
<! [CDATA[

SIP/2.0 180 Ri nging

[last _Via:]

[l ast _From]

[last _To:];tag=[cal | _nunber]

[last_Call-ID:]

[last _CSeq:]

Contact: <sip:[local _ip]:[local _port];transport=[transport]>
Content-Length: O

11>

</ send>
The answering message, 180 Ringing in this case, is built with the content of headers received in the INVITE message.

Ina"recv" or "recvCmd" command, you have the possibility to execute an action. Several actions are available:
Regular expressions (ereg)

Log something in aalog file (1og)

Execute an external (system), internal (int_cmd) or pcap play_audio/pcap play video command (exec)

Using regular expressionsin SIPp allowsto

Page 35

» Extract content of a SIP message or a SIP header and store it for future usage (called re-injection)

» Check that a part of a SIP message or of an header is matching an expected expression

SIPp

Regular expressions used in SIPp are defined per Posix Extended standard (POSIX 1003.2) (http://www.opengroup.org/onlinepubs/007908799/xbd/re.html) . If you

want to learn how to write regular expressions, | will recommend this regexp tutorial (http://analyser.oli.tudelft.nl/regex/index.html.en) .

Hereisthe syntax of the regexp action:

regexp

search_in

header

case_indep

occurence

start_line

check it

assign_to

None

msg

None

false

false

false

None

Contains the regexp to use for
matching the received
message or header.
MANDATORY.

can have 2 values: "msg" (try to
match against the entire
message) or "hdr" (try to match
against a specific SIP header).

Header to try to match against.
Only used when the search_in
tag is set to hdr. MANDATORY
IF search_in is equal to hdr.

To look for a header ignoring
case . Only used when the
search_in tag is set to hdr.

To find the nth occurence of a
header. Only used when the
search_in tag is set to hdr.

To look only at start of line.
Only used when the search_in
tag is set to hdr.

if set to true, the call is marked
as failed if the regexp doesn't
match.

contain the variable id (integer)

Page 36

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://analyser.oli.tudelft.nl/regex/index.html.en

SIPp

or a list of variable id which will
be used to store the result(s) of
the matching process between
the regexp and the message.
Those variables can be re-used
at a later time either by using
'[$n]' in the scenario to inject
the value of the variable in the
messages or by using the
content of the variables for
conditional branching. The first
variable in the variable list of
assign_to contains the entire
regular expression matching.
The following variables contain
the sub-expressions matching.
Example:

<er eg
regexp="o=([[:alnum]]*)
([[:alnum]]*)
([[:alnum]]*)"

search_i n="nmsg"

check it=i"true"
assign_to="3,4,5,8"/>

If the SIP message contains
the line

o=user1l 53655765
2353687637 I N | P4
127.0.0.1

variable 3 contains "o=userl
53655765 2353687637",
variable 4 contains "userl",
variable 5 contains "53655765"
and variable 8 contains
"2353687637".

Table 1: regexp action syntax

Note that you can have several regular expressionsin one action.

The following exampleis used to:

Page 37

SIPp

» First action:
» Extract thefirst IPv4 address of the received SIP message
» Check that we could actually extract this IP address (otherwise call will be marked as failed)
» Assign the extracted |P address to call variables 1 and 2.

« Second action:
» Extract the Contact: header of the received SIP message
* Assign the extracted Contract: header to variable 6.

<recv response="200" start _rtd="true">
<acti on>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="nsg" check it="true" assign_to="1,2" />
<ereg regexp=".*" search_in="hdr" header="Contact:" check it="true" assign_to="6" />
</ action>
</recv>

The"log" action allows you to customize your traces. Messages are printed in the <scenario file name>_<pid>_logs.log file. Any keyword is expanded to reflect the
value actually used.

Logs are generated only if -trace_logs option is set on the command line.

Example:
<recv request="INVITE" crlf="true" rrs="true">
<acti on>
<ereg regexp=".*" search_in="hdr" header="Sone- New Header:" assign to="1" />
<l og nessage="Fromis [last_Fron]. Custom header is [$1]"/>
</ action>
</recv>

The "exec" action allows you to execute "internal”, "external”, "play_pcap_audio™” or "play_pcap_video" commands.

Page 38

SIPp

Internal commands (specified using int_cmd attribute) are stop_call, stop_gracefully (similar to pressing 'q’), stop_now (similar to ctrl+C).

Example that stops the execution of the script on receiving a 603 response:

<recv response="603" optional ="true">
<action>
<exec int_cnd="stop_now'/>
</ action>
</recv>

External commands
External commands (specified using command attribute) are anything that can be executed on local host with a shell.

Example that execute a system echo for every INVITE received:

<recv request="1NVITE">
<acti on>
<exec command="echo [last_From is the from header received >> fromlist.log"/>
</ action>
</recv>

PCAP play commands (specified using play_pcap_audio / play_pcap_video attributes) allow you to send a pre-recorded RTP stream using the pcap library
(http://www.tcpdump.org/pcap3_man.html) .

Choose play_pcap_audio to send the pre-recorded RTP stream using the "m=audio” SIP/SDP line port as a base for the replay.
Choose play_pcap_video to send the pre-recorded RTP stream using the "m=video" SIP/SDP line port as a base.

The play_pcap_audio/video command has the following format: play_pcap audio="[file_to_play]" with:
» file_to_play: the pre-recorded pcap file to play

The action is non-blocking. SIPp will start alight-weight thread to play the file and the scenario with continue immediately. If needed, you will need to add a pause to wait for the end of the pcap play.

Example that plays a pre-recorded RTP stream:

<nop>
<action>
<exec play_pcap_audi o="pcap/ g71la. pcap"/ >

Page 39

http://www.tcpdump.org/pcap3_man.html

SIPp

</ action>
</ nop>

Youcanuse"-i nf file_name" asacommand line parameter to input values into the scenarios. Thefirst line of the file should say whether the datais to be read
in sequence (SEQUENTIAL) or random (RANDOM) order. Each line corresponds to one call and has one or more*;" delimited data fields and they can be referred as
[fieldQ], [field1], ... in the xml scenario file. Example:

SEQUENTI AL

#This line will be ignored

Sar ah; si pphone32

Bob; si pphonel2

#This |1 ne too

Fr ed; si pphone94

Will be read in sequence (first call will usefirst line, second call second line). At any place where the keyword "[field0]" appears in the scenario file, it will be
replaced by either "Sarah”, "Bob" or "Fred" depending on the call. At any place where the keyword "[field1]" appearsin the scenario file, it will be replaced by either
"sipphone32" or "sipphonel2” or "sipphone94” depending on the call. At the end of the file, SIPp will re-start from the beginning. The fileisnot limited in size.

The CSV file can contain comment lines. A comment lineis aline that startswith a"#".

As apicture says more than 1000 words, here is one:

Page 40

SIPp

SCenano.xml |
=setd >
<! [CDDATA[

INVITE =ip: [servite]@[remote ip]: [remote port] EIPSZ_0
Via: BIP/Z. 0/ [tfan=port] [local ip]: [local port]

From: [field0]F-=zip:[fieldl]fi[local ip]: [local port]s;tag=[call mmber]
To: =ut <=ip: [service]d [remo® ip]: [remote port] =

Call-ID: [call idl daabaze csy |
C=zeq: 1 INVITE
Contact: sip: [Beldl]#[local ipl: tlocal port] EQOUENTIAL

Max-Forwards: 70
Suhject: Performance Te
Content—Type: applicati
Content—Length: 136

arah;sipphonei:
Eobh:sipphonelz
Fred;sipphoneS4

/

=0
o=uaserl EIEEE7EE EF3EZEE7637 IN IP4 1
===

t=0 0

c=IN IP4 [media ip]

w=audic [mwedia port] ETPSAVE O
a=rtpmap -0 PCMITS 2000

11%
=S =ernd=-

Think of the possibilities of thisfeature. They are huge.

It is possible to execute a scenario in anon-linear way. Y ou can jump from one part of the scenario to another for example when a message is received or if a call

Page 41

SIPp

variableis set.

You definealabel (inthexml) as<l abel i d="n"/> Wherenisanumber between 1 and 19 (we can easily have more if needed). The label commands go
anywhere in the main scenario between other commands. To any action command (send, receive, pause, etc.) you add a next="n" parameter, where n matches the id of
alabel. When it has done the command it continues the scenario from that label. This part is useful with optional receives like 403 messages, because it allows you
to go to adifferent bit of script to reply to it and then rejoin at the BY E (or wherever or not).

Alternatively, if you add atest="m" parameter to the next, it goesto the label only if variable [$m] is set. This alows you to ook for some string in a received packet
and alter the flow either on that or alater part of the script.

i If you add special cases at the end, don’t forget to put alabel at the real end and jump to it at the end of the normal flow. |

Example:

The following example corresponds to the embedded 'branchc' (client side) scenario. It has to run against the embedded 'branchs’ (server side) scenario.

Page 42

SIPp

Branch_client Branch_server

Send REGISTER

,@ Receive 200 OK
P

Receiva 200 QK

Label 5

. S N S N SN S . S SN S S

hO.
® o
®

Page 43

SIPp

@ Receive 200 QK
Send ACK
ra
/
For 25" call @ Pause
1
\‘® Label 1
Send BYE
Feceive 200 OK

To have SIPp behave somewhat more like a"normal” SIP client being used by a human, it is possible to use "statistical branching". Wherever you can have a

Page 44

SIPp

conditional branch on avariable being set (test="4"), you can aso branch based on a statistical decision using the attribute "chance" (e.g. chance="0.90"). Chance can
have a value between 0 (never) and 1 (always). "test” and "chance" can be combined, i.e. only branching when the test succeeds and the chance is good.

With this, you can have avariable reaction in a given scenario (e.g.. answer the call or reject with busy), or run around in aloop (e.g. registrations) and break out of it
after some random number of iterations.

SIPp supports SIP authentication. Two authentication algorithm are supported: Digest/MD5 ("algorithm="MD5"") and Digest/AKA ("algorithm="AKAv1-MD5"", as
specified by 3GPP for IMS).

} To enable authentication support, SIPp must be compiled in a special way. See SIPp installation for details ‘

Enabling authentication is simple. When receiving a 401 (Unauthorized) or a 407 (Proxy Authentication Required), you must add auth="true" in the <recv> command
to take the challenge into account. Then, the authorization header can be re-injected in the next message by using [authentication] keyword.

Computing the authorization header is done through the usage of the "[authentication]” keyword. Depending on the algorithm ("MD5" or "AKAv1-MD5"), different
parameters must be passed next to the authentication keyword:

« Digest/MD5 (example: [authentication username=joe password=schmo])
e username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
» password: password: if no password is specified, the password is taken from the '-ap' (authentication password) command line parameter

« Digest/AKA: (example: [authentication username=HappyFeet aka OP=0xCDC202D5123E20F62B6D676AC72CB318
aka_K=0x465B5CE8B199B49FAA5F0A2EE238A6BC aka AMF=0xB9B9])
e username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
o aka K: Permanent secret key. If no aka K is provided, the "password" attributed is used as aka K.
e aka OP: OPerator variant key
» aka AMF: Authentication Management Field (indicates the algorithm and key in use)

In case you want to use authentication with a different username/password or aka K for each call, you can do this:

o MakeaCSsV likethis:

SEQUENTI AL
User 0001; [aut henti cati on user nane=j oe passwor d=schno]
User 0002; [aut henti cati on user nane=j ohn passwor d=snit h]

Page 45

User 0003; [aut henti cati on usernane=betty passwor d=boop]
And an XML like this (the [field1] will be substituted with the full auth string, which is the processed as a new keyword):
<send retrans="500">

<! [CDATA[

REQ STER sip:[rempte ip] SIP/2.0

Via: SIP/2.0/[transport] [local ip]:[local _port]
To: <sip:[field0] @Ip.com[renpte port]>

From <sip:[fieldO]@renote ip]:[renote port]>

Contact: <sip:[fieldO]@!ocal ip]:[local_port]>;transport=[transport]

[fieldl]

Expires: 300
Call-1D: [call_id]
CSeq: 2 REdJ STER
Content-Length: O

1>
</ send>

Example:

<recv response="407" aut h="true">
</recv>

<send>
<! [CDATA[

ACK sip:[servicel]@renote ip]:[renpte port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[local_port]

From sipp <sip:sipp@!ocal ip]:[local _port]>;tag=[call _nunber]
To: sut <sip:[service] @renpte ip]:[renote _port]>[peer _tag paranj
Call-1D: [call_id]

CSeq: 1 ACK

Contact: sip:sipp@!local _ip]:[local_port]

Max- Forwards: 70

Subj ect: Performance Test

Content-Length: O

1>
</ send>
<send retrans="500">
<! [CDATA[
I NVI TE sip:[service]@prenn |] [rempte _port] SIP/2.0
Via: SIP/2.0/[transport] [l _ip]:[!local _port]

SIPp

Page 46

SIPp

From sipp <sip:sipp@Ilocal _ip]:[local_port]>;tag=[call _nunber]
To: sut <sip:[service]@renote_ip]:[renote_port]>

Call-1D: [call_id]

CSeq: 2 INVITE

Contact: sip:sipp@Ilocal _ip]:[local_port]

[aut henti cati on user nane=f oouser]

Max- Forwar ds: 70

Subj ect: Perfornmance Test

Cont ent - Type: appl i cation/sdp

Content-Length: [Ilen]

v=0

o=user 1l 53655765 2353687637 IN I P[local _ip_type] [local _ip]
S=-

t=0 0

c=IN IP[nedia_ip type] [nedia_ip]

mFaudi o [medi a_port] RTP/ AVP O

a=rt pmap: 0 PCMJ 8000

1>
</ send>

Several screens are available to monitor SIP traffic. Y ou can change the screen view by pressing 1 to 9 keys on the keyboard.
« Key 1" Scenario screen. It displays acall flow of the scenario as well as some important informations.

Page 47

SIPp

*_' ocadmin@ayvista:-fsipp.2004-07-05 E]@E]
-

cenario [1-4]: Change Screen —-
tlengthl) ot Total-time : emote-host
cps (0 m=) EO&s1 0.0l = SLE6 O_1:E5E0&0 (TP
120 new calls during 1.000 = period 3 m=s scheduler resolution
205 concurrent calls (limit E£70) =¥ TS calls, after & =
0 out-of-call m=sg [(discarded)
1l open sockets

: et Timeout Thexpected-M=qg
INVITE F : ;]
100

Enin]

Key '2'. Statistics screen. It displays the main statistics counters. The "Cumulative" column gather all statistics, since SIPp has been launched. The "Periodic”
column gives the statistic value for the period considered (specified by - f f r equency command line parameter).

Page 48

SIPp

pcadmin@vista:-fsipp.2004-07-05 =18
~

[1-4]: Change
Start
Last

Elap=sed Time

Incoming call
OutGoing call
Total Call created
Current Call

Succe:
ponse

Call Length 2 1- aaa
[+]-1*]/]: Adjust r: i

« Key '3" Repartition screen. It displays the distribution of response time and call length, as specified in the scenario.

Page 49

laan
1040
lasn
11z0
lia0

]
1000

11la0
1z00

1z00

g e il 8

m=
m=
ms

ms

#* ocadming@vista:-fsipp.2004-07-05 -
~

Pepartition Screen [1-4]: Change Screen --
Time Pepartition
n = 1000

n =

= 1 =

=n =

=mn <

Call Length Pepartition

= 1n « 1100
= n =

=1n = 130
= 1n « 1400

n =

[
(%]

n =

n = 1000

s

1400

Key '4". Variables screen. It displays informations on actions in scenario as well as scenario variable informations.

SIPp

Page 50

SIPp

,—f ocadminavista:-fsipp.2004-07-05

[1-4]: Change Screen -—-

defined

checkIt[l] - warId[l]
actinn[l] = checkIt[l] - warId[Z]
actionl[Z] = Typel[l] - where[Header-Contact:] - checkIt[l] - warId[&]

Wariable List
; ariable[l] : =et J'ﬂ V{3F[0-21{1,3}: [0-9]*]
- Wariahle[Z£] : =sett V{2FI[0-921{1,2}: [0=-2]*]
= Wariahle[&]

[+1-1*%I]F

3.9. Transport modes

SIPp has several transport modes. The default transport mode is "UDP mono socket".

3.9.1. UDP mono socket

Page 51

SIPp

In UDP mono socket mode (-t ul command line parameter), one |P/UDP socket is opened between SIPp and the remote. All calls are placed using this socket.

Thismode is generally used for emulating arelation between 2 SIP servers.

In UDP multi socket mode (-t un command line parameter), one |P/UDP socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP server.

In UDP with one socket per IP addressmode (-t ui command line parameter), one IP/UDP socket is opened for each |P address given in the inf file.

In addition to the "-t ui" command line parameter, one must indicate which field in theinf fileisto be used aslocal |P address for this given call. Use "-ip_field <nb>"
to provide the field number.

There are two distinct cases to use this feature:

« Client side: when using -t ui for a client, SIPp will originate each call with adifferent IP address, as provided in theinf file. In this case, when your | P addresses
areinfield X of theinject file, then you have to use [fieldX] instead of [local _ip] in your UAC XML scenario file.

« Server side: when using -t ui for aserver, SIPp will bind itself to all the IP addresses listed in the inf file instead of using 0.0.0.0. Thiswill have the effect SIPp
will answer the request on the same IP on which it received the request. In order to have proper Contact and Viafields, a keyword [server_ip] can be used and
provides the | P address on which a request was received. So when using this, you have to replace the [local _ip] in your UAS XML scenario file by [server_ip].

In the following diagram, the command line for a client scenario will look like: . / si pp -sf nyscenario.xm -t ui -inf database.csv
-ip_field 2 192.168.1.1
By doing so, each new call will come sequentially from IP 192.168.0.1, 192.168.0.2, 192.168.0.3, 192.168.0.1, ...

Page 52

SIPp

sCenanoxml |
=z end=
= [CDATA [

INVITE =ip: [servite]@d[remote ip]: [remote port] SIPFZ. 0
Via: BIP/z. 0/ [tfansport] [local ipl:[local port]

From: [field0]f==sip:[Heldll@[local ipl: [local port]x;tag=[call mmbear]
To: sut <=ip: [service]d[remof ip]: [remote port] =
Call-Th: [call id] databaze . cay |
Cseq: 1 INVITE
EEQUENTIAL
arah:sipphone3Z 192 .1658.0.1

Contact: zip: [Heldl]@[local ip]:
Bob:sipphonelz 192 .165.0. 2

Max-Forwards=s: 70
Subject: Performance Te

Fred:zipphone94:19:2 . 1658.0.3
-

ocal port]

Content—Type: applicati
Content-Length: 136

=0
o=uszerl E36LE76L E3L3687637 IN IP4 1
s=—

=0 0

c=IN IP4 [media ip]

m=audic [media port] BTPAAVE O
asrtpmap: 0 PCMO 2000

11=
=/ zserid-

This mode is generally used for emulating user agents, using on | P address per user agent and calling a SIP server.

In TCP mono socket mode (-t t 1 command line parameter), one | P/TCP socket is opened between SIPp and the remote. All calls are placed using this socket.

This mode is generally used for emulating arelation between 2 SIP servers.

Page 53

SIPp

In TCP multi socket mode (-t t n command line parameter), one IP/TCP socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP server.

SIPp handles TCP reconnections. In case the TCP socket islost, SIPp will try to reconnect. The following parameters on the command line control this behaviour:

e -max_reconnect: Set the the maximum number of reconnection.
« -reconnect_close true/false: Should calls be closed on reconnect?
e -reconnect_sleep int: How long to sleep between the close and reconnect?

In TLS mono socket mode (-t | 1 command line parameter), one secured TL S (Transport Layer Security) socket is opened between SIPp and the remote. All calls
are placed using this socket.

This mode is generally used for emulating arelation between 2 SIP servers.

When using TL S transport, SIPp will expect to have two filesin the current directory: a certificate (cacert.pem) and a key (cakey.pem). If oneis protected with a password, SIPp will ask for it.

SIPp supports X509's CRL (Certificate Revocation List). The CRL isread and used if -t | s_cr| command line specifiesa CRL file to read.

In TLS multi socket mode (-t | n command line parameter), one secured TL S (Transport Layer Security) socket is opened for each new call between SIPp and the
remote.

This mode is generally used for emulating user agents calling a SIP server.

SIPp includes IPv6 support. To use IPv6, just specify the local |P address (-i command line parameter) to be an IPv6 IP address.
The following example launches a UAS server listening on port 5063 and a UAC client sending | Pv6 traffic to that port.

Page 54

./sipp -sn uas
./sipp -sn uac

fe80::204: 75ff:fedd: 19d9] -p 5063

i
-i [fe80::204: 75ff:fedd: 19d9] [fe80::204: 75ff:fedd: 19d9]: 5063

When using one of the "multi-socket" transports, the maximum number of sockets that can be opened (which corresponds to the number of simultaneous calls) will be
determined by the system (see how to increase file descriptors section to modify those limits). Y ou can also limit the number of socket used by using the
- max_socket command line option. Once the maximum number of opened sockets is reached, the traffic will be distributed over the sockets already opened.

SliPpisoriginally asignalling plane traffic generator. Thereis alimited support of media plane (RTP).

The "RTP echo" feature allows SIPp to listen to one or two local 1P address and port (specified using - m and - np command line parameters) for RTP media.
Everything that is received on this address/port is echoed back to the sender.

RTP/UDP packets coming on this port + 2 are al'so echoed to their sender (used for sound and video echo).

The PCAP play feature makes use of the PCAP library (http://www.tcpdump.org/pcap3_man.html) to replay pre-recorded RTP streams towards a destination. RTP
streams can be recorded by tools like Wireshark (http://www.wireshark.org/) (formerly known as Ethereal) or tcpdump (http://www.tcpdump.org/) . This allows you
to:

Play any RTP stream (voice, video, voicetvideo, out of band DTMFs/RFC 2833, T38 fax, ...)

Use any codec as the codec is not handled by SIPp

Emulate precisaly the behavior of any SIP equipment as the pcap play will try to replay the RTP stream as it was recorded (limited to the performances of the
system).

» Reproduce exactly what has been captured using an | P sniffer like Wireshark (http://www.wireshark.org/) .

A good example isthe UAC with media (uac_pcap) embedded scenario.
SIPp comes with a G711 alaw pre-recorded pcap file and out of band (RFC 2833) DTMFs in the pcap/ directory.

Warning:

Page 55

http://www.tcpdump.org/pcap3_man.html
http://www.wireshark.org/
http://www.tcpdump.org/
http://www.wireshark.org/

| The PCAP play feature uses pthread_setschedparam calls from pthread library. Depending on the system settings, you might need to be root to allow this. Please check "man 3 pthread_setschedparam” man page for details

More details on the possible PCAP play actions can be found in the action reference section.
The latest info on this feature, tips and tricks can be found on SIPp wiki (http://sipp.sourceforge.net/wiki/index.php/Pcapplay) .

To ease automation of testing, upon exit (on fatal error or when the number of asked calls (- mcommand line option) is reached, sipp exits with one of the following
exit codes:

0: All calls were successful

1: At least one cdll failed

97: exit on internal command. Calls may have been processed
99: Normal exit without calls processed

-1: Fatal error

Depending on the system that SIPp is running on, you can echo this exit code by using "echo ?" command.

Response times can be gathered and reported. SIPp has 5 timers (the number is set at compile time) used to compute time between two SIPp commands (send, recv or
nop). You can start atimer by using the start_rtd attribute and stop it using the rtd attribute.

Y ou can view the value of those timers in the SIPp interface by pressing 3, 6, 7, 8 or 9. Y ou can also save the valuesin a CSV file using the -trace_stat option (see
below).

The-trace_stat option dumpsall statisticsin the scenario_name_pid.csv file. The dump starts with one header line with al counters. All following lines are
'snapshots of statistics counter given the statistics report frequency (-fd option). When SIPp exits, the last values of the statistics are a'so dumped in thisfile.

Thisfile can be easily imported in any spreadsheet application, like Excel.

In counter names, (P) means 'Periodic’ - since last statistic row and (C) means 'Cumulated’ - since sipp was started.

http://sipp.sourceforge.net/wiki/index.php/Pcapplay

SIPp

Available statistics are:

StartTime: Date and time when the test has started.

LastResetTime: Date and time when periodic counters where last reseted.

CurrentTime: Date and time of the statistic row.

ElapsedTime: Elapsed time.

CdlRate: Call rate (calls per seconds).

IncomingCall: Number of incoming calls.

OutgoingCall: Number of outgoing calls.

TotalCallCreated: Number of calls created.

CurrentCall: Number of calls currently ongoing.

SuccessfulCall: Number of successful calls.

FailedCall: Number of failed calls (all reasons).

FailedCannotSendMessage: Number of failed calls because Sipp cannot send the message (transport issue).

FailedMaxUDPRetrans: Number of failed calls because the maximum number of UDP retransmission attempts has been reached.

FailedUnexpectedM essage: Number of failed calls because the SIP message received is not expected in the scenario.

FailedCallRejected: Number of failed calls because of Sipp internal error. (a scenario sync command is not recognized or a scenario action failed or a scenario

variable assignment failed).

« FailledCmdNotSent: Number of failed calls because of inter-Sipp communication error (a scenario sync command failed to be sent).

« FailedRegexpDoesntMatch: Number of failed calls because of regexp that doesn't match (there might be severa regexp that don't match during the call but the
counter isincreased only by one).

» FailedRegexpHdrNotFound: Number of failed calls because of regexp with hdr option but no matching header found.

o OutOfCalMsgs: Number of SIP messages received that cannot be associated with an existing call.

« AutoAnswered: Number of unexpected specific messages received for new Call-1D. The message has been automatically answered by a 200 OK Currently,

implemented for 'PING' message only.

In addition, two other statistics are gathered:

» ResponseTime (see previous section)
« CdlLength: thisisthe time of the duration of an entire call.

Both ResponseTime and CallLength statistics can be tuned using ResponseTimeRepartition and CallL engthRepartition commands in the scenario.

Page 57

H 2
Y
=]

Hereisavideo (Windows Media Player 9 codec or above required) on how to import CSV statistic filesin Excel and create a graph of failed calls over time.
sipp-02.wmv (images/sipp-02.wmv)

SIPp has advanced feature to handle errors and unexpected events. They are detailed in the following sections.

When a SIP message that can be correlated to an existing call (withthe Cal | - 1 D: header) but is not expected in the scenario is received, SIPp will send a
CANCEL message if no 200 OK message has been received or aBY E message if a 200 OK message has been received. The call will be marked asfailed. If the
unexpected message isa4XX or 5XX, SIPp will send an ACK to this message, close the call and mark the call asfailed.

When a SIP message that can't be correlated to an existing call (withthe Cal | - | D: header) isreceived, SIPp will send aBY E message. The call will not be
counted at all.

When a SIP "PING" message is received, SIPp will send an ACK message in response. This message is not counted as being an unexpected message. But it is
counted in the "AutoAnswered" statistic counter.

An unexpected message that is not a SIP message will be smply dropped.

A retransmission mechanism exists in UDP transport mode. To activate the retransmission mechanism, the "send" command must include the "retrans” attribute.

When it is activated and a SIP message is sent and no ACK or response is received in answer to this message, the message is re-sent.

The retransmission mechanism follows RFC 3261, section 17.1.1.2. Retransmissions are differentiated between INVITE and non-INVITE methods.

<send retrans="500">: will initiate the T1 timer to 500 milliseconds.

Even if retransis specified in your scenarios, you can override this by using the - nr command line option to globally disable the retransmission mechanism.

Page 58

images/sipp-02.wmv

SIPp

There are several ways to trace what is going on during your SIPp runs.

e You can log sent and received SIP messagesin <name_of the _scenario>_<pid>_messages.log by using the command line parameter - t r ace_nsg. The
messages are time-stamped so that you can track them back.
« You cantrace al unexpected messages or eventsin <name_of _the scenario>_<pid>_errors.log by using the command line parameter -t r ace_err .
e You can savein afilethe statistics screens, as displayed in the interface. Thisis especially useful when running SIPp in background mode.
This can be done in two ways.
* When SIPp exitsto get afinal status report (-trace_screen option)
* Ondemand by using USR2 signal (example: ki | | - SI GUSR2 738)

* Youcanlogall call idsfor callsthat timeout (the maximum number of retransmissions for UDP transport is reached) by using the command line parameter
-trace_timeout

The online help, available through the -h option is duplicated here for your convenience
Usage:

sipp renpte_host[:renpte_port] [options]

Avai | abl e opti ons:

-V . Display version and copyright infornmation
- bg : Launch SIPp in background node.
-p local _port : Set the local port nunber. Default is a

random free port chosen by the system
-buff _size buff_size: Set the send and receive buffer size.

-i local ip : Set the local |IP address for 'Contact:',
"Via:', and 'From' headers. Default is
primary host | P address.

- bi nd_I ocal . Bind socket to local IP address, i.e. the local IP
address is used as the source |IP address.
If SIPp runs in server node it will only listen on the
| ocal I P address instead of all |P addresses.

-inf file_name : Inject values froman external CSV file during calls

Page 59

-d duration

-r rate (cps)

-rp period (ns)

-rate_i ncrease

-rate_max

- max_socket

max

into the scenari os.

First line of this file say whether the data is

to be read in sequence (SEQUENTI AL) or random

(RANDOM) or der.

Each |ine corresponds to one call and has one or
nore ';' delimted data fields. Those fields can be
referred as [fieldO], [fieldl], ... in the xnl

scenario file.

Controls the length (in mlliseconds) of
calls. More precisely, this controls

the duration of 'pause' instructions in
the scenario, if they do not have a
"mlliseconds' section. Default value is O.

Set the call rate (in calls per seconds).
Thi s val ue can be changed during test by
pressing '+ ," ','*" or '/'. Default is 10
pressing '+ key to increase call rate by 1,
pressing '-' key to decrease call rate by 1,
pressing '*' key to increase call rate by 10,
pressing '/' key to decrease call rate by 10.
If the -rp option is used, the call rate is
calculated wth the period in ns given

by the user.

Specify the rate period in mlliseconds for the cal
rate.

Default is 1 second.

This allows you to have n calls every mnilliseconds
(by using -r n -rp m.

Exanple: -r 7 -rp 2000 ==> 7 calls every 2 seconds.

Specify the rate increase every -fd seconds
This allows you to increase the |oad for each
i ndependent | oggi ng peri od
Exanpl e: -rate_increase 10 -fd 10

==> jncrease calls by 10 every 10 seconds.

If -rate_increase is set, then quit after the rate
reaches this val ue.
Exanpl e: -rate_increase 10 -max_rate 100

==> increase calls by 10 until 100 cps is hit.

Set the max nunmber of sockets to open simultaneously.

This option is significant if you use one socket

SIPp

Page 60

SIPp

-timer_resol

-max_recv_| oops

-up_nb

-base_cseq n

- | ost

-cid_str string

-auth_uri wuri

-sf fil enane

-Sn nane

per call. Once this linit is reached, traffic is
di stributed over the sockets al ready opened.
Default value is 50000.

Set the tiner resolution in mlliseconds.

This option has an inpact on tinmers precision

Smal | val ues all ow nore precise schedul i ng but

i npacts CPU usage.

If the conpression is on, the value is set to 50mns.
The default value is 200ns.

Set the maxi mum nunber of nessages received read per
cycle. Increase this value for high traffic |evel.
The default value is 1000.

Set the nunmber of updates of the internal clock during
t he readi ng of recelved nessages.
Default value is 1.

Start value of [cseq] for each call

Set the number of packets to |lose by default (scenario
specifications override this value).

Call ID string (default %u-%@s).
Yu=cal | _nunber, %=i p_address, %p=process_nunber,
%6% (i n any order).

Force the value of the URI for authentication
By default, the URI is conposed of
renote i p:renote_port.

Loads an alternate xm scenario file.

To | earn nore about XM. scenari o synt ax,
use the -sd option to dunp enbedded

ﬁanarios. They contain all the necessary
el p.

Use a default scenario (enbedded in

the sipp executable). If this optionis omtted,
the Standard Si pStone UAC scenario is | oaded
Avai |l abl e values in this version

' uac' : Standard Si pStone UAC (default).
‘uac_pcap' : Standard Si pStone UAC with pcap
pl ay (RTP)

Page 61

-ip_field nr

-sd nanme

' uas' : Sinple UAS responder

'regexp' : Standard Si pStone UAC - with
regexp and vari abl es.

"branchc' : Branching and conditiona
branching in scenarios - client.

"branchs' : Branching and conditiona

branching in scenarios - server.
Def aul t 3pcc scaneri os (see -3pcc option):

"3pcc-CA : Controller A side (nmust be started
after all other 3pcc scenari os)

'3pcc-C-B : Controller B side.

' 3pcc-A . A side.

' 3pcc-B . B side.

Set which field fromthe injection file contains the

I P address fromwhich the client will send its
nessages.

If this optionis omtted and the '-t ui' option is

present, then field O is assuned.
Use this option together with '-t ui'

Dunps a default scenario (enbeded in
t he si pp execut abl e)

-t [ullunfui|tl]tn]l1]In] : Set the transport node:

-trace_nsg

-trace_screen

-trace_ti nmeout

ul: UDP with one socket (default),

un: UDP with one socket per call

ui: UDP with one socket per |P address

The | P addresses nust be defined in the
injection file.

TCP with one socket,

TCP with one socket per call

TLS with one socket,

t
t
I
I TLS with one socket per call

o i e

Di spl ays sent and received SIP nessages in
<scenario file name>_<pi d>_nessages. | og

Dunp statistic screens in the

<scenari o_nane> <pi d> screens.log file when
quitting SIPp. Useful to get a final status report
i n background node (-bg option).

Di splays call ids for calls with timeouts in

SIPp

Page 62

SIPp

<scenario file name>_<pid>_ti nmeout. | og
-trace_stat : Dunps all statistics in <scenario_name>_<pi d>.csv
file. Use the '-h stat' option for a detailed
description of the statistics file content.
-stf file_nane . Set the file nane to use to dunp statistics
-stat_delimter string : Set the delimter for the statistics file

-trace_err : Trace all unexpected nmessages in
<scenario file name>_<pid>_errors.| og.

-trace_I ogs . Allow tracing of <log> actions in
<scenario file name>_<pi d>_| ogs. | og.

-trace_rtt . Allowtracing of all response times in
<scenario file nane> <pid> rtt.csv.

-rtt_freq freg : freq is mandatory. Dunp response tines
every freq calls in the log file defined
by -trace rtt. Default value is 200.

-s service_nanme : Set the usernane part of the resquest URI
Default is 'service'.

-ap password . Set the password for authentication chall enges.
Default is 'password

-tls_cert nane . Set the nane for TLS Certificate file.
Default is 'cacert. pen

-tls_key name : Set the name for TLS Private Key file.
Default is 'cakey. pen

-tls _crl name : Set the nane for Certificate Revocation List file.
If not specified, X509 CRL is not activated.

-f frequency . Set the statistics report frequency on screen
(in seconds). Default is 1

-fd frequency . Set the statistics dunp |log report frequency
(in seconds). Default 1s 60.

-l calls limt . Set the maxi mum nunber of simultaneous
calls. Once this limt is reached, traffic

Page 63

-mcalls

-rtp_echo

-np nedia_port

-m local rtp_ip:

-nb buf _si ze
- 3pcc i p: port

- mast er

-sl ave

-slave cfg

is decreased until the nunmber of open calls
goes down. Default:

(3 * call _duration (s) * rate).

Stop the test and exit when 'calls' calls are
processed.

Enabl e RTP echo. RTP/ UDP packets received
on port defined by -np are echoed to their
sender .

RTP/ UDP packets conming on this port + 2
are also echoed to their sender (used for
sound and vi deo echo).

Set the |l ocal RTP echo port nunber. Default
i's 6000.

Set the |ocal nedia | P address.
Set the RTP echo buffer size (default: 2048).

Launch the tool in 3pcc node ("Third Party

call control"). The passed ip address

i s dependi ng on the 3PCC rol e.

- When the first twin command is 'sendCnd' then

this is the address of the renpte twi n socket.

SIPp will try to connect to this address:port to
send the twin comand (This instance nust be started
after all other 3PCC scenarii).

Exanpl e: 3PCC- C- A scenari o.

- When the first twin comand is 'recvCrd’ then

this is the address of the local tw n socket. SIPp
will open this address:port to listen for twin comand.
Exanpl e: 3PCC-C-B scenari o.

3pcc extended node: indicates the name of the twin sipp
instance (if naster)

3pcc extended node: indicates the name of the twin sipp
i nstance (if slave)

3pcc extended node: indicates the file where the master
and sl ave addresses are stored. This option
nmust be set in the command line before the -sf option

SIPp

Page 64

SIPp

-nr : Disable retransm ssion in UDP node.

-max_retrans : Maxi mum nunber of UDP retransni ssions before cal
ends on ti neout.
Default is 5 for INVITE transactions and 7 for
ot hers.

-recv_timeout nb : dobal receive tinmeout in mlliseconds.
If the expected nessage is not received, the cal
times out and is aborted

-timeout nb : G obal tineout in seconds.
If this option is set, SIPp quits after nb seconds

- nd : No Default. Disable all default behavior of SIPp
which are the foll ow ng:
- On UDP retransm ssion tinmeout, abort the call by
sendi ng a BYE or a CANCEL
- On receive tineout with no ontinmeout attribute,
abort the call by sending a BYE or a CANCEL
- On unexpected BYE send a 200 OK and cl ose the cal
- On unexpected CANCEL send a 200 OK and cl ose the cal
- On unexpected PING send a 200 OK and conti nue the cal
- On any other unexpected nmessage, abort the call by
sendi ng a BYE or a CANCEL

- pause_nsg_ign : lgnore the nessages received during a pause defined
in the scenario

-rsa host[:port] : Set the renpte sending address to host: port.
for sending the nessages.

- max_reconnect : Set the the maxi mum nunmber of reconnection
-reconnect close true/false: Should calls be closed on reconnect?

-reconnect _sleep int : How long to sleep between the close and reconnect?

-aa : Enabl e automatic 200 OK answer for |NFO UPDATE and NOTI FY
nmessages.
-tdmap nap . Cenerate and handle a table of TDMcircuits.

A circuit nust be available for the call to be pl aced.
Format: -tdmmap {0-3}{99}{5-8}{1-31}

-key keyword value : Set the generic paraneter naned "keyword" to "val ue”

Page 65

SIPp

Si gnal handl i ng:

SIPp can be controlled using posix signals. The follow ng signals

are handl ed:

USRL: Simlar to press 'q" keyboard key. It triggers a soft exit
of SIPp. No nore new calls are placed and all ongoing calls
are finished before SIPp exits.

Exanpl e: kill -SIGUSRL 732

USR2: Triggers a dunp of all statistics screens in
<scenari o_nane> <pi d> screens.log file. Especially useful
i n background node to know what the current status is.
Exanmpl e: kill -SIGQUSR2 732

Exit code

Upon exit (on fatal error or when the nunber of asked calls (-m
opbion) is reached, sipp exits with one of the foll owi ng exit
code:

0: Al calls were successful

1: At least one call failed
97: exit on internal conmand. Calls may have been processed
99: Nornmal exit w thout calls processed
-1: Fatal error

Exanpl e:
Run sipp with enbedded server (uas) scenari o:
./sipp -sn uas

On the same host, run sipp with enbedded client (uac) scenario
./sipp -sn uac 127.0.0.1

SIPp has been originally designed for SIP performance testing. Reaching high call rates and/or high number of simultaneous SIP callsis possible with SIPp, provided
that you follow some guidelines:

Page 66

SIPp

e Usean HP-UX, Linux or other *ix system to reach high performances. The Windows port of SIPp (through CY GWIN) cannot handle high performances.

« Limit the traces to aminimum (usage of -trace_msg, -trace_logs should be limited to scenario debugging only)

» To reach ahigh number of simultaneous calls in multi-socket mode, you must increase the number of filedescriptors handled by your system. Check "Increasing
File Descriptors Limit" section for more details.

« Understand internal SIPp's scheduling mechanism and use the -timer_resol, -max_recv_loops and -up_nb command line parameters to tune SIPp given the system
it isrunning on.

Generally, running performance tests al so implies measuring response times. Y ou can use SIPp's timers (start_rtd, rtd in scenarios and -trace_rtt command line option)
to measure those response times. The precision of those measures are entirely dependent on the timer_resol parameter (as described in "SIPp's internal scheduling”
section). Y ou might want to use another "objective" method if you want to measure those response times with a high precision (atool like Wireshark
(http://www.wireshark.org/) will allow you to do so).

Three parameters can be set to allow SIPp to benefit of the hardware it is running on. Tuning those parameters will also reduce the risk of unwanted retransmissions at
high call rates.

Let'sfirst describe SIPp's main scheduling loop:

+-->- -+
Managenent of new calls (creation of newcalls if needed ...):
->done every tine
Managenment of ongoing calls (calculate wait, retransm ssions ...):

->done every "timer_resol"” ms at best

Management of received nmessages:
->done every tine, "max_recv_| oops" nessages are read at the very nost

Managenent of statistics:
->done every tine

+--<-- -+
Several parameters can be specified on the command line to fine tune this scheduling.

e timer_resol: during the main loop, the management of calls (management of wait, retransmission ...) isdone for all calls, every "timer_resol" ms at best. The delay
of retransmission must be higher than "timer_resol". This parameter can be reduce to reduce retransmissions. If other treatmentsin SIPp are too long,
"timer_resol" can not be respected. Reduce "max_recv_loops" to reduce retransmissions.

« max_recv_loopsand up_nb: received messages are read and treated in batch. "max_recv_loops" is the maximum number of messages that can be read at one time.

Page 67

http://www.wireshark.org/

SIPp

During this treatment, internal clock ("clock_tick") is updated every "max_recv_loops/up_nb" read messages. For heavy call rate, reduce "max_recv_loops" and/or
increase "up_nb" to limit the retransmissions. Be careful, those two parameters have alarge influence on the CPU occupation of SIPp.

JEdit (http://www.jedit.org/) isa GNU GPL text editor written in Java, and available on ailmost al platforms. It's extremely powerful and can be used to edit SIPp
scenarios with syntax checking if you put the DTD (sipp.dtd (http://sipp.sourceforge.net/doc/sipp.dtd)) in the same directory as your XML scenario.

Wireshark (http://www.wireshark.org/) isa GNU GPL protocol analyzer. It was formerly known as Ethereal. It supports SIP/SDP/RTP.

When tracing SIP calls, it is very useful to be able to get acall flow from an wireshark trace. The "callflow" tool allows you to do that in agraphical way:
http://callflow.sourceforge.net/

An equivalent exist if you want to generate HTML only call flows http://www.iptel .org/~sipsc/

You can likely get email-based support from the sipp users community. The mailing list address is sipp-users@lists.sourceforge.net
(mailto:sipp-users@lists.sourceforge.net) . To protect you from SPAM, thislist isrestricted (only people that actually subscribed can post). Also, you can browse the
SIPp mailing list archive: http:/lists.sourceforge.net/listg/listinfo/si pp-users

Of course, we welcome contributions! If you created a feature for SIPp, please send the "diff" output (di ff -bruN ol d_si pp_di rectory
new_si pp_di r ect ory) on the SIPp mailing list (http:/lists.sourceforge.net/lists/listinfo/sipp-users) , so that we can review and possibly integrate it in SIPp.

Page 68

http://www.jedit.org/
http://sipp.sourceforge.net/doc/sipp.dtd
http://www.wireshark.org/
http://callflow.sourceforge.net/
http://www.iptel.org/~sipsc/
mailto:sipp-users@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/sipp-users
http://lists.sourceforge.net/lists/listinfo/sipp-users

	1 Foreword
	2 Installation
	2.1 Getting SIPp
	2.2 Stable release
	2.3 Unstable release
	2.4 Available platforms
	2.5 Compiling SIPp from the source code
	2.6 Installing SIPp
	2.7 Increasing File Descriptors Limit

	3 Using SIPp
	3.1 Main features
	3.2 Integrated scenarios
	3.2.1 UAC
	3.2.2 UAC with media
	3.2.3 UAS
	3.2.4 regexp
	3.2.5 branch
	3.2.6 3PCC

	3.3 3PCC Extended
	3.4 Traffic control
	3.5 Remote control
	3.6 Running SIPp in background
	3.7 Create your own XML scenarios
	3.7.1 Structure of client (UAC like) XML scenarios
	3.7.2 Structure of server (UAS like) XML scenarios
	3.7.3 Actions
	3.7.3.1 Regular expressions
	3.7.3.2 Log a message
	3.7.3.3 Execute a command
	3.7.3.3.1 Internal commands
	3.7.3.3.2 External commands
	3.7.3.3.3 PCAP (media) commands

	3.7.4 Injecting values from an external CSV during calls
	3.7.5 Conditional branching
	3.7.5.1 Conditional branching in scenarios
	3.7.5.2 Randomness in conditional branching

	3.7.6 SIP authentication

	3.8 Screens
	3.9 Transport modes
	3.9.1 UDP mono socket
	3.9.2 UDP multi socket
	3.9.3 UDP with one socket per IP address
	3.9.4 TCP mono socket
	3.9.5 TCP multi socket
	3.9.6 TCP reconnections
	3.9.7 TLS mono socket
	3.9.8 TLS multi socket
	3.9.9 IPv6 support
	3.9.10 Multi-socket limit

	3.10 Handling media with SIPp
	3.10.1 RTP echo
	3.10.2 PCAP Play

	3.11 Exit codes
	3.12 Statistics
	3.12.1 Response times
	3.12.2 Available counters
	3.12.3 Importing statistics in spreadsheet applications
	3.12.3.1 Example: importation in Microsoft Excel

	3.13 Error handling
	3.13.1 Unexpected messages
	3.13.2 Retransmissions (UDP only)
	3.13.3 Log files (error + log + screen)

	3.14 Online help (-h)

	4 Performance testing with SIPp
	4.1 Advices to run performance tests with SIPp
	4.2 SIPp's internal scheduling

	5 Useful tools aside SIPp
	5.1 JEdit
	5.2 Wireshark/tshark
	5.3 SIP callflow

	6 Getting support
	7 Contributing to SIPp

