
WinRTP

Software Unit Design Specification

DirectShow RTP Library for Windows

Definitions
Definitions

Introduction This section defines words, acronyms, and actions which may not be readily
understood.

RTP Real-time Transport Protocol. Internet standard for transport of real-time
media streams.

MTC Media Termination Component.
www.vovida.org Page 2 © 1998 - 2001 Cisco Systems, Inc.

Problem Definition
Problem Definition

Media Termination
Component

The media termination component (MTC) provides an interface to the call
control component that allows it to carry out a variety of tasks related to
media termination. It can do the following:

• Capture audio from the user’s microphone

• Convert sampled audio into other formats like G711, GSM etc.

• Send encoded audio to a predefined destination IP address as an RTP
stream

• Receive RTP stream audio from the network and play it through the
speaker of the local machine

• Play an audio file from disk to the local speaker and/or send it as an audio
stream over the network

• Play sounds like dial tone, DTMF tones and other sounds locally in
response to events like the user picking up the phone, pressing a number
on the keypad etc.
© 1998 - 2001 Cisco Systems, Inc. Page 3 www.vovida.org

Design Considerations
Design Considerations

Introduction WinRTP is implemented as an ActiveX component using Microsoft Visual
C++. Java applications access it through the J/Direct extensions in the MS
Java Virtual Machine.

Support for Encoders

Codecs Supported WinRTP can support different codecs, including some high bit-rate audio
codecs (in future) which will provide it with an edge over standard
telephones. As of now, it supports G.711 (64kbps, both Alaw and Ulaw)
G.729 (8kbps), and G.723 (both 5.3kbps and 6.4kbps varieties).

Audio Processing API

DirectShow For audio processing, Microsoft’s DirectShow architecture will be used. The
DirectShow API is part of Microsoft’s DirectX Media SDK (version 6.0). It is
supported in Win 95/98/2000 and also Win NT sp 3+. It allows the user to
process audio/video by constructing 'filter graphs'. A filter graph is basically a
collection of audio processing blocks (or filters) which are connected
together. DirectShow provides a filter graph manager which manages and
executes a filter graph. Thus, the application developer has to design and
implement certain filters according to the DirectShow specifications and
design the proper filter graphs. DirectShow takes care of the rest.

Filter Graph
Illustration

Quick Introduction
to DirectShow

For a quick introduction to DirectShow, consider the filter graph, illustrated
above, which receives audio from the network and plays it to the speaker

RTP Audio Stream RTP Receiver
Filter

Audio out Filter Speaker
www.vovida.org Page 4 © 1998 - 2001 Cisco Systems, Inc.

Design Considerations
• The RTP receiver filter is a ‘source filter’, i.e. in this case a filter that
generates audio. It does it by receiving packets form the network which
contain the audio. Its job is to receive the packets, strip off the header
part, extract the audio, and send it out

• The Audio out filter plays audio to the speaker. It receives audio in its
input, and makes the proper calls to the system for playing it through the
speaker

• To execute the filter graph, we need to

• Instantiate the filters

• Connect them (by specifying the audio format of the data that will be
passed from the rtp server to the audio out filter.)

• Run the filter graph. The DirectShow “Filter Graph Manager” (FGM)
takes care of this. The mechanism is as follows:

• The FGM creates blank arrays called media samples and passes it
to the source filter (in this case the rtp receiver filter) for filling

• The rtp filter fills the blank sample with audio

• The FGM passes the sample downstream to the filter connected to
the output of the source filter

• The above 3 steps are repeated as long as the graph is running

Filter Graph Setup

Set Up Once and
Alter

Setting up filter graphs is a complex process (in terms of execution) and
requires time. Hence it would be better to construct a relatively complete filter
graph once and alter it minimally whenever new functionality needs to be
turned on or off. This would be faster than making major changes to it or
setting up a new filter graph every time. The current design of WinRTP does
just that.

Jitter Suppression Algorithm for Receive Stream

Preventing A
Crackled Sound

The RTP packets received by WinRTP may not arrive uniformly separated in
time. Due to jitter in arrival time, the received audio may sound crackled,
reducing its quality. To take care of this, a simple jitter removal algorithm has
been implemented by WinRTP, described as follows. When an audio frame is
late in arriving and its playing time has arrived, the previous audio frame is
replayed. Since the audio frames used for processing within the filter graph
are of the order of 30ms in length, the user cannot detect the difference. If
the same frame needs to be replayed many times, it is done so with
exponentially reducing volume (the volume is halved for every replay after
the first replay).
© 1998 - 2001 Cisco Systems, Inc. Page 5 www.vovida.org

Design Considerations
QoS of Transmitted Stream

DiffServ Code Point / IP Precedence

Per Hop Behavior WinRTP has the ability to set the DiffServ code point values for outgoing RTP
packets. WinRTP sets the Per Hop Behavior (PHB) in the deprecated IP
precedence field to “101110b”.

IEEE 802.1p User Priority

Not Supported The designers of WinRTP wanted to set the IEEE 802.1p user priority field of
outgoing frames to 5. But Windows 95, 98 or NT do not allow the user to set
this field. Windows 2000 allows it, but the documentation is very unclear. As
such, WinRTP does not support this setting yet.
www.vovida.org Page 6 © 1998 - 2001 Cisco Systems, Inc.

Functional Structure
Functional Structure

Illustration The following illustration shows the functional structure of a WinRTP system.

Details from the
Illustration

• WinRTP will initially set up 2 filter graphs, once for the send side, and one
for the receive side and start running them with all audio streams
disabled. (i.e. switches turned off),

• The call control component will make calls to WinRTP using WinRTP’s
COM interface.

Softphone Call Control Component

Media Termination Component

DirectShow Filter
Graph Manager

Media Termination
Filter Graphs

File System
(wav files)

Network Interface
Audio Subsystem
(Mic & Speaker)

Media Termination Component Interface

DirectShow API DirectShow API

Winsock 2.0

DirectSound
(Win98, 95)

or
Wave Driver

(WinNT)

File I/O

RTP
Audio

Stream
© 1998 - 2001 Cisco Systems, Inc. Page 7 www.vovida.org

Functional Structure
• In response to these calls, the Media Termination component will change
the status of the filter graph to turn on or off certain options, like File
Playing, DTMF Tone Generation, etc. For e.g. turning on switch S3 in the
send side filtergraph turns on Microphone (i.e. starts sending microphone
input to the network).

Filter Graphs The following illustrations show the filter graphs used in the component.

Receiving and
Playing Audio

The following illustration shows the filter graph used for receiving and playing
audio.

Filter Graph for Receiving
and Playing Audio

Network
Audio

Stream

Wave File
Reader Filter

 # 1

Wave File
Reader Filter

2

PCM
Audio
Mixer
Filter

PCM
Audio
Mixer
Filter

Audio
Decoder

Filter

Audio
Out

Filter

S3

S2

S1

S4

G.711
G.729
G.723

Audio Format F =
16bit 8kHz linear

PCM

F

F

F

F

F F

S1 - S4 are switches. When turned off,
audio from that input is ignored

Rtp
Receiver

Filter
www.vovida.org Page 8 © 1998 - 2001 Cisco Systems, Inc.

Functional Structure
Sending Audio The following illustration shows the filter graph used for sending audio.

Description of Filters

RTP Receiver Filter

Listens for Audio Listens to the network for an RTP data stream carrying encoded audio. It
extracts the audio data from the packets and forwards it to the next filter. The
UDP port number where it should listen has to be specified earlier. This filter
has to been implemented.

Audio Encoder and Decoder Filters

Transforms PCM
Audio

These filters transform linear PCM audio to and from different formats.
Currently G.711, G.723 (both 5.3 and 6.4 kbps) and G.729 codec filters have
been implemented. Implementations of G.723 and G.729 codecs must be
licensed.

Filter Graph for Sending
Audio

Wave File
Reader Filter

DTMF Tone
Generator

PCM
Audio
Mixer
Filter

PCM
Audio
Mixer
Filter

Rtp
Sender
Filter

S3

S2

S1

S4

F

Audio Format F =
16bit 8kHz linear

PCM

F

F

F
F

S1 - S4 are switches. When turned off,
audio from that input is ignored

Microphone

Audio
Encoder

FIlter

Network

G.711
G.729
G.723

Audio
Capture

Filter
© 1998 - 2001 Cisco Systems, Inc. Page 9 www.vovida.org

Functional Structure
PCM Audio Mixer Filter

Mixes Streams This versatile filter can mix two PCM audio streams. Its inputs are ‘gated’, so
that we can enable or disable any one or both of them. This allows us to keep
the filter graph running but still ignore certain audio streams and allow some
to pass through. This filter has been implemented.

Audio Out Filter

Uses DirectSound
or Wave Driver

For Audio Out, MTC uses either DirectSound (for Win98 and 95) or the Wave
driver (for Win NT). Both are provided by DirectShow and they drive the
computer’s speaker.

Audio Capture Filter

Renders Audio as
PCM Audio

Listens to the audio input devices (including microphone) and renders it as
PCM audio. Provided by DirectShow.

Audio File Source

Renders Audio
Files

Reads an audio file (e.g. wave file) and renders it. All audio files have to be
WAV files with the following format:- 16bit 8kHz PCM (linear). This filter has
been implemented.

RTP Sender Filter

Produces RTP Data
Stream

Receives audio samples at its input, puts them in RTP data packets, and
sends them over the network to a predefined destination. The destination IP
address and port number can be programmed. This filter does not implement
the RTCP control protocol. It only produces an RTP data stream. It has been
implemented.

DTMF Tone Generator Filter

DTMF Tones in
PCM Format

Generates DTMF tones in PCM format. This filter has been implemented.
www.vovida.org Page 10 © 1998 - 2001 Cisco Systems, Inc.

Functional Structure
Filter Graph Operation

Startup Phase

Specifying
Parameters

In the startup phase, both send and receive side filter graphs are started.
Before the graphs may be started, some other parameters need to be
specified. They are the following:

• Destination IP address (for the send side). This has to be set before the
Rtp Sender filter starts

• Port # for incoming audio (for the receive side). This is used by the Rtp
Receiver filter

• Audio format to be used. This determines which codec filter will be
instantiated and put in the filter graph

Once these parameters have been specified, both the send and receive side
filter graphs are started.

Execution Phase

Send, Receive,
Play Files

In this phase, WinRTP can send and receive audio, play files locally and/or to
the remote station, and so on. This phase is pretty simple. In response to
requests from the CCC, WinRTP turns on or off some of the switches (S1 –
S4) in the send or receive filter graph. For example, if we want to play a file to
the remote caller, WinRTP loads the file into the send side filter graph’s wave
file reader filter, and turns on switches S1 and S4. All this takes place while
the filter graph is running, so the voice path from the microphone to the
network is undisturbed.

Stopping Phase

Filter Graphs are
Stopped

In this phase, the filter graphs are stopped. This takes a few hundred
milliseconds worth of time, because quite a few threads have to be stopped,
some buffers have to be cleared and so on.
© 1998 - 2001 Cisco Systems, Inc. Page 11 www.vovida.org

Functional Structure
Stopping and Restarting the Filter Graphs

Stop, Change
Parameters,
Restart

When some of the parameters have to be changed, the calling application
needs to stop the filter graph(s), change the parameters, and restart them.
Such parameters include the destination IP address, the local Port # for
received audio, the audio codec to be used, etc. Stopping is necessary
because these changes alter the filter graph in some ways which cannot be
done to a running filter graph.

File Play and DTMF Capabilities

Play Once or Loop As seen from the graphs, WinRTP has the ability to play at most one file to
the remote caller (at a time), and two files at a time locally. These files can
either be played once, or looped until stopped. Besides, WinRTP can also
generate DTMF tones to the audio stream. When DTMF tones are played, all
other audio streams (in the send side) are muted. They are resumed when
the tone ends. WinRTP has an event mechanism using which it fires events
when a file play is finished, so that the application can take appropriate
action. When the user wants to play a file to the remote caller, but also hear it
so that he/she knows how much the other person has heard, we play the
same file on both filter graphs starting at the same time.
www.vovida.org Page 12 © 1998 - 2001 Cisco Systems, Inc.

Data Structures and Code Modules
Data Structures and Code Modules

Visual C++ WinRTP is coded using Microsoft Visual C++ 6.0. All the code is organized in
one work space called CCNMediaTerm. This work space contains a number
of projects. The main project is CCNSMT (CCN Software Media Termination)
which is the program that exposes WinRTP interface, creates/runs the filter
graphs, etc. There is one project for each filter which was developed, and
they are Rtp Receiver Filter, Rtp Sender Filter, Data Source filter, PCM Audio
Mixer filter, G.711 codec filter, G.723 codec filter (for 5.3 kbps rate), G.723
codec filter (for 6.4kbps rate), and G.729 codec filter. Here are some notes on
the implementation of the above filters:

• PCM Audio Mixer: This filter decides on a sampling time, say N
milliseconds, based on the length of audio samples in its input. It then
samples its 2 input pins every N milliseconds, mixes them if both input
pins had input, and sends it though the output pin. If any input pin is
disabled (the corresponding switch is turned off) then this filter consumes
the input from that pin but does nothing else with it.

• G.711 codec filter: It does transcoding between G.711 (Alaw or Ulaw) and
PCM 16bit 8kHz. Uses table lookups for all conversions.

• G.729 codec filter: Uses libraries (for compiling) and dll’s (for runtime)
licensed from MiBridge (www.mibridge.com) Source code for this codec
must be licensed from MiBridge.

• G.723 codec filters: Again, source and binaries must be licensed from
MiBridge.

• Data Source Filter: This is a generic filter which can be coupled with a
user specifiable source of data. Sources of data should be derived from a
class which has been implemented called DataSourceAudio. Code for
WinRTP implements two types of data sources, Wav File data source,
and DTMF data source.
© 1998 - 2001 Cisco Systems, Inc. Page 13 www.vovida.org

Data Structures and Code Modules
Illustration The following illustration shows the class hierarchy.

DataSourceAudio

DiskFileDataSourceAudio

DTMFDataSourceAudioFileDataSourceAudio
www.vovida.org Page 14 © 1998 - 2001 Cisco Systems, Inc.

System Flow
System Flow

Introduction WinRTP is an ActiveX control and the application makes calls to it through
the interface. If any of the calls to WinRTP generates an error condition,
WinRTP returns a negative value which raises an exception in the java code
calling it.

Event Passing Mechanism

Asynchronous
Tones

The calls to play files and DTMF tones are asynchronous. To notify the
container when file play has ended.WinRTP passes events implemented
using the Connection Point mechanism. Basically the container of the
ActiveX control (MTC) implements an event sink interface defined by
WinRTP. WinRTP makes calls to this interface when it needs to fire events.
Currently events are fired when a file play ends.
© 1998 - 2001 Cisco Systems, Inc. Page 15 www.vovida.org

Program Interface
Program Interface

Functions WinRTP’s interface contains the following functions. For all these functions, if
any parameter is invalid or an error condition occurs during execution, the
function returns an error condition (E_FAIL) which raises an exception in the
java container of the component.

StartTX()

Transmit Side Starts the transmit side of the filter graph.

StopTX()

Transmit Side Stops the transmit side of the filter graph.

StartRX()

Receive Side Starts the receive side of the filter graph.

StopRX()

Receive Side Stops the receive side of the filter graph.

SetAudioCodecRX

Receive Side Audio
Codec

(long CompressionType,
long MillisecPacketSize,
long EchoCancellationValue,
long G723BitRate)

Sets the Audio codec to be used for the receive side. The received RTP
stream should be encoded in this format.

• CompressionType

G.711 Alaw (64kbps)= 2
G.711 Ulaw (64kbps)= 4
G.723.1 (5.3 or 6.4kbps)= 9
G.729 (8kbps)= 11

• MillisecPacketSize
www.vovida.org Page 16 © 1998 - 2001 Cisco Systems, Inc.

Program Interface
Length of audio in each received packet in milliseconds Typical values
are 20ms or 30ms (for G.711) and 90ms for G.723. This is ignored by
MTC because it buffers the received audio.

• EchoCancellationValue

Echo Cancellation off = 0
Echo Cancellation On = 1
Ignored, because Echo Cancellation is currently Not implemented by
MTC.

• G723BitRate

1 = G.723 at 5.3 kbps if CompressionType = 9
2 = G.723 at 6.4 kbps if CompressionType = 9
for all other formats.

SetAudioCodecTX

Transmit Side
Audio Codec

long CompressionType,
long MillisecPacketSize,
long PrecedenceValue,
long SilenceSuppression,
unsigned short MaxFramesPerPacket,
long G723BitRate

Sets the audio format of outgoing packets.

• CompressionType

• MillisecPacketSize

• G723BitRate (see SetAudioCodecRX)

• PrecedenceValue

IP Precedence value of outgoing packets. Ignored because MTC uses
the value as described earlier

• SilenceSuppression

= Silence Suppression OFF
= Silence Suppression ON
WinRTP currently does not implement this feature. This parameter is
ignored

• MaxFramesPerPacket

The number of audio frames to put in a packet
© 1998 - 2001 Cisco Systems, Inc. Page 17 www.vovida.org

Program Interface
SetAudioDestination (String Hostname, long
UDPPortNumber)

Packet Destination
Address

• Hostname: string containing IP address of destination. E.g. “127.0.0.1”

• UDPPortNumber: destination port number.

Set the destination address where the packets will be transmitted. This
has an effect instantly.

SetAudioReceivePort (long UDPPortNumber)

Port for Listening
to Incoming Audio

• UDPPortNumber = port to receive audio stream.

Set the port to listen to for incoming audio. Has no effect until the next
time StartAudioReceive() is called after this call. So if the receive side fil-
ter graph is already running, need to stop it and start it again.

StartMicrophone()

Capture and
Transmission

Starts capturing Microphone input and transmitting it to destination. No
change if already transmitting.

StopMicrophone()

Stops Audio Stops transmitting audio from the user’s microphone. Does nothing if already
not transmitting from the microphone.

StartAudioReceive()

Plays Stream to
Local Speaker

Starts playing the received RTP stream to the local speaker. If it is already
playing, it does nothing and returns.

StopAudioReceive()

Stops Playing
Stream

Stops playing the received RTP audio stream to the speaker. If already
stopped, does nothing.
www.vovida.org Page 18 © 1998 - 2001 Cisco Systems, Inc.

Program Interface
StartDtmfTone (long ToneAsChar, long OnTime, long
OffTime)

Plays Tone in
Output Stream

• ToneAsChar: The tone to play (char) cast as long. Valid values are ‘0’ –
‘9’, ‘a’ – ‘d’, ‘*’, ‘#’
It is case insensitive.

• OnTime: The duration of the tone in milliseconds. Typically 50 or 100ms.

• OffTime: Duration of the silence that follows the tone in milliseconds.
Typically 50 or 100ms.

Starts playing a DTMF tone in the output stream. All other output streams are
temporarily stopped (these include the microphone and file play).
Automatically restores previous state when the tone ends or is stopped by
calling StopDtmfTone(). If a DTMF tone is already playing, return an error.

StopDtmfTone()

Stops Tone Stops the DTMF tone being played. If no tone is playing, does nothing.

StartPlayingFileRX

Starts Playing WAV
File

Char * Filename
unsigned long Mode
unsigned long StartPosition,
unsigned long StopPosition
long * Cookie

Starts playing the WAV file specified in Filename to the speaker. The file has
to be in 16bit 8kHz PCM WAV file format.

• Filename: name of the file to play

• Mode =0 for looping mode (plays the file over and over again until
stopped) or
1 for play once

• StartPosition: Milliseconds of audio to skip at the beginning of the file. 0
plays from beginning

• StopPosition: Position in milliseconds to stop. 0 plays to the end

• Cookie: a number is returned through this parameter. This number may
be used later to refer to this stream (for e.g. in StopPlayingFileRX()).

e.g. StartPlayingFileRX(“c:\\hello.wav”, 0, 100, 2000) will play the audio
contained in hello.wav between the positions 100ms and 2 secs.
If start or stop positions are invalid, returns error. Two files can be playing in
the receive side at the same time. If two files are already playing, returns an
error.
© 1998 - 2001 Cisco Systems, Inc. Page 19 www.vovida.org

Program Interface
When the file ends (in non looping mode), MTC automatically stops it and
fires EndOfFileEventRX(cookie). The container can trap this event and know
which stream stopped by looking at cookie.

StopPlayingFileRX(unsigned long cookie)

Stops Identified
File

Stops the file play identified by ‘cookie’ (returned during
StartPlayingFileRX()). If stream is already stopped does nothing and returns.

StartPlayingFileTX

Plays File to RTP
Output Stream

Char * Filename
unsigned long Mode
unsigned long StartPosition,
unsigned long StopPosition
long * Cookie

Exactly the same as StartPlayingFileRX(), except that it plays the file to the
RTP output stream, and that only one file may be played at a time to the
output stream. If a file is already playing returns an error.
If the file ends, then stops it and fires the EndOfFileEventTX(Cookie) event to
the container of this ActiveX control.

StopPlayingFileTX (unsigned long cookie)

Stops
Transmission

See StopEndOfFileRX().

A Typical Series of Calls to WinRTP

Examples For the send side initialization:
SetAudioCodecTX(4, 30, 0, 0, 1, 0);
SetAudioDestination(“127.0.0.1”, 21243);
StartTX();

For receive side initialization:
SetAudioCodecRX(4, 30, 0, 0);
SetAudioReceivePort(8283);
StartRX();

This will start the send and receive side filter graphs, but still not audio will be
sent or received, because no audio stream has been turned on.
www.vovida.org Page 20 © 1998 - 2001 Cisco Systems, Inc.

Program Interface
To start sending voice to the other side, and then play a file, stop it after 1
second and then play a DTMF tone (*):

StartMicrophone();
Unsigned long cookie;
StartPlayingFileTX(“c:\hello.wav”, 1, 0, 0,
&cookie);
Sleep(1000);
StopPlayingFileTX(cookie);
StartDtmfTone(‘*’, 50, 50);

To play the received audio from the network along with 2 files, one looping,
and the other once from an offset of 1 sec into the file, followed by a change
in the receive port when the second file ends playing the receive network
audio again:

StartAudioReceive();
Unsigned long cookie1, cookie2;
StartPlayingFileRX(“c:\hello.wav”, 0, 0, 0,
&cookie1);
StartPlayingFileRX(“c:\hi.wav”, 1, 1000, 0,
&cookie2);

/* wait for EndOfFileEventRX(cookie2) to be fired */

StopRX(); //needed, as explained earlier in
//SetAudioReceivePort(). Stops all file
//plays and playing of network audio
//permanently until they are started

again

SetAudioReceivePort(23232);

StartRX(); //at this point, again no streams are
//playing.

StartAudioReceive();

For Stopping everything:
StopRX();
StopTX();
© 1998 - 2001 Cisco Systems, Inc. Page 21 www.vovida.org

SW Restrictions and Configuration
SW Restrictions and Configuration

Software
Requirements

Needs Windows 95, 98, NT service pack 3 or later, or Windows 2000.
Needs DirectX Media Run Time version 6.0 or later.
www.vovida.org Page 22 © 1998 - 2001 Cisco Systems, Inc.

HW Restrictions and Configuration
HW Restrictions and Configuration

Hardware
Requirements

Sound card compatible with DirectX Media 6.0 or later, microphone, headset/
speakers.
At least a 266MHz MMX Pentium microprocessor or equivalent.
At least 32 MB RAM.
© 1998 - 2001 Cisco Systems, Inc. Page 23 www.vovida.org

References
References

Web Links Microsoft DirectX Media SDK 6.0 documentation
http://www.microsoft.com/directx

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, _RTP: a transport
protocol for real-time applications,_ Request for Comments (Proposed
Standard) 1889, Internet Engineering Task Force, Jan. 1996. http://
www.ietf.org/rfc/rfc1889.txt?number=1889
www.vovida.org Page 24 © 1998 - 2001 Cisco Systems, Inc.

	WinRTP
	Software Unit Design Specification
	DirectShow RTP Library for Windows

	Definitions
	Introduction
	RTP
	MTC

	Problem Definition
	Media Termination Component

	Design Considerations
	Introduction
	Support for Encoders
	Codecs Supported

	Audio Processing API
	DirectShow
	Filter Graph Illustration
	Quick Introduction to DirectShow
	Filter Graph Setup
	Set Up Once and Alter

	Jitter Suppression Algorithm for Receive Stream
	Preventing A Crackled Sound

	QoS of Transmitted Stream
	DiffServ Code Point / IP Precedence
	Per Hop Behavior

	IEEE 802.1p User Priority
	Not Supported

	Functional Structure
	Illustration
	Details from the Illustration
	Filter Graphs
	Receiving and Playing Audio
	Sending Audio
	Description of Filters
	RTP Receiver Filter
	Listens for Audio

	Audio Encoder and Decoder Filters
	Transforms PCM Audio

	PCM Audio Mixer Filter
	Mixes Streams

	Audio Out Filter
	Uses DirectSound or Wave Driver

	Audio Capture Filter
	Renders Audio as PCM Audio

	Audio File Source
	Renders Audio Files

	RTP Sender Filter
	Produces RTP Data Stream

	DTMF Tone Generator Filter
	DTMF Tones in PCM Format

	Filter Graph Operation
	Startup Phase
	Specifying Parameters

	Execution Phase
	Send, Receive, Play Files

	Stopping Phase
	Filter Graphs are Stopped

	Stopping and Restarting the Filter Graphs
	Stop, Change Parameters, Restart

	File Play and DTMF Capabilities
	Play Once or Loop

	Data Structures and Code Modules
	Visual C++
	Illustration
	The following illustration shows the class hierarchy.

	System Flow
	Introduction
	Event Passing Mechanism
	Asynchronous Tones

	Program Interface
	Functions
	StartTX()
	Transmit Side

	StopTX()
	Transmit Side

	StartRX()
	Receive Side

	StopRX()
	Receive Side

	SetAudioCodecRX
	Receive Side Audio Codec

	SetAudioCodecTX
	Transmit Side Audio Codec

	SetAudioDestination (String Hostname, long UDPPortNumber)
	Packet Destination Address

	SetAudioReceivePort (long UDPPortNumber)
	Port for Listening to Incoming Audio

	StartMicrophone()
	Capture and Transmission

	StopMicrophone()
	Stops Audio

	StartAudioReceive()
	Plays Stream to Local Speaker

	StopAudioReceive()
	Stops Playing Stream

	StartDtmfTone (long ToneAsChar, long OnTime, long OffTime)
	Plays Tone in Output Stream

	StopDtmfTone()
	Stops Tone

	StartPlayingFileRX
	Starts Playing WAV File

	StopPlayingFileRX(unsigned long cookie)
	Stops Identified File

	StartPlayingFileTX
	Plays File to RTP Output Stream

	StopPlayingFileTX (unsigned long cookie)
	Stops Transmission

	A Typical Series of Calls to WinRTP
	Examples

	SW Restrictions and Configuration
	Software Requirements

	HW Restrictions and Configuration
	Hardware Requirements

	References
	Web Links

