
VOCAL

Vovida Open Communication Application Library

Session Initiation Protocol (SIP) Stack

Software Version 1.2.1

Copyright Copyright © 2001, Cisco Systems, Inc.

Revision History The following table itemizes the revision history of this manual:

Version This manual is written to support Vovida.org’s SIP Stack Version 1.2.1.

Support The primary location for support, information and assistance for the VOCAL
system is www.vovida.org. This site contains other documentation, training
materials, development tools, development resources and informational
mailing lists.

Software
Version

Guide
Version

Date Comments

Table 1.

Revision Date Originator Comments

Table 2.
ii

�������

Introduction This manual provides information about the Session Initiation Protocol (SIP)
stack and how it is used by other applications within the VOCAL system.

Objectives of this
manual

This manual is intended as a starting point for any developer who is
interested in working with the SIP Stack.

Intended audience Software developers, architects, product managers and anyone else who is
interested in the specific details regarding the function and coding of the
VOCAL system.

Organization This guide is organized as follows:

Documentation
Conventions

The following is a list of conventions used in this guide:

Chapter Title Description

Chapter 1 Top Level Design A high level overview of the SIP stack.

Convention Description

bold text Names of elements found on the GUI screen,
including buttons, and selectable entities such as,
servers and server groups.

< > Text that appears between angle brackets describes
variables such as, <group name>.

courier
font

System responses and prompts either from the CLI
or GUI.

Additional
resources

Publications
A System Administration Guide, which covers adding users, SNMP message
flows, call flows and working with features is also available from http://
www.vovida.org.

On-Line Resources
Vovida.org (http://www.vovida.org) is a community web site dedicated to
providing a forum for open source software used in datacom and telecom
environment. This site was created to provide an environment where open
source communications information and software can be easily located,
accessed, retrieved and shared.

bold cou-
rier font

Indicates information that you must enter.

Note Highlights points of additional interest for the user.

Caution Be careful, this symbol highlights a potential for
equipment damage or loss of data.

Convention Description
iv

Table of Contents
Preface. iii

Chapter 1.
Top Level Design
Architecture . 1-2
Class Diagrams . 1-3
Classes Involved . 1-4
Components . 1-6

Creating . 1-7
Manipulating . 1-8
Interaction with SDP Stack . 1-9

SIP Transceiver . 1-11
High Level Design . 1-12
High Level Message Flow . 1-13
Transaction Databases. 1-17
Data Structures. 1-18

Future Work . 1-20
Bugs/Limitations . 1-21
1

Table of Contents (continued)
2

��	
����

������

Introduction This provides the functionalities enlisted in RFC2453. The components that it
interacts with are UDP stack, TCP stack, SDP stack.
The architecture is explained below, later leading to class diagrams, major
modules, threads involved and sequence diagrams for important flows in the
design

Topic See Page

Architecture . 1-2
Class Diagrams . 1-3
Classes Involved . 1-4
Components . 1-6

Creating . 1-7
Manipulating . 1-8
Interaction with SDP Stack . 1-9

An Example . 1-9
SIP Transceiver . 1-11

High Level Design . 1-12
High Level Message Flow . 1-13
Transaction Databases. 1-17
Data Structures. 1-18

Threads and Interaction . 1-18
Future Work . 1-20
Bugs/Limitations . 1-21

Architecture
Architecture

Major Components The major components of the SIP stack are:

• creating (Constructing)

• manipulating(Parser)

• sending (Transceiver)

• receiving(Transceiver)

• maintaining transactions(TransactionDatabase)

• retransmitterTransceiver, TransactionDataBase) &

• filter(Transceiver, TransactionDataBase) of SIP messages.

Illustration Figure 1-1 shows how the major components of the SIP stack work together.

Figure 1-1. SIP Stack Components

manipulating
creating

(Constructing)

TransactionDataBase

sending

(Transceiver)

UDP stack, TCP stack

SDP stack

Retransmitter

Filter

receiving
(Transceiver)
1-2

Class Diagrams
Class Diagrams

Links These diagrams are too large to fit into this document and are best viewed as
links.

• Header.gif

• Message.gif

• MimeData.gif

• SipAgent.gif

• Transceiver.gif
1-3

http://www.vovida.org/document/header_gif.html
http://www.vovida.org/document/pdf/images/mimedata.gif
http://www.vovida.org/document/pdf/images/sipagent.gif
http://www.vovida.org/document/pdf/images/Transceiver.gif
http://www.vovida.org/document/message_gif.html

Classes Involved
Classes Involved

General
information

SipMsg is the base class for all sip messages. Two things are derived fromit,
the StatusMsg and the SipCommand. A StatusMessage carries one of the
3digit response codes.

SipCommand A SipCommand is the base class for all the other SIP requests which include:
• AckMsg

• ByeMsg

• CancelMsg

• InviteMsg

• RegisterMsg

• SignalMsg

• OptionsMsg

• NotifyMsg

• SubscribeMsg

• ReferMsg.

Data Containers The other class are just data containers. Basically they just keep track of a
string the represents the information that heir name implies.
These include:
• SipAccept

• SipAcceptEncoding

• SipAcceptLanguage

• SipAllow

• SipAuthorization

• SipCSeq

• SipCallId

• SipCallLeg

• SipContactSipContentEncoding

• SipContentLength

• SipContentType

• SipDate

• SipEncryption

• SipExpiers

• SipFrom

• SipHide

• SipMaxForwatrds

• SipOrganization

• SipPriority
1-4

Classes Involved
• SipProxyAuthenticate

• SipProxyAuthorization

• SipProxyRequire

• SipRecordRoute

• SipRepsonseKey

• SipRequestLine

• SipRequire

• SipRetryAfter

• SipRoute

• SipSdp

• SipServer

• SipRequestLine

• SipStatusLine

• SipSubject

• SipTimestamp

• SipTo

• SipUnsupported

• SipUrl

• SipUserAgent

• SipVia

• SipWarning

• SipWwwAuthenticate
1-5

Components
Components

Introduction This section covers information about the following topics:
• Creating

• Manipulating

• Interaction with the SDP Stack
1-6

Components
Creating

Example 1 Creating a SIP INVITE message - look at sip/test/InviteMsgTest.cxx
InviteMsg(Sptr<BaseUrl> sendToUrl, int SIPlistenPort, int rtpPort)
Refer to Class Diagram for BaseUrl explanation.

Example 2 Creating a SIP 200 OK message - look at sip/test/StatusMsgTest.c
StatusMsg(SipCommand& command, int statusCode)
SipCommand is any of the request objects.
Refer to Class Diagram for SipCommand explanation.

Example 3 Creating a SIP ACK message - look at sip/test/AckMsgTest.cxx
AckMsg::AckMsg(StatusMsg& statusMsg)
StatusMsg the response object
Refer to Class Diagram for StatusMsg explanation.

Example 4 Creating a SIP BYE message - look at sip/test/ByeMsgTest.cxx
1-7

Components
Manipulating

Example 1 To change the Request Uri of the already constructed INVITE message:

InviteMsg inviteMsg;

SipRequestLine reqline = inviteMsg.getRequestLine();

Sptr<BaseUrl> url = reqline.getUrl();

//change hostname in the url, and set it back.

url.setHost(Data(“newHost”));

reqline.setUrl(url);

inviteMsg.setRequestLine(reqline)

Look at header files of individual headers to identify the get and set methods
provided.

Example 2 To decode a message:

InviteMsg inviteMsg(Data message)

This calls SipMsg::decode(Data),
-- talk about MIME data being decoded.
//find out what happens here
If we receive an INVITE message, and require the user in the Uri, of From
field, the following sequence happens. This can be added in the sequence
diagram also.

string message;

InviteMsg inviteMsg(Data(message));

This calls : SipMsg(Data(message)) , which calls Sip-
HeaderContainer()... (bryan can comment here)

Now, when we request From header from the message,
SipFrom from = inviteMsg.getFrom(); --- >

the From header line is decoded here.

Example 3 If you want to encode the message.
InviteMsg inviteMsg;

Data inviteStr = inviteMsg.encode()

InviteMsg::encode()
calls SipMsg::encode(),
which calls the individual Headers::encode(),
and MimeEncode().
1-8

Components
Interaction with SDP Stack

Introduction When we need to encode, decode or alter SDP MIME information, we use
SDP stack.

An Example

Encoding SDP
MIME

To encode a SDP MIME information.

Parser When a SIP message is received, as a char string, the Parser functions are
invoked to form the corresponding SIP object, as explained above. Here,
lazy parsing is implemented, which is that the Header objects don’t actually
get constructed, when the parser is invoked. In fact, it gets constructed when
the objects are accessed.
Each header object takes care of parsing its line. The MIME data is parsed
by another class, SipContentDataContainer, as explained above.

Sending/Receiving
Messages:

The stack supports sending/receiving messages on both UDP and TCP. The
Via field is looked at to figure, if the message needs to get sent on TCP or
UDP. For more information about the threads, see “Threads and Interaction”
on page 1-18.
The stack maintains state of all requests and final response for INVTE, to
match with the ACK. These are maintained for a maximum of 32 seconds.
This performs automatic retransmissions for UDP, and the maximum number
of retransmissions is a configurable parameter. The T1 for retransmission is
600ms, and the next consecutive ones follow an interval of 2*T1.
In case of commands, such as INVITE, the SipTranceiver sends a 408
Request TimedOut to the application if it gets no response after the max.
number of retrans. However, it is up to the application to handle timeouts for
responses.

NAT Traversal If this is turned on, the stack, puts the address, where the packet was
actually received from, in the received param, in the Via header, iff, the actual
Via address is different from that on which the packet was received on. Also,
while sending responses, the packet will be sent to the received param in the
Via field, if present, else it will be sent to the Via address.

SNMP Support The sipagent maintains a table of the mib entries of the particular instance of
the sipstack. When the transceiver is instantiated a sipagent is also
instantiated within with an arguement of the application name. The SipAgent
class talks to the snmp manager, which queries the SipAgent regarding the
statistics of the sipstack, snmp Manager can also setcertain attributes but
this functionality is not implemented as this point. The class which handles all
of the above is SipTransceiver.
1-9

Components
 Application instantiates
 |
 instantiates
 SipTransceiver (Sptr<SipSnmpDetails>) SnmpDetails

 |
 |
 ThreadIf AgentAPI SipAgent(Sptr<stackMap>)
 inherits ThreadIf inherits AgentAPI
 - thread.run() processMessage
 { {
 get snmprequest(); send response
 } }

SIPSnmpDetails SipSnmpDetails maintains the uptodate information a map and a reference is
passed in the constructor of the SipAgent throuh which the SipAgent gets the
uptodate information about the stack.
SipSnmpDetails has all the related information about the stack since its
instantiated by the application, which is stored in the map.

SipAgent SipAgent has the table of the counters which are updated by the Transceiver
by calling the updateCounter method of the SipSnmpDetails which in turn
calls the updateCounter method of the SipAgent

ICMP messages The stack handles ICMP errors, by returning the appropriate status codes to
the application like 403, 404, 408 for Connection Refused, Host Down and
Host Unreachable respectively. This is in SipUdp_impl class.

DnsSrv Support The stack does a DNS SRV, or a DNS lookup, in case the requestline
contains a address which could not be resolved. The DNS lookup returns
the available list of servers and the portnumber information. The stack does
a getNextRecord and this method returns the first highest priority entry which
is immediate destination of the message. DnsSrv support assumes that the
retransmissions should be on all the time in the application Finally if the
request is send to the the servers available in the list and there is no
response available then the appropriate status code of 403, 404 or 408 is
sent to the application . In case of 403 the stack does not do a DNS lookup
again, since this is a server side request rejection response. In all other
cases, the above steps repeat. Again, this is configurable.

SipTranceiverFilter SipTranceiverFilter is another class which encapsulates the SipTranceiver
class.This can be used to filter out duplicate msgs *received* by the stack.
So, the application is guaranteed to get a single msg. This is useful, to avoid
timing issues between the request/ response.

DataStructures As mentioned above, the messages sent/received are stored in the Data
Structure. For more information, see “Data Structures” on page 1-18.
1-10

SIP Transceiver
SIP Transceiver

Introduction The requirement for the VOCAL Sip Transceiver is to manage the
transactions, as defined in RFC 2543, and to implement a transport
independent interface for sending and receiving of SIP messages by the
application layer.
The message send operation is asynchronous, while the recieve operation is
blocking with a user specified timeout parameter.
in the stateful mode, transceiver maintains a soft state for a transaction as
long as there is atleast one undeleted message in the transaction database.
the delay for message deletion can be specified as a compile time
parameter. as part of its transaction management functionality, the
transceiver takes care of filtering the duplicate messages and retransmitting
un-responded messages.
1-11

SIP Transceiver
High Level Design

Five Components In order to implement its functionality, five major components are
implemented at the transceiver level:
• Sent Request Database: this component manages transactions for the

UAC (user agent client) side of the application. In the system level
message flow this takes care of the down stream interface of the
application.

• Sent Response Database: this component manages transactions for the
UAS (user agent server) side of the application. In the system level
message flow this takes care of the upstream interface.

• UDP Transport wrapper: this component provides a SIP specific interface
with the UDP transport stack. hence, it takes care of retransmissions of
UDP messages to be sent and decoding of recieved messages.

• TCP Transport wrapper: this component provides a SIP specific interface
with the TCP stack.

• Transaction Garbage Collector: this component takes care of deleting the
transactions as they expire.
1-12

SIP Transceiver
High Level Message Flow

Introduction The high level message flow is depicted in Figure 1-2. As it can be seen, the
application as a whole has two parts, viz. UAS and UAC. the
SentResponseDB corresponds to the UAS portion, and all the incoming
requests (and corresponding responses) go thru this component. the
SentRequestDB corresponds to the UAC portion of the application and all
the outgoing requests and corresponding responses go thru it. it should be
noted here that SIP UA’s and other endpoints may only be using any one of
the two mentioned components for a particular session, while the proxy’s will
be using both the components.
1-13

SIP Transceiver
Illustration Figure 1-2 shows the high level message flow through the SIP stack.

Figure 1-2. High Level Message Flow
1-14

SIP Transceiver
Application
Interfaces

At the transceiver level, the send and recieve of sip messages is depicted in
Figure 1-3 and Figure 1-4. As can be seen in these figures, the transceiver
provides three interface methods to the applications:

a) SendAsyc : this interface sends a SIP Request message
asynchronously

b) SentReply: this interface sends a SIP Response asynchronously

c) Receive : this interface blocks for a user specified time (passed as
method argument), and returns with the next available message from
either of the two transport stacks.

Illustrations Figure 1-3 shows the send logic flow through the SIP Stack.

Figure 1-3. Send Logic
1-15

SIP Transceiver
Figure 1-4 shows the receive logic through the SIP stack.

Figure 1-4. Receive Logic
1-16

SIP Transceiver
Transaction Databases

Introduction The SIP messages in the above mentioned two databases are organized
based on a hierarchy, derived from the nature of the SIP transactions. these
distinct, and somewhat detailed, levels of hierarchy are:

level-I Consisting of [To, From, CallId], i.e., the call leg. this level is the root node of
the whole transaction during a call.

level-II Consisting of [CSeq#, top via branch tag] and gives a root node for every
sequence/revision/forking during the call.

level-III This level is based on [Cseq METHOD tag] and is required to distinguish
between responses for INVITEs and CANCELs.
Apart from this hierarchy, the two databases also maintain some state
specific information at the call leg level (i.e. with the LEVEL-I node), and they
behave differently:
• the SentRespDB remebers the [To tag] of the outgoing response, to drop

unmatched incoming requests (there is no need to take care of [From tag]
here, since responses are copied over from requests)

• the SentReqDB remembers the [From tag] of the outgoing request to
match the incoming responses, and discards the [To tag] of the incoming
response.

The main functionality of these databases is to take care of filtering of
duplicate messages (from UDP transport) and to implement a message
ordering so that the applications can querry and access relevant information
about a call’s transaction.
1-17

SIP Transceiver
Data Structures

Key Structures We have implemented some special purpose data structures, to achieve high
concurrency and the above mentioned structural organization. the key data
structures used are:

a) Transaction Id: this is implemented as a compound data type, having
one field each for the above mentioned three levels of hierarchy.

b) Transaction Hash Table: this is a *special purpose* implementation of
hash table to be used by the Transaction databases. reason for not
using stl hash tables is that we don’t want to lock the *whole* hash
table, when doing a lookup. in this implementation, it only locks the
hashed bucket which is quickly unlocked once the collision list has
been processed.

c) Transaction Level Nodes: these compound data types are imple-
mented for every level in the hierarchical organization. these structures
store the information specific to the corresponding level, and also the
direct references to parent node and container objects.

d) Transaction List: this is a template implementation of a doubly linked
list. this implementation is required because the list items need to store
direct reference to their container objects in the list.

Threads and Interaction

Five Threads When application instantiates a Vocal Sip Transceiver, it spawns the
following five threads:
• UDP reciever

• UDP sender

• TCP receiver

• TCP sender, and

• Garbage Collector
1-18

SIP Transceiver
Illustration The interaction between these threads is shown in Figure 1-5.

Figure 1-5. Transceiver Threads
1-19

Future Work
Future Work

Introduction The following possible improvements could be made to the current
implementation:
• The transaction management can be turned on/off, making the

transceiver stateful/stateless dynamically. (straight forward, minimal
effort)

• The interfaces presented by the transceiver are thread-safe, hence
making it possible to implement the thread-pools at the application level
to handle multiple simultaneuos calls. (minimal changes in transceiver,
some changes in the base code)
1-20

Bugs/Limitations
Bugs/Limitations

Unmatched ACK There is a known issue of unmatched ACK if it travels a different path from
the INVITE. the problem is that if it has a different top via branch, then the
retrans of final responses are not cancelled, and they end up being
transmitted 7 times + the penalty of resending the ACK’s from the filter.
One solution is to break up the level-II key, and to skip branch matching in
SentRespDB for ACKs while cancelling the retranses of the final response.
but this solution will not work for a normal call flow, when there are two
forked invites going thru the same egress marshal. will requires some more
thinking!
1-21

Bugs/Limitations
1-22

Index

Index (Continued)
Index-2

	SIP Title Page
	Preface
	Table of Contents
	Top Level Design
	Architecture
	Class Diagrams
	Classes Involved
	Components
	Creating
	Manipulating
	Interaction with SDP Stack
	An Example

	SIP Transceiver
	High Level Design
	High Level Message Flow
	Transaction Databases
	Data Structures
	Threads and Interaction

	Future Work
	Bugs/Limitations

