OrCAD PSpice A/D

Reference Manual

How to use this online manual

HGM How to print this online manual

Welcome to OrCAD

Overview

Commands

Analoqg devices

Diqgital devices

Customizing device eguations

Glossary

Index

Version 9.0, October, 1998.

Copyright 1998, OrCAD, Inc. All rights reserved.
Printed in the United States of America.

OrCAD trademarks

OrCAD, OrCAD Layout, and OrCAD Simulate are registered trademarks, and EDA for the Windows NT Enterprise,
Enterprise CIS, Enterprise Component Information System, OrCAD Capture CIS, OrCAD Express, OrCAD Express CI¢
OrCAD Layout Engineer's Edition, OrCAD Optimizer, SmartRoute, OrCAD Capture, OrCAD Design Desktop, OrCAD
Express, SmartDrag, SmartPlace, SmartRoute, and SmartWire are trademarks of OrCAD, Inc.

Referenced herein are the trademarks used by OrCAD, Inc., to identify its products. OrCAD is the exclusive owners of
“MicroSim,” “PSpice,” “PLogic,” “PLSyn.”

Additional marks of OrCAD include: “StmEd,” “Stimulus Editor,” “Probe,” “Parts,” “Monte Carlo,” “Analog Behavioral
Modeling,” “Device Equations,” “Digital Simulation,” “Digital Files,” “Filter Designer,” “Schematics,”

“PLogic,” "PCBoards,” “PSpice Optimizer,” and “PLSyn” and variations theron (collectively the “Trademarks”) are used
in connection with computer programs. OrCAD owns various trademark registrations for these marks in the United Stat
and other countries.

SPECCTRA is a registered trademark of Cooper & Chyan Technology, Inc.

All other trademarks

Microsoft, MS-DOS, Windows, Windows NT and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange and PostScript are trademarks of Adobe Systems Incorporz
or its subsidiaries and may be registered in certain jurisdictions.

ShapeBased is a trademark and SPECCTRA and CCT are registered trademarks of Cooper & Chyan Technologies Inc
(CCT). Materials related to the CCT SPECCTRA Autorouter have been reprinted by permission of Cooper & Chyan
Technology, Inc.

Xilinx is a registered trademark of Xilinx Inc. All, X- and XC- prefix product designations are trademarks of Xilinx, Inc.
EENET is a trademark of Eckert Enterprises.

All other brand and product names mentioned herein are used for identification purposes only, and are trademarks or
registered trademarks of their respective holders.

Copyright notice

Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permissior
OrCAD, Inc.

As described in the license agreement, you are permitted to run one copy of the OrCAD software on one computer at a ti
Unauthorized duplication of the software or documentation is prohibited by law. Corporate Program Licensing and multip
copy discounts are available.

Contact information

Technical support (503) 671-9400 Technical support e-mail techsupport@orcad.com
Corporate offices (503) 671-9500 General e-mail info@orcad.com
Fax (503) 671-9501 World Wide Web http://www.orcad.com

R T T
Contents

How to Use This
Online Manual

How to print this online manual Xiv .
Welcome to OrCAD e XV . .
OVEIVIEW o o o e s e e e e e e e e e e XVi. .
Typographical conventions Xvi .
Command syntax formats XVil, .
Numeric value conventions XViil .
Numeric expression conventions Xix
Command line options
for OrCAD applications XXii .
Commandfiles, XXii .
Creating and editing command files XXii .
Logfiles Xxiii .
Editing logfiles.o xxiv
Simulation command line specification format XXV .
Simulation command line options XXVi .
Specifying simulation command line options. Xxvii
Commands
Command reference
for PSpice and PSpice A/ID 30. .
AC(ACanalysis) o e 32 ..
ALIASES, .ENDALIASES
(aliases and endaliases) 33. ..
DC(DCanalysis) e 34 . .
Linearsweep e 35 ..
Logarithmicsweep 35. .
Nestedsweep e 36. . .
.DISTRIBUTION (user-defined distribution) 37 .
Deriving updated parametervalues 37 . .
Usageexample 38 .
.END (end of circuit) 39. .
.EXTERNAL (externalport) 40. .
.FOUR (Fourieranalysis) 41 . .
FUNC (function) e 42 . .
AC (initial bias point condition) 43. .
INC (includefile) 44 . .
LIB (libraryfile) 45. .
.LOADBIAS (load bias pointfile) 46 .
.MC (Monte Carloanalysis) 47 . .
.MODEL (model definition) 50. .
Parameters for setting temperature 53 ..
Model parameters for device temperature 53

Examples, 53 .

Contents

Special considerations. 54 .
.NODESET (set approximate node voltage for bias point) 55. .
NOISE (noise analysis) 56 . .
OP (biaspoint) 58 ..
.OPTIONS (analysisoptions) 59 . .

Flagoptions. 59 .

Option withaname asitsvalue. 60 .

Numerical options with their default values 61

PSpice A/D digital simulation condition messages 63. .
PARAM (parameter)o 65 . .
PLOT (plot) o 66 . .
PRINT (print) o 68 . .
.PROBE (Probe) 69 . .

DC Sweep and transient analysis output variables 70 . .

Multiple-terminal devices. 71. .

ACanalysis I3 ..

Noise analysis 4 . .
.SAVEBIAS (save bias pointtofile) 75. .

Usageexamples. 76 .
SENS (sensitivity analysis) 78 . .
STEP (parametricanalysis) 79 . .

Usageexamples 81. . .
STIMLIB (stimulus libraryfile) 82.
STIMULUS (stimulus) o o oo oo 83. .
SUBCKT (subcircuit) 0 L 84. .
.ENDS (end subcircuit) oo 84 . .

Usageexamples, 86. . .
.TEMP (temperature) 87 . .
TEXT (text parameter) oo 88 . .
JTF(transfer) 89 . .
.TRAN (transientanalysis) 90 . .
VECTOR (digital output) Q2. .
WATCH (watch analysisresults) 94 . .
\WCASE (sensitivity/worst-case analysis) 95. .
*(comment)99
;(in-inecomment) L 100 .

+ (line continuation) Lo 101 .
Differences between PSpice and Berkeley SPICE2 102 .
Analog devices

Analogdevices e 106 .
Devicetypes e 107. .

Analog devicesummary 107 .
GaASFET 110 .

Captureparts 111 .

Setting operating temperature. 111 .

Model parameters oo 112 .

GaAsFET model parameters for all levels 112.

GaAsFET model parameters specific to model levels . . . 113.

Contents

Auxiliary model parameters BTRK, DVT, and DVTT. . . . 116
GaAsFET equations 17 .
GaAsFET equations for DC current: all levels 117.
GaAsFET equations for DC current: specific to model levels118
GaAsFET equations for capacitance 123 .
GaAsFET equations for temperature effect 125.
GaAsFET equations fornoise. 126 .
References, 127. .
Capacitor e e 128. .
Captureparts 129 .
Breakoutparts. 129 .
Capacitor model parameters 130 .
Capacitorequationso 130 .
Capacitor value formula. 130.
Capacitor equation fornoise 130 .
Diode e 131 .
Captureparts L 132 .
Setting operating temperature. 132 .
Diode model parameters 133 .
Diode equationso 134 .
Diode equations for DC current 134.
Diode equations for capacitance 134 .
Diode equations fornoise. 135 .
References 135. .
Diode equations for temperature effects 135.
Voltage-controlled voltage source 136 .
Voltage-controlled currentsource 136 .
Basic SPICE polynomial expressions (POLY) 138.
Basic controlled source properties 138 .
Implementation examples. 139.
Current-controlled currentsource 141 .
Current-controlled voltage source 141 .
Basic SPICE polynomial expressions (POLY) 141.
Independent current source & stimulus 142 .
Independent voltage source & stimulus 142 .
Independent current source & stimulus (EXP) 144 .
Independent current source and stimulus
exponential waveform formulas 144
Independent current source & stimulus (PULSE) 145.
Independent current source and stimulus
pulse waveform formulas. 146
Independent current source & stimulus (PWL) 147.
Independent current source & stimulus (SFFM) 150.
Independent current source & stimulus (SIN) 151.
Independent current source and stimulus
sinusoidal waveform formulas 152
Junction FET 153 .
Captureparts e 154. .
Setting operating temperature. 154 .

Contents

Model parameters o 155 .
JFET equations 156 .
JFET equationsforDCcurrent 157 .
JFET equations for capacitance. 158 .
JFET equations for temperature effects. 159 .
JFET equationsfornoise 159 .
Reference 159, .
Inductor coupling (and magneticcore) 160 .
Transmission linecoupling 160 .
Inductor coupling 161.
Captureparts e 163 .
Breakoutparts. 163 .
Inductor coupling: Jiles-Atherton model 165
Inductor coupling model parameters 165 .
Including air-gap effects in the inductor coupling model. . . 166
Getting core inductor coupling model values. 167.
Transmission linecoupling 167 .
Example. 168 .
Lossylines 168 .
References 169. .
Inductor 170 .
Captureparts e 171 .
Breakoutparts. 172 .
Inductor equations 173 .
Inductance value formula 173.
Inductor equationfornoise 173.
Inductor model parameters 173 .
MOSFET e e 174 .
Captureparts e 177 .
Setting operating temperature. 177 .
MOSFET model parameters 178 .
Forallmodellevels. 178.
Model levels 1,2, and 3. 178 .
Modellevel 4 178.
Model level 5 (EKV version2.6) 179
Model level 6 (BSIM3 version2.0). 181
Model level 7 (BSIM3 version 3.1). 181
MOSFET model parameters 184 .
MOSFET Equations 198 .
MOSFET equations for DC current. 199.
MOSFET equations for capacitance 200 .
MOSFET equations for temperature effects 201 .
MOSFET equations fornoise 202 .
References 203. .
Bipolar transistor 204 .
Captureparts e 205 .
Setting operating temperature. 205 .
Bipolar transistor model parameters 206 .
Distribution of the CJC capacitance 208.

Contents

Bipolar transistor equations 209 .
Bipolar transistor equations for DC current. 210.
Bipolar transistor equations for capacitance 211 .
Bipolar transistor equations for quasi-saturation effect . . 212.
Bipolar transistor equations for temperature effect 213.
Bipolar transistor equations for noise 214.

References 214. .

Resistor e 215, .

Captureparts e 215 .
Breakoutparts. oL 216 .

Resistor model parameters 217. .

Resistor equations 218 .
Resistorvalueformulas. 218 .
Resistor equationfornoise 218 .

Voltage-controlled switch 219.

Captureparts 220. .
Ideal switches 220 .

Voltage-controlled switch model parameters 220.
Special considerations. 220 .

Voltage-controlled switch equations 221.
Voltage-controlled switch equations for switch resistance . .222.
Voltage-controlled switch equation for noise. 222.

Transmissionline 223 .

Idealline 224 .

Lossyline 225 .

Captureparts 226. .
Ideal and lossy transmissionlines. 226 .
Coupled transmissionlines 227 .
Simulating coupled lines 228.
Simulation considerations. 228 .

Transmission line model parameters 229 .

References, 230. .

Independent voltage source & stimulus 231 .
Current-controlled switch 232 .

Captureparts 233 .
Ideal switches 233 .

Current-controlled switch model parameters 234 .
Special considerations. 234 .

Current-controlled switch equations 234 .
Current-controlled switch equations for switch resistance . 235.
Current-controlled switch equation for noise. 235.

Subcircuit instantiation 236 .
IGBT 237 .

Captureparts 238 .
Setting operating temperature. 238 .

IGBT device parameters 239 .

IGBT model parameters 240 .

IGBTequations i 241 .
IGBT equations forDC current. 242.

Contents

IGBT equations for capacitance 243 .

References, 244. .

Digital devices

Digital device summary 246 .
Digital primitive summary 247.
General digital primitive format 250.
Timingmodels, 252.
Treatment of unspecified propagation delays. 252 .
Treatment of unspecified timing constraints 253.
Gates 254. .
Standardgates. Lo 255 .
Standard gate timing model parameters. 257 .
Tristategates 258 .
Tristate gatetypes. 259 .
Tristate gate timing model parameters 260 .
Bidirectional transfergates 261 .
Flip-flopsand latches 264 .
Initialization. oL, 264.
Timingviolations 264.
Edge-triggered flip-flops, 265.
Edge-triggered flip-flop timing model parameters 267
Edge-triggered flip-flop truth tables DFF and JKFF . . 268
Edge-triggered flip-flop truth tables DFFDE and JKFFDE. . 269
Gatedlatch L. 270 .
Gated latch truthtables 272 .
Pullup and pulldown, 273.
Delayline 274 .
Programmable logicarray 275 .
Readonlymemory 279 .
Random access read-write memory 283 .
Multi-bit A/D and D/A converter 286
Multi-bit analog-to-digital converter 287
Multi-bit digital-to-analog converter 289
Behavioral primitiveso 291.
Logicexpression 292 .
Pin-to-pindelay 295.
Constraintchecker 304 .
Stimulusdevices 310 .
Stimulus generator Lo 311 .
Timeunits. e 312.
Stimulus generatorexamples 313 .
Filestimulus 317 .
Stimulus fileformat., 317.
Transitionformat 318.
File stimulusdevice. 319.
Input/output model 322 .
Input/output model parameters 322 .
Digital/analog interface devices 324 .

Contents

Digital input (N device), 324.
Digital input model parameters. 325.
Digital output (O Device) 328.
Digital output model parameters 328.
Digital model libraries 332.
7400-series TTL and CMOS library files 333.
4000-series CMOSlibrary 333.
Programmable array logic devices 334 .
Customizing device equations
Introduction to Device Equations 336 .
Making device modelchanges 337 .
Changing a parametername 338. .
Giving a parameteranalias 338 .
Addingaparametero 338 .
Changing the device equations 339 .
Functional subsections of the device source file 340 .
Addinganewdeviceo 341 .
Specifying new internal device structure 342.
Example. 342 .
Procedure e 343 .
Recompiling and linking the
Device Equations option 345.
PersonalizingyourDLL 345.
Simulating with the Device Equations option 346.

Selecting which models to use from a Device Equations DLL 346.
Glossary

Index

Contents

10

Contents

11

Contents

12

How to Use This
Online Manual

Click this toolbar

button or book icon... To dothis...
a0 Go back and forth between pages.
LI L1 Go back and forth between views.

Section

Go back to the beginning of the section.

GhHDtEf Go back to the beginning of the chapter.
| Go to the Commands chapter.
C d
(] | ~ommanes (Other chapters have similar icons.)
|n E'](Go to the Index.
G[“ﬁ“')' Go to the Glossary.

ﬁ Go to the Contents.

How to Use This Online Manual How to print this online manual

How to print this online manual

You can print any portion of this manual, or the entire book, to keep as a printed reference.
The pages are desgined to print on 8.5"-by-11" paper, with a left margin wide enough to punch
holes for use in a binder.

To print this manual

1 In Acrobat Reader, from the File menu, choose Print.
2 Under Print Range, choose one of the following:
» All Pages, if you want to print the entire book
« Current Page, if you want to print the current page only

« Pages, if you want to print a range of pages (such as a chapter—see the table below)

3 Click OK.
To print this chapter... Print this range of pages...
How to Use This Online Manual Xiii tO xxviii
Commands 29 t0 103
Analog devices 105 to 244
Digital devices 245 10 334
Customizing device equations 335 t0 346
Glossary 347 t0 351
Index 353 to the last page of this manual

Xiv

How to Use This Online Manual Welcome to OrCAD

Welcome to OrCAD

OrCAD" offers a total solution for your core design tasks: schematic- and VHDL-based
design entry; FPGA and CPLD design synthesis; digital, analog, and mixed-signal simulation;
and printed circuit board layout. What's more, OrCAD's products are a suite of applications
built around an engineer's design flow—not just a collection of independently developed
point tools. PSpice and PSpice A/D are just one element in OrCAD's total solution design
flow.

Welcome to OrCAD. With OrCAD's products, you'll spend less time dealing with the details
of tool integration, devising workarounds, and manually entering data to keep files in sync.
Our products will help you build better products, faster, and at lower cost.

<=Chapter ﬁ‘

XV

How to Use This Online Manual Overview

Overview

This manual contains the reference material needed when working with special circuit
analyses in PSpice A/D.

Included in this manual are detailed command descriptions, start-up option definitions, and a
list of supported devices in the digital and analog device libraries.

This manual has comprehensive reference material for all of the PSpice circuit analysis
applications, which include:

» PSpice A/D
» PSpice A/D Basics
* PSpice

This manual assumes that you are familiar with Microsoft Windows (NT or 95), including
how to use icons, menus and dialog boxes. It also assumes you have a basic understanding
about how Windows manages applications and files to perform routine tasks, such as starting
applications and opening and saving your work. If you are hew to Windows, please review
your Microsoft Windows User’s Guide

Typographical conventions

This manual generally follows the conventions used in the Microsoft Windows User’s Guide.
Procedures for performing an operation are generally numbered with the following
typographical conventions.

Notation Examples Description

monospace font mydiodes.s1b Library files and file names.

key cap or letter Pregster ... A specific key or key stroke on the
keyboard.

monospace font TypeVAC... Output produced by a printer and
commands/text entered from the
keyboard.

<=Chapter ﬁ‘

XVi

How to Use This Online Manual

Command syntax formats

The following table provides the command syntax formats.

Overview

Notation

Examples

Description

monospace font

[]
[

<|>

[1]

abcd

<model name>

<value>*
[AC]
[value]*

<YES | NO>
[ON | OFF]

User input including keypad symbols,
numerals, and alphabetic characters as
shown; alphabetic characters are not case
sensitive.

A required item in a command line. For
example, <model name> in a command
line means that the model name parameter
is required.

The asterisk indicates that the item shown
in italics must occur one or more times in
the command line.

Optional item.

The asterisk indicates that there is zero or
more occurrences of the specified subject.

Specify one of the given choices.

Specify zero or one of the given choices.

XVii

How to Use This Online Manual Overview

Numeric value conventions

The numeric value and expression conventions in the following table not only apply to the
PSpiceCommands but also to the device declarations and interactive numeric entries
described in subsequent chapters.

Literal numeric values are written in standard floating point notation. PSpice applies the
default units for the numbers describing the component values and electrical quantities.
However, these values can be scaled by following the number using the appropriate scale
suffix as shown in the following table.

Scale Symbol Name
1015 F femto-
1012 P pico-
109 N nano-
106 U micro-
25.4*105 MIL -
103 M milli-
C clock cyclé
103 K kilo-
10%6 MEG mega-
100 G giga-
1012 T tera-

* Clock cycle varies and must be set where applicable.

Xviii

How to Use This Online Manual

Overview

Numeric expression conventions

Numeric values can also be indirectly represented by parameters; see the
.PARAM (parameter) command. Numeric values and parameters can be used together to

form arithmetic expressions. PSpice expressions can incorporate the intrinsic functions shown
in the following table.

The Function column lists expressions that PSpice and PSpice A/D recognize. The Meaning
column lists the mathematical definition of the function. There are also some differences
between the intrinsic functions available for simulation and those available for waveform
analysis. Refer to your PSpice user’s guide for more information about waveform analysis.

Function ~ Meaning Comments

ABS(X) [X]

ACOS(x) arccosine of x -1.0<=x<=+1.0

ARCTAN(X) tarii(x) result in radians

ASIN(X) arcsine of x -1.0<=x<=+1.0

ATAN(X) tan1(x) result in radians

ATAN2(y,x) arctan of (y/x) result in radians

COS(x) cos(x) X in radians

COSH(x) hyperbolic cosine ofx in radians

X

DDT(x) time derivative of x transient analysis only

EXP(x) &

IFt X, Y) x if t=TRUE tis a Boolean expression that evaluates to TRUE

y if t=FALSE or FALSE and can include logical and relational

operators (se€Eommand line options for
OrCAD applications). X and Y are either
numeric values or expressions. For example,
{IF (v(1)<THL, v(1), v(1)*v(1)/THL)}
Care should be taken in modeling the
discontinuity between the IF and ELSE parts, or
convergence problems can result.

IMG(x) imaginary part of x returns 0.0 for real numbers

LIMIT(X,min,ma result is min if X < min, max if x > max, and x

X) otherwise

LOG(x) In(x) log base e

LOG10(x) log(x) log base 10

M(x) maghnitude of x this produces the same result as ABS(x)

MAX(X,Y) maximum of x and y

MIN(X,y) minimum of x and y

P(x) phase of x returns 0.0 for real numbers

XiX

How to Use This Online Manual

Overview

Function * Meaning Comments
PWR(x,y) XY the binary operator ** is interchangeable with
or, {x**y} PWR(X,y)
PWRS(x,y) +|¥ (if x>0),
-|Ixp (if x<0)
R(x) real part of x
SDT(X) time integral of x transient analysis only
SGN(x) signum function
SIN(X) sin(x) X in radians
SINH(x) hyperbolic sine of x X in radians
STP(X) 1if x>0.0 The unit step function can be used to suppress a
0 if x<0.0 value until a given amount of time has passed.
For instance,
{v(1)*STP(TIME-10ns)}
gives a value of 0.0 until 10ns has elapsed, then
gives v(1).
SQRT(X) X2
TAN(X) tan(x) X in radians
TANH(X) hyperbolic tangent x in radians
of x
TABLE Result is the y value corresponding to x, when

(X,X1,Y1,X2,Y2, Xn

Yr)

all of the x,y,, points are plotted and connected
by straight lines. If x is greater than the max x
then the value is thg,yassociated with the
largest x. If x is less than the smallest, xhen
the value is the yassociated with the smallest
Xp-

* Most numeric specifications in PSpice allow for arithmetic expressions. Some exceptions do exist and are sum-
marized in your PSpice user’s guide. There are also some differences between the intrinsic functions available for
simulation and those available for waveform analysis. Refer to your PSpice user’s guide for more information about
waveform analysis.

XX

How to Use This Online Manual

Overview

Expressions can contain the standard operators as shown in the following table.

Operators

Meaning

arithmetic
addition (or string concatenation)
subtraction
multiplication
division
exponentiation
logical
unary NOT
boolean OR
boolean XOR
boolean AND
relational (within IF(') functions)
equality test
non-equality test
greater than test
greater than or equal to test
less than test

less than or equal to test

XXi

How to Use This Online Manual Command line options for OrCAD applications

Command line options
for OrCAD applications

Command files

A command file is an ASCII text file which contains a list of commands to be executed. A
command file can be specified in multiple ways:

» atthe command line when starting PSpice, Stimulus Editor, or the Model Editor,

* by choosing Run Commands from the File menu and entering a command file name (for
PSpice and Stimulus Editor only), or

e atthe PROBECMD or STMEDCMD command line, found in the configuration file

pspice.ini.

The command file is read by the program and all of the commands contained within the file
are performed. When the end of the command file is reached, commands are taken from the
keyboard and the mouse. If no command file is specified, all of the commands are received
from the keyboard and mouse.

The ability to record a set of commands can be useful when using PSpice, the Model Editor,
and Stimulus Editor. This is especially useful in PSpice, if you are repeatedly doing the same
simulation and looking at the same waveform with only slight changes to the circuit before
each run. It can also be used to automatically create hardcopy output at the end of very long
(such as overnight) simulation runs.

Creating and editing command files

You can create your own command file using a text editor (such as Notepad). In PSpice and
Stimulus Editor, you can choose Log Commands from the File menudgdies for an

example) to record a list of transactions in a log file, then choose Run Commands from the
File menu to run the logged file.

®

After you activate cursors (from the Tools menu, choose Cursor), any mouse or
keyboard movements that you make for moving the cursor will not be recorded in the
command file.

If you choose to create a command file using a text editor, note that the commands in the
command file are the same as those available from the keyboard with these differences:

e The name of the command or its first capitalized letter can be used.
e Any line that begins with an * is a comment.

» Blank lines are ignored, therefore, they can be added to improve the readability of the
command file.

e The commands @CR, @UP, @DWN, @LEFT, @RIGHT, and @ESC are used to
represent the <Enter>; %, <| >, <>, <>, and <Esc> keys, respectively.

XXii

How to Use This Online Manual Command line options for OrCAD applications

Log files

®

 The command PAUSE causes PSpice, the Model Editor, or Stimulus Editor to wait until
any key on the keyboard is pressed. In the case of PSpice, this can be useful to examine a
waveform before the command file draws the next one.

The commands are one to a line in the file, but comment and blank lines can be used to make
the file easier to read.

Assuming that a waveform data file has been created by simulating theisoupite . dsn,

you can manually create a command file (using a text editor) called1e . cmd which

contains the commands listed below. This set of commands draws a waveform, allows you to
look at it, and then exits PSpice.

* Display trace v(out2) and wait

Trace Add

v(out?2)

Pause

* Exit Probe environment
File Exit

SeeSimulation command line specification formatandSpecifying simulation command
line options for specifying command files on the simulation command line SBealation

command line specification formatandSpecifying simulation command line optiongor

details on specifying the /C or -c option for PSpice.

The Search Commands feature is a Cursor option for positioning the cursor at a
particular point. You can learn more about Search Commands by consulting PSpice
Help.

Instead of creating command files by hand, using a text editor, you can generate them
automatically by creating a log file while running PSpice, the Model Editor, or Stimulus
Editor. While executing the particular package, all of the commands given are saved in the
log file. The format of the log file is correct for use as a command file.

To create alog file in PSpice or Stimulus Editor, from the File menu, choose Log

Commands and enter a log file name. This turns logging on. Any action taken after starting
Log Commands is logged in the named file and can be run in another session by choosing Run
Commands.

You can also create a log file for PSpice, Stimulus Editor, or the Model Editor by using the /I
or -l option at the command line. For example:

PROBE /L EXAMPLE.LOG

Of course, you can use a hame for the log file that is more recognizable, sughoas . cmd

(to PSpice, the Model Editor, and Stimulus Editor, the file name is any valid file name for your
computer).

You can use either (/) or (-) as separators, and file names can be in upper or lower
case.

XXxiii

How to Use This Online Manual Command line options for OrCAD applications

Editing log files
After PSpice, the Model Editor, or Stimulus Editor is finished, the log file is available for
editing to customize it for use as a command file. You can edit the following items:

* Add blank lines and comments to improve readability (perhaps a title and short discussion
of what the file does).

e Add the Pause command for viewing waveforms before proceeding.

* Remove the Exit command from the end of the file, so that PSpice, the Model Editor, and
Stimulus Editor do not automatically exit when the end of the command file is reached.

You can add or delete other commands from the file or even change the file name to be more
recognizable. It is possible to build onto log files, either by using your text editor to combine
files or by running PSpice, the Model Editor, and Stimulus Editor with both a command and
log file:

PROBE /C IN.CMD /L OUT.LOG

The filein.cmd gives the command to PSpice, and PSpice saves the (same) commands into
theout.log file. Whenin.cmd runs out of commands, and PSpice is taking commands from
the keyboard, these commands also go intathelog file.

To log commands in PSpice

Use command logging in PSpice to record and save frequently used actions to a command file.
Command files are useful when you need to remember the steps taken in order to display a set
of waveforms for any given data file.

1 From the File menu, choose Log Commands.

2 Inthe Log File Name text box, tygeraces, then click OK.

A check mark appears next to Log Command to indicate that logging is turned on.
From the File menu, choose Open.

Selectexample.dat (located in the examples directory), then click OK.

From the Trace menu, choose Add.

Select V(OUT1) and V(OUT2), then click OK.

From the File menu, choose Log Commands to turn command logging off.

~N o o b~ W

The check mark next to the command disappears. Subsequent actions performed are not
logged in the command file.

You can view the command file using an ASCII text editor, such as Notepad. Command files
can be edited or appended, depending on the types of commands you want to store for future
use. The filetraces.cmd should look as shown below (with the exception of a different file
path).

*Command file created by Probe - Wed Apr 17 10:33:55
File Open

/orcad/probe/example.dat

0K

Trace Add

V(OUT1) v(ouT2)

0K

XXV

How to Use This Online Manual Command line options for OrCAD applications

To run the command log

1 From the File menu, choose Run Command.

2 Select?traces.cmd, then click OK. The two traces appear.

Simulation command line specification format

The format for specifying command line options for PSpice and PSpice A/D are as follows.
pspice [options] [input file(s)]

input file
Specifies the name of a circuit file for PSpice or PSpice A/D to simulate after it starts. The
input file can be a simulation file{im, .cir, .net), datafiles (dat), output files (out),
or any files ¢.*). PSpice opens any files whose extension PSpice does not recognize as
a text file.

You can specify multiple input files, but if the output file or data file options are specified,
they apply only to the first specified input file.

The input file name can include wildcard characters (* and ?), in which case all file names
matching the specification are simulated.

options
One or more of the options listed$mmulation command line options

XXV

How to Use This Online Manual

Command line options for OrCAD applications

Simulation command line options

Options can be entered using the dash (-) or slash (/) separator.

Option

Description

-bf<flush interval>

-bn<number of buffers>

-bs<buffer size factor>

-@ <command file>

-c <file name>

-d <data file>

-i <ini file name>

-| <file name>

-0 <output file>

Determines how often (in minutes) the simulator will flush
the buffers of the waveform data file to disk. This is useful
when a long simulation is left running and the machine
crashes or is restarted. In this case, the data file will be
readable up to the last flush. The default is to flush every 10
minutes. The <flush interval> can be set between 0 and 1440
minutes. A value of zero means not to write unless necessary.

Determines the number of buffers to potentially allocate for
the waveform data file. Zero buffers means to do all writing
directly to disk. Allocating a large number of buffers can
speed up a large simulation, but will increase memory
requirements. Exceeding physical memory will either slow
down the simulation, or will make it fail. The default number
of buffers is 4 (1 buffer if you are using the CSDF option).

Determines the size of the individual buffers for writing the
waveform data file. Using a larger buffer size can reduce
execution time, but at the expense of increasing the memory
requirements. The values for the buffer files work as follows:

option:-bs0 -bsl -bs2 -bs3 -bs4 -bs5 -bs6
value: 256 512 1024 2048 4096 8192 16384
The default is 4K (8K if you are using CSDF).

Specifies the name of the command file to run.

Specifies the command file, which runs the session until the
command file ends or PSpice stops.

Specifies the name of the waveform data file to which PSpice
saves the waveform data from the simulation. By default, the
name of the waveform data file is the name of the input file
with a.dat extension.

Exits PSpice after all specified files have been simulated.
This option replaces the -wONLY option.

Specifies the name of an alternate initialization file. If not
specified, the simulator uses:
\windows\pspice.ini

Creates a log file, which saves the commands from this
session. This log file can later be used as an input command
file for PSpice.

Specifies the output file to which PSpice saves the simulation
output. By default, the name of the output file name defaults
to the name of the input file with anut extension.

XXVi

How to Use This Online Manual Command line options for OrCAD applications

Option Description

-p <file name> Specifies a file that contains goal functions for Performance
Analysis, macro definitions, and display configurations. This
file is loaded after the globabrb file (specified in the inf
file by the line PRBFILE=pspice.prb), and the locatb file
(<file name>.prb), have been loaded. Definitions in this
file will replace definitions from the global or localrb files
that have already been loaded.

-r Runs simulation files. If this option is not specified, the
specified files are opened but not simulated.

-t <temp directory name> Specifies a directory where PSpice can write temporary files.
This option replaces the -wTEMP option.

-wOUT=<suffix> Specifies the file suffix for the simulation output file. If
<suffix> is not specified, the defaulsut file is used.

-wWDAT=<suffix> Specifies the file suffix for the waveform data file. If
<suffix> is not specified, the defaultiat file is used.

-WTXT=<suffix> Specifies the file suffix for the CSDF file. If <suffix> is not
specified, the defaulttxt file is used.

-WwNO_NOTIFY Indicates that the simulator should not display the status
message dialog after completion of each circuit file.

-WwPAUSE=<seconds> Specifies the maximum time that the status dialog box should
be displayed. If <seconds> elapses before you click one of
the buttons, the dialog will close.

Specifying simulation command line options

Using the pspice.ini configuration file

You can customize your initialization file to include command line options by editing the
PSPICECMDLINE line inthe filespice.ini, using any ASCII text editor, such as Notepad.
These options take effect the next time PSpice A/D starts.

PSpice options can also be specified on the PSpice command line by typing the executable
names.

The command line options can be separated by spaces or in a continuous string, therefore:

-c makeplot.cmd -p newamp.prb
-cmakeplot.cmd-pnewamp.prb

are equivalent. The order of the options does not matter.

The command line options that use <file name> assume default extensions. These command
line options can be used without specifying the extension to <file name>. For example:

-c makeplot -p newamp
-c makeplot.cmd -p newamp.prb

are equivalent. However, PSpice searches first for the exact <file name> specified for these
command line options, and if that <file name> exists, PSpice uses it. If the exact <file name>

XXVii

How to Use This Online Manual Command line options for OrCAD applications

does not exist, PSpice adds default extensions to <file name> and searches for those. The
following default extensions are used:

<file name[.dat]> waveform data file

-c<file name[.cmd]> command file

-I<file name[.log]> log file

-p<file name[.prb]> displays, goal functions, and macros file

You can learn more about PSpice macros by consulting PSpice Help.

Section

XXViii

Commands

AC (AC analysis)

.DC (DC analysis)
.FOUR (Fourier analysis)
.NOISE (noise analysis)

.PLOT (plot)
PRINT (print)

.PROBE (Probe)

.STEP (parametric analysis)

.END (end of circuit)
.FUNC (function)
.INC (include file)

.MC (Monte Carlo analysis)

.ENDS (end subcircuit)
.DISTRIBUTION
(user-defined distribution)

IC (initial bias point condition)

.LOADBIAS (load bias point file)

ALIASES, .ENDALIASES
(aliases and endaliases)
.EXTERNAL (external port)
.OPTIONS (analysis options)

.STIMLIB (stimulus library file)

standard analyses

.OP_(bias point)

.SENS (sensitivity analysis)
.TF (transfer)

.TRAN (transient analysis)

output control

.VECTOR (diqgital output)
\WATCH (watch analysis results)

simple multi-run analyses

.TEMP (temperature)

circuit file processing

.LIB (library file)
.PARAM (parameter)

statistical analyses

.WCASE (sensitivity/ worst-case analysis)

device modeling

.MODEL (model definition)
.SUBCKT (subcircuit)

initial conditions

.NODESET
(set approximate node voltage for bias point)
.SAVEBIAS (save bias point to file)

miscellaneous

STIMULUS (stimulus)
.TEXT (text parameter)

* (comment)
: (in-line comment)
+ (line continuation)

Analog devices

Digital devices

mn QRCAD =

DEV EQ

Incex Glossary g

Device equations

Commands Command reference for PSpice and PSpice A/D

Command reference
for PSpice and PSpice A/D

Schematics users enter analysis specifications through the Analysis Setup dialog box (from

the Analysis menu, select Setup).

Function PSpice command

Description

standard analyses .AC (AC analysis)
.DC (DC analysis)
.FOUR (Fourier analysis)
.NOISE (noise analysis)
.OP (bias point)
.SENS (sensitivity analysis)
.TF (transfer)

frequency response

DC sweep

Fourier components

noise

bias point

DC sensitivity

small-signal DC transfer function

.TRAN (transient analysis) transient
simple multi-run .STEP (parametric analysis) parametric
analyses TEMP (temperature) temperature
statistical analyses .MC (Monte Carlo analysis) Monte Carlo

\WCASE (sensitivity/worst-case

analysis)

sensitivity/worst-case

IC (initial bias point condition)

.LOADBIAS (load bias point file)
.NODESET (set approximate node

voltage for bias point)
.SAVEBIAS (save bias point to file)

initial conditions

clamp node voltage for bias point calculation
to restore a .NODESET bias point
to suggest a node voltage for bias calculation

to store .NODESET bias point information

device modeling

.ENDS (end subcircuit)
.DISTRIBUTION (user-defined distrib

ution)
.MODEL (model definition)

.SUBCKT (subcircuit)

end of subcircuit definition

model parameter tolerance distribution
modeled device definition

to start subcircuit definition

.PLOT (plot)

output control

.PRINT (print)
.PROBE (Probe)

VECTOR (digital output)
\WATCH (watch analysis results)

to send an analysis plot to output file
(line printer format)

to send an analysis table to output file

to send simulation results to Probe data file
digital state output

view numerical simulation results in progress

30

Commands Command reference for PSpice and PSpice A/D
Function PSpice command Description
circuit file .END (end of circuit) end of circuit simulation description
processing .FUNC (function) expression function definition

JANC (include file)
.LIB (library file)

.PARAM (parameter)

include specified file
reference specified library
parameter definition

miscellaneous

ALIASES. .ENDALIASES (aliases

and endaliases)
.EXTERNAL (external port)

.OPTIONS (analysis options)

.STIMLIB (stimulus library file)

STIMULUS (stimulus)
TEXT (text parameter)

* (comment)

. (in-line comment)

+ (line continuation)

to begin and end an alias definition

to identify nets representing the outermost (or
peripheral) connections to the circuit being
simulated

to set miscellaneous simulation limits,
analysis control parameters, and output
characters

to specify a stimulus library name containing
.STIMULUS information

stimulus device definition

text expression, parameter, or file name used
by digital devices

to create a comment line
to add an in-line comment
to continue the text of the previous line

31

Commands AC (AC analysis)

AC (AC analysis)

Purpose The .AC command calculates the frequency response of a circuit over a range of frequencies.
General form .AC <sweep type> <points value>

+ <start frequency value> <end frequency value>
Examples .AC LIN 101 100Hz 200Hz

.AC OCT 10 1kHz 16kHz
.AC DEC 20 1IMEG 100MEG

Arguments and options

<sweep type>
Must be LIN, OCT, or DEC, as described below.

Parameter Description Description

LIN linear sweep The frequency is swept linearly from the
starting to the ending frequency. The
<points value> is the total number of points in
the sweep.

OCT sweep by octaves The frequency is swept logarithmically by
octaves. The <points value> is the number of
points per octave.

DEC sweep by decades The frequency is swept logarithmically by
decades. The <points value> is the number of
points per decade.

<points value>
Specifies the number of points in the sweep, using an integer.

<start frequency value> <end frequency value>
The end frequency value must not be less than the start frequency value, and both must be
greater than zero. The whole sweep must include at least one point. If a group delay (G
suffix) is specified as an output, the frequency steps must be close enough together that
the phase of that output changes smoothly from one frequency to the next. Calculate group
delay by subtracting the phases of successive outputs and dividing by the frequency

increment.
Comments A .PRINT (print) , .PLOT (plot), or.PROBE (Probe)command must be used to get the

results of the AC sweep analysis.

AC analysis is a linear analysis. The simulator calculates the frequency response by
linearizing the circuit around the bias point.

All independent voltage and current sources that have AC values are inputs to the circuit.
During AC analysis, the only independent sources that have nonzero amplitudes are those
using AC specifications. The SIN specification doesawaint, as it is used only during
transient analysis.

To analyze nonlinear functions such as mixers, frequency doublers, and AGC, use
.TRAN (transient analysis)

<“Chapter

32

Commands

ALIASES, .ENDALIASES (aliases and endaliases)

ALIASES, ENDALIASES

(aliases and endaliases)

Purpose

General form

Examples

¢=Chapter

The Alias commands set up equivalences between node names and pin names, so that traces
in the Probe display can be identified by naming a device and pin instead of a node. They are
also used to associate a net name with a node name.

.ALTASES
<device name> <device alias> (<<pin>=<node>>)
(<<net>=<node>>)

.ENDALTIASES

.ALTASES

R_RBIAS RBIAS (1=$N_0001 2=VDD)

0_Q3 03 (c=$N_0001 b=$N_0001 e=VEE)
— _ (QUT=$N_0007)

.ENDALTIASES

The first alias definition shown in the example allows the name RBIAS to be used as an alias
for R_RBIAS, and it relates pin 1 of device R_RBIAS to node $N_0001 and pin 2 to VDD.

The last alias definition equates net name OUT to node name $N_0007.

33

Commands .DC (DC analysis)

.DC (DC analysis)

Purpose The .DC command performs a linear, logarithmic, or nested DC sweep analysis on the circuit.

The DC sweep analysis calculates the circuit’s bias point over a range of values for
<sweep variable name>.

Sweep type The sweep can be linear, logarithmic, or a list of values.
Parameter Description Meaning
LIN linear sweep The sweep variable is swept linearly from the

starting to the ending value.

OCT sweep by octaves Sweep by octaves. The sweep variable is swept
logarithmically by octaves.

DEC sweep by decades Sweep by decades. The sweep variable is swept
logarithmically by decades.

LIST list of values Use a list of values.

<=Chapter

34

Commands .DC (DC analysis)

Linear sweep

General form .DC [LIN] <sweep variable name>
+ <start value> <end value> <increment value>
+ [nested sweep specification]

Examples .DC VIN -.25 .25 .05
.DC LIN I2Z 5mA -2mA 0.1mA

.DC VCE OV 10V .5V IB OmA 1mA 50uA
.DC RES RMOD(R) 0.9 1.1 .001

Arguments and options

<start value>
Can be greater or less than <end value>: that is, the sweep can go in either direction.

<increment value>
The step size. This value must be greater than zero.

Comments The sweep variable is swept linearly from the starting to the ending value.

The keyword LIN is optional.

Logarithmic sweep

General form .DC <logarithmic sweep type> <sweep variable name>
+ <start value> <end value> <points value>
+ [nested sweep specification]

Examples .DC DEC NPN QFAST(IS) 1E-18 1E-14 5
Arguments and options

<logarithmic sweep type>
Must be specified as either DEC (to sweep by decades) or OCT (to sweep by octaves).

<start value>
Must be positive and less than <end value>.

<points value>
The number of steps per octave or per decade in the sweep. This value must be an integer.

Comments EitheroCT or DEC must be specified for the <logarithmic sweep type>.

35

Commands .DC (DC analysis)

Nested sweep

General form .DC <sweep variable name> LIST <value>*
+[nested sweep specification]
Examples .DC TEMP LIST 0 20 27 50 80 100 PARAM Vsupply 7.5 15 .5

Arguments and options

<sweep variable name>
After the DC sweep is finished, the value associated with <sweep variable name> is set
back to the value it had before the sweep started. The following items can be used as sweep
variables in a DC sweep:

Parameter Description Meaning

Source A name of an independent During the sweep, the source’s voltage or
voltage or current source. current is set to the sweep value.

Model A model type and model The parameter in the model is set to the

Parameter name followed by a model sweep value. The following model
parameter name in parameters cannot be (usefully) swept: L
parenthesis. and W for the MOSFET device (use LD

and WD as a work around), and any
temperature parameters, such as TC1 and
TC2 for the resistor.

Temperature Use the keyword TEMP for Set the temperature to the sweep value.
<sweep variable name>. For each value in the sweep, all the
circuit components have their model

parameters updated to that temperature.

Global Use the keyword PARAM, During the sweep, the global parameter’s
Parameter followed by the parameter value is set to the sweep value and all
name, for expressions are reevaluated.

<sweep variable name>.

Comments For a nested sweep, a second sweep variable, sweep type, start, end, and increment values car
be placed after the first sweep. In the nested sweep example, the first sweep is the inner loop:
the entire first sweep is performed for each value of the second sweep.

When using a list of values, there are no start and end values. Instead, the numbers that follow
the keyword LIST are the values that the sweep variable is set to.

The rules for the values in the second sweep are the same as for the first. The second sweep
generates an entirBRINT (print) table or.PLOT (plot) plot for each value of the sweep.
Probe displays nested sweeps as a family of curves.

Section

36

Commands .DISTRIBUTION (user-defined distribution)

DISTRIBUTION (user-defined distribution)

Purpose The .DISTRIBUTION command defines a user distribution for tolerances, and is only used
with Monte Carlo and sensitivity/worst-case analyses. The curve described by a
.DISTRIBUTION command controls the relative probability distribution of random numbers
generated by PSpice to calculate model parameter deviations.

General form DISTRIBUTION <name> (<deviation> <probability>)*

Examples .DISTRIBUTION bi_modal (-1,1) (-.5,1) (-.5,0) (.5,0)
+ (.5,1) (1,1)

.DISTRIBUTION triangular (-1,0) (0,1) (1,0)
Arguments and options

(<deviation> <probability>)
Defines the distribution curve by pairs, or corner points, in a piecewise linear fashion. You
can specify up to 100 value pairs.

<deviation>
Must be in the range (-1,+1), which matches the range of the random number generator.
No <deviation> can be less than the previous <deviation> in the list, although it can repeat
the previous value.

<probability>
Represents a relative probability, and must be positive or zero.
Comments When using Schematics, several distributions can be defined by configuring an include file

containing the .DISTRIBUTION command. For details on how to do this, refer to your PSpice
user’s guide.

If you are not using Schematics, a user-defined distribution can be specified as the default by
setting the DISTRIBUTION parameter in tHePTIONS (analysis options)command.

Deriving updated parameter values

The updated value of a parameter is derived from a combination of a random number, the
distribution, and the tolerance specified. This method permits distributions which have
different excursions in the positive and negative directions. It also allows the use of one
distribution even if the tolerances of the components are different so long as the general shape
of the distributions are the same.

1 Generate a <temporary random number> in the range (0, 1).
2 Normalize the area under the specified distribution.

3 Set the <final random number> to the point where the area under the normalized
distribution equals the <temporary random number>.

4 Multiply this <final random number> by the specified tolerance.

<“Chapter

37

Commands .DISTRIBUTION (user-defined distribution)

Usage example

To illustrate, assume there is a ifdl capacitor that has a variation of -50% to +25%, and
another that has tolerances of -10% to +5%. Note that both capacitors’ tolerances are in the
same general shape, i.e., both have negative excursions twice as large as their positive
excursions.

.distribution cdistrib (-1,1) (.5, 1) (.5, 0) (1, 0)
cl 1 0 cmod 11u

c2 1 0 cmod2 1lu

.model cmodl cap (c=1 dev/cdistrib 50%)

.model cmod2 cap (c=1 dev/cdistrib 10%)

The steps taken for this example are as follows:
1 Generate atemporary random value> of 0.3.
2 Normalize the area under theistrib distribution (1.5) to 1.0.

3 The<final random number> is therefore -0.55 (the point where the normalized area
equals 0.3).

4 Forcl, this -0.55 is then scaled by 50%, resulting in -0.275¢ foit is scaled by 10%,
resulting in -0.055.

Separate random numbers are generated for each parameter that has a tolerance
unless a tracking number is specified.

Section

38

Commands

.END (end of circuit)

.END (end of circuit)

Purpose

General form
Examples

Comments

¢=Chapter

The .END command marks the end of the circuit. All the data and every other command must
come before it. When the .END command is reached, PSpice does all the specified analyses
on the circuit.

.END

* 1st circuit in file
. circuit definition
.END
* 2nd circuit in file
... Circuit definition
.END
There can be more than one circuit in an input file. Each circuit is marked by an .END
command. PSpice processes all the analyses for each circuit before going on to the next one.

Everything is reset at the beginning of each circuit. Having several circuits in one file gives
the same results as having them in separate files and running each one separately. However,
all the simulation results go into oneuT file and one. DAT file. This is a convenient way to
arrange a set of runs for overnight operation.

The last statement in an input file must be an .END command.

39

Commands

.EXTERNAL (external port)

EXTERNAL (external port)

Purpose

General form
Examples

External ports are provided as a means of identifying and distinguishing those nets
representing the outermost (or peripheral), connections to the circuit being simulated. The
external port statement .EXTERNAL applies only to nodes that have digital devices
attached to them.

.EXTERNAL <attribute> <node-name>*

.EXTERNAL INPUT Datal, Data2, Data3
.EXTERNAL OQUTPUT P1
.EXTERNAL BIDIRECTIONAL BPortl BPort2 BPort3

Arguments and options

Comments

<=Chapter

<attribute>
One of the keywords INPUT, OUTPUT, or BIDIRECTIONAL, describing the usage of
the port.

<node_name>
One or more valid PSpice A/D node names.

When a node is included in a .EXTERNAL statement it is identified as a primary
observation point. For example, if you are modeling and simulating a PCB-level
description, you could place an .EXTERNAL (or its Capture symbol counterparts) on the
edge pin nets to describe the pin as the external interface point of the network.

PSpice recognizes the nets marked as .EXTERNAL when reporting any sort of timing
violation. When a timing violation occurs, PSpice analyzes the conditions that would permit
the effects of such a condition to propagate through the circuit. If, during this analysis, a net
marked external is encountered, PSpice reports the condition as a Persistent Hazard,
signifying that it has a potential effect on the externally visible behavior of the circuit. For
more information on Persistent Hazards, refer to your PSpice user’s guide

Port specifications are inserted in the netlist by Capture whenever an external port symbol,
EXTERNAL_IN, EXTERNAL_OUT, or EXTERNAL_BI is used. Refer to your PSpice
user’s guide for more information.

40

Commands .FOUR (Fourier analysis)

.FOUR (Fourier analysis)

Purpose Fourier analysis decomposes the results of a transient analysis into Fourier components.
General form .FOUR <frequency value> [no. harmonics value] <output variable>
Examples .FOUR 10kHz V(5) V(6,7) I(VSENS3)

.FOUR 60Hz 20 V(17)
.FOUR 10kHz V(LOUTL],L0UTZ21)

Arguments and options

<output variable>

An output variable of the same form as IP& INT (print) command orPLOT (plot)
command for a transient analysis.

<frequency value>
The fundamental frequency. Not all of the transient results are used, only the interval from
the end, back to 1/<frequency value> before the end is used. This means that the transient
analysis must be at least 1/<frequency value> seconds long.

Comments The analysis results are obtained by performing a Fourier integral on the results from a
transient analysis. The analysis must be supplied with specified output variables using evenly
spaced time points. The time interval used is <print step value> il ¥\ (transient
analysis)command, or 1% of the <final time value> (TSTOP) if smaller, and a 2nd-order
polynomial interpolation is used to calculate the output value used in the integration. The DC
component, the fundamental, and thetBrough % harmonics of the selected voltages and
currents are calculated by default, although more harmonics can be specified.

A .FOUR command requires a .TRAN command, but Fourier analysis does not require
.PRINT, .PLOT, or.PROBE (Probe)commands. The tabulated results are written to the
output file (out) as the transient analysis is completed.

The results of the .FOUR command are only available in the output file. They
cannot be viewed in Probe.

¢=Chapter

41

Commands

.FUNC (function)

.FUNC (function)

Purpose

General form
Examples

The .FUNC command defines functions used in expressions. Besides their obvious flexibility,
they are useful for where there are several similar subexpressions in a circuit file.

.FUNC <name> ([argl*) {<body>}

LFUNC E(x) {exp(x)!}

.FUNC DECAY(CNST) {E(-CNST*TIME)}
.FUNC TRIWAV(x) {ACOS(COS(x))/3.14159}
.FUNC MIN3(A,B,C) {MINCA,MIN(B,C))!}

Arguments and options

Comments

¢=Chapter

.FUNC
Does not have to precede the first use of the function name. Functions cannot be redefined
and the function name must not be the same as any of the predefined functions (e.g., SIN
and SQRT). Sedow to Use This Online Manualfor a list of valid expressions. .FUNC
arguments cannot be node names.

<body>
Refers to other (previously defined) functions; the second example, DECAY, uses the first
example, E.

[arg]
Specifies up to 10 arguments in a definition. The number of arguments in the use of a
function must agree with the number in the definition. Functions can be defined as having
no arguments, but the parentheses are still required. Parameters, TIME, other functions,
and the Laplace variabseare allowed in the body of function definitions.

The <body> of a defined function is handled in the same way as any math expression; it is
enclosed in curly braces {}. Previous versions of PSpice did not require this, so for
compatibility the <body> can be read without braces, but a warning is generated.

®

Creating a file of frequently used .FUNC definitions and accessing them using
an .INC command near the beginning of the circuit file can be helpful. .FUNC
commands can also be defined in subcircuits. In those cases they only have
local scope.

42

Commands

IC (initial bias point condition)

AC (initial bias point condition)

Purpose

General form

Examples

The .IC command sets initial conditions for both small-signal and transient bias points. Initial
conditions can be given for some or all of the circuit's nodes.

.IC sets the initial conditions for the bias point only. It does not affée€aDC analysis)
sweep.

JIC < V(<node> [,<node>])=<value> >*
JIC <I(<inductor>)=<value>>*

LIC V(2)=3.4 V(102)=0 V(3)=-1V I(L1)=2uAmp
.IC V(InPlus,InMinus)=le-3 V(100,133)=5.0V

Arguments and options

Comments

<=Chapter

<value>

A voltage assigned to <node> (or a current assigned to an inductor) for the duration of the
bias point calculation.

The voltage between two nodes and the current through an inductor can be specified. During
bias calculations, PSpice clamps the voltages to specified values by attaching a voltage source
with a 0.0002 ohm series resistor between the specified nodes. After the bias point has been
calculated and the transient analysis started, the node is released.

If the circuit contains both the .IC command aR@DESET (set approximate node
voltage for bias point)command for the same node or inductor, the .NODESET command is
ignored (.IC overrides .NODESET).

Refer to your PSpice user’s guide for more information on setting initial conditions.

An .IC command that imposes nonzero voltages on inductors cannot work
properly, since inductors are assumed to be short circuits for bias point
calculations. However, inductor currents can be initialized.

43

Commands INC (include file)

ANC (include file)

Purpose The .INC command inserts the contents of another file.
General form .INC <file name>
Examples .INC "SETUP.CIR"

.INC "C:\LIB\VCO.CIR"
Arguments and options

<file name>
Any character string that is a valid file name for your computer system.

Comments Including a file is the same as bringing the file’s text into the circuit file. Everything in the
included file is actually read in. The comments of the included file are then treated just as if
they were found in the parent file.

Included files can contain any valid PSpice statements, with the following conditions:
» The included files should not contain title lines unless they are commented.
* Included files can be nested up to 4 levels.

Every model and subcircuit definition, even if not needed, takes up memory.

¢=Chapter

44

Commands

.LIB (library file)

.LIB (library file)

Purpose
General form
Examples

The .LIB command references a model or subcircuit library in another file.
LLIB [file_name]

.LIB
.LIB Tinear.1ib
.LIB "C:\Tib\bipolar.Tib"

Arguments and options

Comments

¢=Chapter

[file_name]
Any character string that is a valid file name for the computer system.
Library files can contain any combination of the following:
e comments
.MODEL (model definition) commands
subcircuit definitions (including th&éNDS (end subcircuit)command)
e .PARAM (parameter) commands
.FUNC (function) commands
e .LIB commands

No other statements are allowed. For further discussion of library files, refer to your PSpice
user’s guide.

If [file_name] is left off, all references point to the master library fite,. 11b. When a library
file is referenced in Schematics, PSpice first searches for the file in the current working
directory, then searches in the directory specified by the LIBPATH variable (setinini).

When any library is modified, PSpice creates an index file based on the first use of the library.
The index file is organized so that PSpice can find a particular MODELUGBCKT
(subcircuit) quickly, despite the size of the library file.

The index files have to be regenerated each time the library is changed.
Because of this, it is advantageous to configure separately any frequently
changed libraries.

Nom.1ib normally contains references to all parts in the MicroSim Standard Model Library.
You can editiom. 11b to include your custom model references.

45

Commands .LOADBIAS (load bias point file)

.LOADBIAS (load bias point file)

Purpose The .LOADBIAS command loads the contents of a bias point file. It is helpful in setting initial
bias conditions for subsequent simulations. However, the use of .LOADBIAS does not
guarantee convergence.

General form .LOADBIAS <file name>

Examples .LOADBIAS "SAVETRAN.NOD"
.LOADBIAS "C:\PROJECT\INIT.FIL"

Arguments and options

<file name>
Any character string which is a valid computer system file name, but it must be enclosed
in quotation marks.

Comments Normally, the bias point file is produced by a previous circuit simulation using the
.SAVEBIAS (save bias point to file)command.

The bias point file is a text file that contains one or more comment lines and a

.NODESET (set approximate node voltage for bias pointtommand setting the bias point
voltage or inductor current values. If a fixed value for a transient analysis bias point needs to
be set, this file can be edited to replace the .NODESET command with an

.IC (initial bias point condition) command.

Any nodes mentioned in the loaded file that are not present in the circuit are
ignored, and a warning message will be generated.

To echo the .LOADBIAS file contents to the output file, use the EXPAND option on the
.OPTIONS (analysis options)command.

<=Chapter

46

Commands .MC (Monte Carlo analysis)

.MC (Monte Carlo analysis)

Purpose The .MC command causes a Monte Carlo (statistical) analysis of the circuit and causes PSpice
to perform multiple runs of the selected analysis (DC, AC, or transient).

General form .MC <ffruns value> <analysis> <output variable> <function> [option]*
+ [SEED=valuel

Examples .MC 10 TRAN V(5) YMAX

.MC 50 DC IC(Q7) YMAX LIST
.MC 20 AC VP(13,5) YMAX LIST OUTPUT ALL
.MC 10 TRAN V([OUT1],[0UT2]) YMAX SEED=9321

Arguments and options

<#runs value>
The total number of runs to be performed (for printed results the upper limitis 2,000, and
for results to be viewed in Probe, the limit is 400).

<analysis>
Specifies at least one analysis typeC (DC analysis) .AC (AC analysis), or
.TRAN (transient analysis). This analysis is repeated in subsequent passes. All analyses
that the circuit contains are performed during the nominal pass. Only the selected analysis
is performed during subsequent passes.

<output variable>
Identical in format to that of 2RINT (print) output variable.

<function>
Specifies the operation to be performed on the values of <output variable> to reduce these
to a single value. This value is the basis for the comparisons between the nominal and
subsequent runs.The <function> can be any one of the following:

Function Definition

YMAX Find the absolute value of the greatest difference in each
waveform from the nominal run.

MAX Find the maximum value of each waveform.

MIN Find the minimum value of each waveform.

RISE_EDGE(<value>) Find the first occurrence of the waveform crossing above the
threshold <value>. The waveform must have one or more points
at or below <value> followed by one above; the output value
listed is the first point that the waveform increases above <value>.

FALL_EDGE(<value>) Find the first occurrence of the waveform crossing below the
threshold <value>. The waveform must have one or more points
at or above <value> followed by one below; the output value
listed is where the waveform decreases below <value>.

<=Chapter

47

Commands .MC (Monte Carlo analysis)

<function> and all [option]s (except for <output type>) have no effect on the
Probe data that is saved from the simulation. They are only applicable to the
output file.

[option]*
Can include zero or more of the following options:

Option Definition Example

LIST Lists, at the beginning of each
run, the model parameter values
actually used for each
component during that run.

OUTPUT Asks for an output from ALL forces all output to be generated
<output type> subsequent runs, after the (including the nominal run).
nominal (first) run. The output
from any run is governed by a
.PRINT, .PLOT, and .PROBE
command in the file. IbuTPUT EVERY <N> generates output every n
is omitted, then only the run.
nominal run produces output.
The <output type> is one of the
ones shown in the examples to
the right.

FIRST <N> generates output only
during the first n runs.

RUNS <N>* does analysis and
generates output only for the listed
runs. Up to 25 values can be specified
in the list.

RANGE" Restricts the range over which YMAX RANGE(*,.5) YMAX is evaluated
(<low value>, <function> is evaluated. An for values of the sweep variable (e.g.,
<high value>) asterisk (*) can be used in placéime and frequency) of .5 or less.

of a <value> to show for all

MAX RANGE(-1,*) The maximum of
values.

the output variable is found for values
of the sweep variable of -1 or more.

*If RANGE is omitted, then <function> is evaluated over the whole sweep range. This is equivalent to
RANGE(*,*).

[SEED=value]
Defines the seed for the random number generator within the Monte Carlo analysis (The
Art of Computer Programmindponald Knuth, vol. 2, pg. 171, “subtractive method”).

<value>
Must be an odd integer ranging from 1 to 32,767. If the seed value is not set, its default
value is 17,533.

For almost all analyses, the default seed value is adequate to achieve a
constant set of results. The seed value can be modified within the integer value
as required.

48

Commands

Comments

.MC (Monte Carlo analysis)

The first run uses nominal values of all components. Subsequent runs use variations on model
parameters as specified by the DEV and LOT tolerances onMadhEL (model
definition) parameter.

The other specifications on the .MC command control the output generated by the Monte
Carlo analysis.

For more information on Monte Carlo analysis, refer to your PSpice user’s guide.

Section

49

Commands .MODEL (model definition)

.MODEL (model definition)

Purpose The .MODEL command defines a set of device parameters that can be referenced by devices
in the circuit.
General form .MODEL <model name> [AKO: <reference model name>]

<model type>

([<parameter name> = <value> [tolerance specification]]*
[T_MEASURED=<value>] [[T_ABS=<value>] or
[T_REL_GLOBAL=<value>] or [T_REL_LOCAL=<value>]11)

Examples .MODEL RMAX RES (R=1.5 TC1=.02 TC2=.005)
.MODEL DNOM D (IS=1E-9)
.MODEL QDRIV NPN (IS=1E-7 BF=30)
.MODEL MLOAD NMOS(LEVEL=1 VTO0=.7 CJ=.02pF)
.MODEL CMOD CAP (C=1 DEV 5%)
.MODEL DLOAD D (IS=1E-9 DEV .5% LOT 10%)
.MODEL RTRACK RES (R=1 DEV/GAUSS 1% LOT/UNIFORM 5%)
.MODEL QDR2 AKO:QDRIV NPN (BF=50 IKF=50m)

+ + + +

Arguments and options

<model name>
The model name which is used to reference a particular model.

<reference model name>
The model types of the current model and the AKO (A Kind Of) reference model must be
the same. The value of each parameter of the referenced model is used unless overridden
by the current model, e.g., for QDR2 in the last example, the value of IS derives from
QDRIV, but the values of BF and IKF come from the current definition. Parameter values
or formulas are transferred, but not the tolerance specification. The referenced model can
be in the main circuit file, accessed through a .INC command, or it can be in a library file;
see.LIB (library file) .

<model type>
Must be one of the types outlined in the table that follows.

Devices can only reference models of a corresponding type; for example:

e A JFET can reference a model of types NJF or PJF, but not of type NPN.
» There can be more than one model of the same type in a circuit, although they must
have different names.

Following the <model type> is a list of parameter values enclosed by parentheses. None,
any, or all of the parameters can be assigned values. Default values are used for all
unassigned parameters. The lists of parameter names, meanings, and default values are
found in the individual device descriptions.

<=Chapter

50

Commands

.MODEL (model definition)

Model type Instance name Type of device

CAP Cxxx capacitor

CORE KXxx nonlinear, magnetic core (transformer)
D Dxxx diode

DINPUT NXXX digital input device (receive from digital)
DOUTPUT OXxXX digital output device (transmit to digital)
GASFET Bxxx N-channel GaAs MESFET

IND Lxxx inductor

ISWITCH Wxxx current-controlled switch

LPNP QXXX lateral PNP bipolar transistor

NIGBT ZXXX N-channel insulated gate bipolar transistor (IGBT)
NJF JIxxx N-channel junction FET

NMOS MxXxxX N-channel MOSFET

NPN QXXX NPN bipolar transistor

PJF JXXX P-channel junction FET

PMOS MXXX P-channel MOSFET

PNP QXXX PNP bipolar transistor

RES RXXX resistor

TRN TXXX lossy transmission line

UADC UXXX multi-bit analog-to-digital converter
UDAC UXXX multi-bit digital-to-analog converter
UDLY Uxxx digital delay line

UEFF UXXX edge-triggered flip-flop

UGATE Uxxx standard gate

UGFF UXxXX gated flip-flop

ulo Uxxx digital /0 model

UTGATE UXXX tristate gate

VSWITCH SXXX voltage-controlled switch

51

Commands .MODEL (model definition)

[tolerance specification]
Appended to each parameter, using the format:
[DEV [track&dist] <value>[%]] [LOT [track&dist] <value>[%]]
to specify an individual device (DEV) and the device lot (LOT) parameter value
deviations. The tolerance specification is used byt (Monte Carlo analysis)
analysis only.

The LOT tolerance requires that all devices that refer to the same model use the same
adjustments to the model parameter. DEV tolerances are independent, that is each device
varies independently. The % shows a relative (percentage) tolerance. If it is omitted,
<value> is in the same units as the parameter itself.

[track & dist]
Specifies the tracking and non-default distribution, using the format:

[/<1ot #>1[/<distribution name>].

These specifications must immediately follow the keywords DEV and LOT (without
spaces) and are separated by /.

<lot #>
Specifies which of ten random number generators, numbered 0 through 9, are used to
calculate parameter value deviations. This allows deviations to be correlated between
parameters in the same model, as well as between models. The generators for DEV and
LOT tolerances are distinct: there are ten generators for DEV tracking and ten generators
for LOT tracking. Tolerances without <lot #> are assigned individually generated random
numbers.

<distribution name>
The distribution name is one of the following. The default distribution can be set by using
the DISTRIBUTION parameter of th®PTIONS (analysis options)command.

Distribution .
Function

name

UNIFORM Generates uniformly distributed deviations over the range
+<value>.

GAUSS Generates deviations using a Gaussian distribution over the range
+30 and <value> specifies thd g deviation (i.e., this generates
deviations greater thatxvalue>).

<user name> Generates deviations using a user-defined distribution and
<value> specifies thel deviation in the user definition; see the
DISTRIBUTION (user-defined distribution) .

Comments The examples are for the .MODEL parameter. The last example uses the AKO syntax to

reference the parameters of the model QDRIV in the third example.

For more information, refer to your PSpice user’s guide.

52

Commands .MODEL (model definition)

Parameters for setting temperature

Some passive and semiconductor devices (C, L, R, B, D, J, M, and Q) have two levels of
temperature attributes that can be customized on a model-by-model basis.

First, the temperature at which the model parameters were measured can be defined by using
one of the following model parameter formats in the .MODEL command line:

T_MEASURED = <Titeral value>
T_MEASURED = { <parameter> }

This overrides the nominaNom value which is set in th©PTIONS (analysis options)
command line (default = 2T). All other parameters listed in the .MODEL command are
assumed to have been measured BIEASURED.

In addition to the measured model parameter temperature, current device temperatures can be
customized to override the circuit's global temperature specification defined by the

.TEMP (temperature) command line (or equivalent .STEP TEMP or .DC TEMP). There are
three forms, as described below.

Model parameters for device temperature

.MODEL Referencing

Description Parameter format device

format

temperature

absolute temperature standard T_ABS=<value> T_ABS
relative to current standard T_REL_GLOBAL=<value> global temperature
temperature + T_REL_GLOBAL
relative to AKO AKO T_REL_LOCAL=<value> T_ABS(AKO Model)
model temperature + T_REL_LOCAL

For all formats, <value> can be a literal value or a parameter of the form
{<parameter name>}. A maximum of one device temperature customization can coexist
using the T_MEASURED customization. For example,

.MODEL PNP_NEW PNP(T_ABS=35 T_MEASURED=0 BF=90)

defines a new model PNP_NEW, where BF was measuré€a\dy bipolar transistor
referencing this model has an absolute device temperaturé®f 35

Examples

One This example demonstrates device temperatures set relative to the global
temperature of the circuit:

.TEMP 10 30 40
.MODEL PNP_NEW PNP(T_REL_GLOBAL=-5 BF=90)

This produces three PSpice runs where global temperature changes fton3@®Go 4C0C,
respectively, and any bipolar transistor that references the PNP_NEW model has a device
temperature of § 25°, or 35C, respectively.

53

Commands .MODEL (model definition)

TWwO This example sets the device temperature relative to a referenced AKO model:

.MODEL PNP_NEW PNP(AKO:PNP_OLD T_REL_LOCAL=10)
.MODEL PNP_OLD PNP(T_ABS=20)

Any bipolar transistor referencing the PNP_NEW model has a device temperatut€ of 30

Special considerations

There are a few special considerations when using these temperature parameters:

« If the technique for current device temperature is using the value relative to an AKO
model’'s absolute temperature ABs), and the AKO referenced model does not specify
T_ABS, then ther_REL_LOCAL specification is ignored and the standard global
temperature specification is used.

» These temperature parameters cannot be used with the DEV and LOT model parameter
tolerance feature.

« A DC sweep analysis can be performed on these parameters so long as the temperature
parameter assignment is to a variable parameter. For example:

.PARAM PTEMP 27

.MODEL PNP_NEW PNP (T_ABS={PTEMP})

.DC PARAM PTEMP 27 35 1
This method produces a single DC sweep in PSpice where any bipolar transistor referencing
the PNP_NEW model has a device temperature which is swept from 27°C to 35°C in 1°C
increments.

A similar effect can be obtained by performing a parametric analysis. For instance:

.PARAM PTEMP 27

.MODEL PNP_NEW PNP(T_ABS={PTEMP})

.STEP PARAM PTEMP 27 35 1

This method produces nine PSpice runs where the PNP_NEW model temperature steps from
27°C to 35C in increments of °IC, one step per run.

» The effect of a temperature parameter is evaluated once prior to the bias point calculation,
unless parameters are swept by means of a .DC PARAM or .STEP PARAM analysis
described above. In these cases, the temperature parameter’s effect is reevaluated once for
each value of the swept variable.

Section

54

Commands

.NODESET (set approximate node voltage for bias point)

.NODESET (set approximate node voltage for bias point)

Purpose

General form
Examples

Comments

¢=Chapter

The .NODESET command helps calculate the bias point by providing an initial best guess for
some node voltages and/or inductor currents. Some or all of the circuit’'s node voltages and
inductor currents can be given the initial guess, and in addition, the voltage between two nodes
can be specified.

.NODESET < V(<node> [,<node>])=<value> >*
.NODESET <I(<inductor>)=<value>>

.NODESET V(2)=3.4 V(102)=0 V(3)=-1V I(L1)=2uAmp
.NODESET V(InPlus,InMinus)=1le-3 V(100,133)=5.0V

This command is effective for the bias point (both small-signal and transient bias points) and
for the first step of the DC sweep. It has no effect during the rest of the DC sweep, nor during
a transient analysis.

Unlike the.IC (initial bias point condition) command, .NODESET provides only an initial
guess for some initial values. It does not clamp those nodes to the specified voltages. However,
by providing an initial guess, .NODESET can be used to break the tie in, for instance, a
flip-flop, and make it come up in a required state.

If both the .IC command and .NODESET command are present, the .NODESET command is
ignored for the bias point calculations (.IC overrides .NODESET).

For Capture-based designs, refer to your PSpice user’s guide for more
information on setting initial conditions.

55

Commands

.NOISE (noise analysis)

.NOISE (noise analysis)

Purpose
General form
Examples

The .NOISE command performs a noise analysis of the circuit.

.NOISE V(<node> [,<node>]) <name> [interval value]

.NOISE V(5) VIN

.NOISE V(101) VSRC 20
.NOISE V(4,5) ISRC

LNOISE V(LOUT1],r0uUT2]) V1

Arguments and options

Comments

¢=Chapter

V(<node> [,<node>])
Output voltage. It has a form such as V(5), which is the voltage at the output node five, or
a form such as V(4,5), which is the output voltage between two nodes four and five.

<name>
The name of an independent voltage or current source where the equivalent input noise is
calculated. The <name> is not itself a noise generator, but only a place where the
equivalent input noise is calculated.

[interval value]
Integer that specifies how often the detailed noise analysis data is written to the output file.

A noise analysis is performed in conjunction with an AC sweep analysis and requires an
.AC (AC analysis)command. When .NOISE is used, noise data is recorded in the.Prabe
file for each frequency in the AC sweep.

The simulator computes:

» Device noise for every resistor and semiconductor in the circuit (propagated to a specified
output node)

» Total input and output noise

At each frequency, each noise generator’s contribution is calculated and propagated to the
output node. At that point, all the propagated noise values are RMS-summed to calculate the
total output noise. The gain from the input source to the output voltage, the total output noise,
and the equivalent input noise are all calculated.

For more information, refer to the AC Analyses chapter of your PSpice user’s guide.
If:

<name> is a voltage source
then:

the input noise units are voltihertz

<name> is a current source
then:
. . . 1/2
the input noise units are amp/hertz

The output noise units are always volt/hettz

56

Commands

.NOISE (noise analysis)

Every nth frequency, where n is the print interval, a detailed table is printed showing the
individual contributions of all the circuit’s noise generators to the total noise. These values are
the noise amounts propagated to the output node, not the noise amounts at each generator. If
[interval value] is not present, then no detailed table is printed.

The detailed table is printed while the analysis is being performed and does not need a

.PRINT (print) command or aPLOT (plot) command. The output noise and equivalent
input noise can be printed in the output by using a .PRINT command or a .PLOT command.

Section

57

Commands

.OP (bias point)

.OP (bias point)

Purpose
General form
Examples
Comments

<=Chapter

The .OP command causes detailed information about the bias point to be printed.
.0P

.0p

This command does not write output to the Probe data file. The bias point is calculated
regardless of whether there is a .OP command. Without the .OP command, the only
information about the bias point in the output is a list of the node voltages, voltage source
currents, and total power dissipation.

Using a .OP command can cause the small-signal (linearized) parameters of all the nonlinear
controlled sources and all the semiconductor devices to be printed in the output file.

The .OP command controls the output for the regular bias point onlyTIRAeN (transient
analysis)command controls the output for the transient analysis bias point.

If no other analysis is performed, then no Probe data file is created.

58

Commands

.OPTIONS (analysis options)

.OPTIONS (analysis options)

Purpose

General form

The .OPTIONS command is used to set all the options, limits, and control parameters for the
simulator.

.OPTIONS [option name]* [<option name>=<value>]*

Examples .OPTIONS NOECHO NOMOD DEFL=12u DEFW=8u DEFAD=150p
+ DEFAS=150p
.OPTIONS ACCT RELTOL=.01
.OPTIONS DISTRIBUTION=GAUSS
.OPTIONS DISTRIBUTION=USERDEF1
Comments The options can be listed in any order. There are two kinds of options: those with values, and
those without values. Options without values are flags that are activated by simply listing the
option name.
The .OPTIONS command is cumulative. That is, if there are two (or more) of the .OPTIONS
command, the effect is the same as if all the options were listed together in one .OPTIONS
command. If the same option is listed more than once, only its last value is used.
For SPICE options not available in PSpice, Béferences between PSpice and Berkeley
SPICE2.
Flag options
The default for any flag option is off or no (i.e., the opposite of specifying the option). Flag
options affect the output file unless otherwise specified.
Flag option Meaning
ACCT Summary and accounting information is printed at the end of all the analyses
(refer to your PSpice user’s guide for further information on ACCT).
EXPAND Lists devices created by subcircuit expansion and lists contents of the bias
point file; see SAVEBIAS (save bias point to file)and
.LOADBIAS (load bias point file).
LIBRARY Lists lines used from library files.
LIST Lists a summary of the circuit elements (devices).
NOBIAS Suppresses the printing of the bias point node voltages.
NODE Lists a summary of the connections (node table).
NOECHO Suppresses a listing of the input file(s).

¢=Chapter

59

Commands

.OPTIONS (analysis options)

Flag option (continued)

Meaning (continued)

NOICTRANSLATE

NOMOD

NOOUTMSG

NOPAGE

NOPRBMSG

NOREUSE

OPTS

STEPGMIN

Suppresses the translation of initial conditions (IC attributes) specified on
capacitors and inductors into .IC statements (IC pseudocomponents). This
means that IC attributes are ignored if the keyword Skip Bias Point (SKIPBP)
is not put at the end of the .TRAN statement. SEAN (transient

analysis)

Suppresses listing of model parameters and temperature updated values.
Suppresses simulation error messages in output file.

Suppresses paging and the banner for each major section of output.
Suppresses simulation error messages in Probe data file.

Suppresses the automatic saving and restoring of bias point information
between different temperatures, Monte Carlo runs, worst-case runs, and
.STEP (parametric analysis) See also

.SAVEBIAS (save bias point to file)and

.LOADBIAS (load bias point file).

Lists values for all options.

Enables GMIN stepping. This causes a GMIN stepping algorithm to be
applied to circuits that fail to converge. GMIN stepping is applied first, and if
that fails, the simulator falls back to supply stepping.

Option with a name as its value

The following option has a name as its value.

Option Meaning

Default

DISTRIBUTION default distribution for Monte Carlo deviations UNIFORM

Default distribution values

The default distribution is used for all of the deviations throughout the Monte Carlo analyses,
unless specifically overridden for a particular tolerance. The default value for the default
distribution is UNIFORM, but can also be set to GAUSS or to a user-defined (<user name>)
distribution. If a user-defined distribution is selected (as illustrated in the last example on

pagel-59), a.DISTRIBUTION (user-defined distribution) command must be included in

the circuit file to define the user distribution for the tolerances. An example would be:
.DISTRIBUTION USERDEF1 (-1,1) (.5,1) (.5,0) (1,0)

60

Commands .OPTIONS (analysis options)
.OPTIONS DISTRIBUTION=USERDEF1

Numerical options with their default values

Options Description Units Default
ABSTOL best accuracy of currents amp 1.0 pA
CHGTOL best accuracy of charges coulomb 0.01 pC
CPTIME" CPU time allowed for this run sec 0.0
DEFAD MOSFET default drain area (AD). meter 0.0
DEFAS MOSFET default source area (AS). méter 0.0
DEFL MOSFET default length (L). meter 100.0u
DEFW MOSFET default width (W). meter 100.0u
DIGFREQ minimum digital time step is RIGFREQ hertz 10.0
GHz
DIGDRVF minimum drive resistance ohm 2.0
(Input/Output UIO type modehRVH (high) andDRVL (low)
values)
DIGDRVZ maximum drive resistance ohm 20K

(UIO type modelpRvH andDRVL values)

DIGERRDEFAULT default error limit per digital constraint device 20.0
DIGERRLIMIT maximum digital error message limit 0**
DIGINITSTATE sets initial state of all flip-flops and latches in circuit: O=clear, 2.0
1=set, 2=X
DIGIOLVL default digital I/O level: 1-4; see UIO iMODEL (model 1.0
definition)
DIGMNTYMX™ default delay selector: 1=min, 2-typical, 3=max, 4=min/max 2.0
DIGMNTYSCALE scale factor used to derive minimum delays from typical delays 0.4
DIGOVRDRV ratio of drive resistances required to allow one output to 3.0
override another driving the same node
DIGTYMXSCALE scale factor used to derive maximum delays from typical delays 1.6
GMIN minimum conductance used for any branch dhm 1.0E-12
ITL1 DC and bias point blind repeating limit 150.0
ITL2 DC and bias point educated guess repeating limit 20.0
ITLA the limit at any repeating point in transient analysis 10.0
ITL5* total repeating limit for all points for transient analysis 0.0**

(ITL5=0 meansTL5=infinity)

61

Commands .OPTIONS (analysis options)

Numerical options with their default values (continued)

Options Description Units Default

LIMPTS* maximum points allowed for any print table or plot 0.0**
(LIMPTS=0 meangsIMPTS=infinity)

NUMDGT number of digits output in print tables 4.0
(maximum of 8 useful digits)

PIVREL* relative magnitude required for pivot in matrix solution 1.0E-3

PIVTOL* absolute magnitude required for pivot in matrix solution 1.0E-13

RELTOL relative accuracy of V and | 0.001

TNOM default nominal temperature (also the temperature at which °C 27.0
model parameters are assumed to have been measured)

VNTOL best accuracy of voltages volt 1.0uVv

WIDTH same as the .WIDTH OUT= statement 80.0

(can be set to either 80 or 132)

*These options are available for modification in PSpice, but it is recommended that the program defaults be used.
**For these options zero means infinity.

***Setting the DIGMNTYMX=4 (min/max) directs PSpice to perform digital worst-case timing simulation. Refer to your
PSpice user’s guide for a complete description.

62

Commands

.OPTIONS (analysis options)

PSpice A/D digital simulation condition messages

Other PSpice features produce warning messages in simulations (e.g., for the digital
CONSTRAINT devices monitoring timing relationships of digital nodes). These messages
are directed to the PSpice output file (and in Windows, to the Probe data file).

You can use options to control where and how many of these messages are generated. Below

is a summary of the PSpice message types and a brief description of their meaning. The
condition messages are specific to digital device timing violations and digital worst-case
timing hazards. Refer to the Digital Simulation chapter of your PSpice user’s guide for more
information on digital worst-case timing.

Message type

Meaning

FREQUENCY

GENERAL

HOLD

SETUP

RELEASE

WIDTH

AMBIGUITY
CONVERGENCE

CUMULATIVE
AMBIGUITY

DIGITAL INPUT
VOLTAGE

NET-STATE CONFLICT

Timing violations

The minimum or maximum frequency specification for a signal has not been
satisfied. Minimum frequency violations show that the period of the measured
signal is too long, while maximum frequency violations describe signals
changing too rapidly.

A boolean expression described within the GENERAL constraint checker was
evaluated and produced a true result.

The minimum time required for a data signal to be stattér the assertion of a
clock, has not been met.

The minimum time required for a data signal to be spatgleto the assertion of
a clock, has not been met.

The minimum time for a signal that has gone inactive (usually a control such as
CLEAR) to remain inactive before the asserting clock edge, has not been met.

The minimum pulse width specification for a signal has not been satisfied. That
is, a pulse that is too narrow was observed on the node.

Hazards

The convergence of conflicting rising and falling states (timing ambiguities)
arriving at the inputs of a primitive, have produced a pulse (glitch) on the output.

Signal ambiguities are additive, increased by propagation through each level of
logic in the circuit. When the ambiguities associated with both edges of a pulse
increase to the point where they would overlap, this is flagged as a cumulative

ambiguity hazard.

When a voltage is out of range on a digital pin, PSpice uses the state whose
voltage range is closest to the input voltage and continues using the simulation. A
warning message is reported.

When two or more outputs attempt to drive a net to different states, PSpice
represents the conflict as an X (unknown) state. This usually results from
improper selection of a bus driver’s enable inputs.

63

Commands

.OPTIONS (analysis options)

SUPPRESSED GLITCH

PERSISTENT HAZARD

ZERO-DELAY-
OSCILLATION

A pulse applied to the input of a primitive that is shorter than the active
propagation delay is ignored by PSpice. This can or cannot be significant,
depending upon the nature of the circuit. The reporting of the suppressed glitch
hazard shows that there might be a problem with either the stimulus, or the path
delay configuration of the circuit.

If the effects of any of the other logic hazard messages mentioned in the output
file are able to propagate to either an EXTERNAL port, or to any storage device
in the circuit, they are flagged as PERSISTENT HAZARDs. (Refer to your
PSpice user’s guide for more details on PERSISTENT HAZARDSs.)

If the output of a primitive changes more than 50 times within a single digital
time step, the node is considered to be oscillating. PSpice reports this and cancels
the run.

Section

64

Commands

.PARAM (parameter)

.PARAM (parameter)

Purpose

General form

Examples

The .PARAM statement defines the value of a parameter. A parameter name can be used in
place of most numeric values in the circuit description. Parameters can be constants, or
expressions involving constants, or a combination of these, and they can include other
parameters.

.PARAM < <name> = <value> >*
.PARAM < <name> = { <expression> } >*

.PARAM VSUPPLY = 5V

.PARAM VCC = 12V, VEE = -12V

.PARAM BANDWIDTH = {100kHz/3}

.PARAM PI = 3.14159, TWO_PI = {2*3.14159}
.PARAM VNUM = {2*TWO_PI}

Arguments and options

Comments

¢=Chapter

<name>
Cannot begin with a number, and it cannot be one of the following predefined parameters,
or TIME, or.TEXT (text parameter) names.

There are several predefined parameters. The parameter values must be either constants
or expressions:

Predefined parameter Meaning

TEMP temperature
(works using ABM expressions and digital models only)
VT thermal voltage (reserved)
GMIN shunt conductance for semiconductor p-n junctions
<value>

Constants (<value>) do not need braces { }.

<expression>
Can contain constants or parameters.

The .PARAM statements are order independent. They can be used inside a subcircuit definition
to create local subcircuit parameters. Once defined, a parameter can be used in place of almos
all numeric values in the circuit description with the following exceptions:

* Notin thein-line temperature coefficients for resistors (parameters can be usediorthe
andTcz2 resistor model parameters).

* Not in the PWL values for independent voltage and current source (V and | device)
parameters.

* Notthe E, F, G, and H device SPICE2G6 syntax for polynomial coefficient values and gain.

A .PARAM command can be in a library. The simulator can search libraries for parameters not

defined in the circuit file, in the same way it searches for undefined models and subcircuits.

Parameters cannot be used in place of node numbers, nor can the values on an
analysis command (e.g., TRAN and AC) be parameterized.

65

Commands .PLOT (plot)

PLOT (plon

Purpose The .PLOT command causes results from DC, AC, noise, and transient analyses to be line
printer plots in the output file.

®

This command is included for backward compatibility with earlier versions of
PSpice. Itis more effective to print plots from within Probe. Printing from Probe
yields higher-resolution graphics and provides an opportunity to preview the
plot before printing.

General form .PLOT <analysis type> [output variablel*
+ ([<lower Timit value> , <upper Timit value>])*
Examples .PLOT DC V(3) V(2,3) V(RL) I(VIN) I(R2) IB(Q13) VBE(Q13)

.PLOT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(D4)
.PLOT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)
.PLOT TRAN V(3) V(2,3) (0,5V) ID(M2Z2) I(VCC) (-50mA,50mA)

I.PLOT TRAN D(QA) D(QB) V(3) V(2,3)
.PLOT TRAN V(3) V(R1) V(LRESETI)

Arguments and options

<analysis type>
DC, AC, NOISE, or TRAN. Only one analysis type can be specified.

<output variable>
Following the analysis type is a list of the output variables and (possibly) Y axis scales. A
maximum of 8 output variables are allowed on one .PLOT command. However, an
analysis can have any number of a .PLOT command PE5eBE (Probe)for the syntax
of the output variables.

(<lower limit value>, <upper limit value>)
Sets the range of the y-axis. This forces all output variables on the same y-axis to use the
specified range.

The same form, (<lower limit value>, <upper limit value>), can also be inserted one or
more times in the middle of a set of output variables. Each occurrence defines one Y axis
that has the specified range. All the output variables that come between it and the next
range to the left in the .PLOT command are put on its corresponding Y axis.

Comments Plots are made by using text characters to draw the plot, which print on any kind of printer.
However, plots printed from within Probe look much better.

The range and increment of the x-axis is fixed by the analysis being plotted. The y-axis default
range is determined by the ranges of the output variables. In the fourth example, the two
voltage outputs go on the y-axis using the range (0,5V) and the two current outputs go on the
y-axis using the range (-5mMA, 50mA).

Lower and upper limit values do not apply to AC Analysis.

¢=Chapter

66

Commands

.PLOT (plot)

If the different output variables differ considerably in their output ranges, then the plot is given
more than one y-axis using ranges corresponding to the different output variables.

The y-axis of frequency response plots (AC) is always logarithmic.

The last example illustrates how to plot the voltage at a node that has a name rather than a

number. The first item to plot is a node voltage, the second item is the voltage across a resistor,
and the third item is another node voltage, even though the second and third items both begin
with the letter R. The square brackets force the interpretation of names to mean node names.

Section

67

Commands

.PRINT (print)

PRINT (print)

Purpose

General form
Examples

The .PRINT command allows results from DC, AC, noise, and transient analyses to be an
output in the form of tables, referred to as print tables in the output file.

.PRINTL/DGTLCHG] <analysis type> [output variablel*

.PRINT DC V(3) V(2,3) V(RI) I(VIN) I(R2) IB(Q1l3) VBE(QL3)
.PRINT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(6) II(7)
.PRINT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)

.PRINT TRAN V(3) V(2,3) ID(M2) I(VCC)

.PRINT TRAN D(QA) D(QB) V(3) V(2,3)

.PRINT/DGTLCHG TRAN QA QB RESET

.PRINT TRAN V(3) V(R1) V([RESETI)

The last example illustrates how to print a node that has a name, rather than a number. The first
item to print is a node voltage, the second item is the voltage across a resistor, and the third
item to print is another node voltage, even though the second and third items both begin with
the letter R. The square brackets force the names to be interpreted as node names.

Arguments and options

Comments

<=Chapter

[[DGTLCHG]
For digital output variables only. Values are printed for each output variable whenever one
of the variables changes.

<analysis type>
Only one analysis type— DC, AC, NOISE, or TRAN—can be specified for each .PRINT
command.

<output variable>
Following the analysis type is a list of the output variables. There is no limit to the number
of output variables: the printout is split up depending on the width of the data columns (set
using NUMDGT option) and the output width (set using WIDTH option). See
.PROBE (Probe)for the syntax of output variables.

The values of the output variables are printed as a table where each column corresponds to one
output variable. You can change the number of digits printed for analog values by using the
NUMDGT option of theOPTIONS (analysis options)command.

An analysis can have multiple .PRINT commands.

68

Commands .PROBE (Probe)

.PROBE (Probe)

Purpose The .PROBE command writes the results from DC, AC, and transient analyses to a data file
used by Probe.

General form .PROBE[/CSDF][output variablel*

Examples .PROBE
.PROBE V(3) V(2,3) V(RL) I(VIN) I(R2) IB(Q13) VBE(Q13)
.PROBE/CSDF

.PROBE V(3) V(R1) V(LRESETI)
.PROBE D(QBAR)

The first example (with no output variables) writes all the node voltages and all the device
currents to the data file. The list of device currents written is the same as the device currents
allowed as output variables.

The second example writes only those output variables specified to the data file, to restrict the
size of the data file.

The third example creates a data file in a text format using the Common Simulation Data File
(CSDF) format, not a binary format. This format is used for transfers between different
computer families. CSDF files are larger than regular text files.

The fourth example illustrates how to specify a node that has a name rather than a number. The
first item to output is a node voltage, the second item is the voltage across a resistor, and the
third item to output is another node voltage, even though the second and third items both begin
with the letter R. The square brackets force the interpretation of names to mean node names.

The last example writes only the output at digital node QBAR to the data file, to restrict the
size of the data file.

Arguments and options

[output variable]
This section describes the types of output variables allowedRI& T (print) ,
.PLOT (plot), and .PROBE command. Each .PRINT or .PLOT can have up to 8 output
variables. This format is similar to that used when calling up waveforms while running
Probe.

See the tables below for descriptions of the possible output variables. If .PROBE is used
without specifying a list of output variables, all of the circuit voltages and currents are
stored for post-processing. When an output variable list is included, the data stored is
limited to the listed items. This form is intended for users who want to limit the size of the
Probe data file.

Comments Refer to your PSpice user’s guide for a description of Probe, for information about using the
Probe data file, and for more information on the use of text files in Probe. You can also consult
Probe Help.

Unlike the .PRINT and .PLOT commands, there are no analysis hames before
the output variables. Also, the number of output variables is unlimited.

<=Chapter

69

Commands

.PROBE (Probe)

DC Sweep and transient analysis output variables

For DC sweep and transient analysis, these are the available output variables:

General form

Meaning of output variable

D(<name>)
I(<name>)

IX(<name>)

Iz(<name>)
V(<node>)

digital value of <name> (a digital node)
current through a two terminal device

current into a terminal of a three or four terminal device
(x isone of B, D, G, or S)

current into one end of a transmission line (z is either A or B)

voltage at a node

V(<+ node>, <- node>) voltage between two nodes

V(<name>)
Vx(<name>)
Vz(<name>)

Vxy(<name>)

voltage across a two-terminal device
voltage at a non-grounded terminal of a device (see Ix)
voltage at one end of a transmission line (z is either A or B)

voltage across two terminals of a three or four terminal device
type

*These values are available for transient and DC analysis only. For the .PRINT/DGTLCHG statement, the

D() is optional.

Example

Meaning

D(QA)
I(D5)
1G(J10)
V(3)
V(3,2)
V(R1)
VA(T2)
VB(Q3)
VGS(M13)

the value of digital node QA

current through diode D5

current into gate of J10

voltage between node three and ground

voltage between nodes three and two

voltage across resistor R1

voltage at port A of T2

voltage between base of transistor Q3 and ground

gate-source voltage of M13

70

Commands .PROBE (Probe)

Multiple-terminal devices

For the V(<name>) and I(<name>) forms, where <name> must be the name of a two-terminal
device, the devices are:

Character ID Two-terminal device

C capacitor

D diode

E voltage-controlled voltage source
F current-controlled current source
G voltage-controlled current source
H current-controlled voltage source)
I independent current source

L inductor

R resistor

S voltage-controlled switch

\% independent voltage source

w current-controlled switch

For the Vx(<name>), Vxy(<name>), and Ix(<name>) forms, where <name> must be the
name of a three or four-terminal device arahdy must each be a terminal abbreviation, the
devices and the terminals areas follows. For the Vz(<name>) and Iz(<name>) forms, <name>
must be the name of a transmission line (T devicekandst be A or B.

Three & four-terminal device type Terminal abbreviation

B (GaAs MESFET) D (drain)
G (gate)
S (source)
J (Junction FET) D (drain)
G (gate)
S (source)
M (MOSFET) D (drain)
G (gate)
S (source)
B (bulk, substrate)

Q (Bipolar transistor) C (collector)
B (base)
E (emitter)
S (substrate)

71

Commands .PROBE (Probe)

Three & four-terminal device type Terminal abbreviation

T (transmission line) Va (near side voltage)
la (near side current)
Vb (far side voltage)
Ib (far side current)

Z (IGBT) C (collector)
G (gate)
E (emitter)

72

Commands .PROBE (Probe)

AC analysis
For AC analysis, the output variables listed in the preceding section are augmented by adding
a suffix.

®

For AC analysis, the suffixes are ignored for a .PROBE command, but can be used
in a .PRINT (print) command and a .PLOT (plot) command, and when adding a
trace in Probe. For example, ina .PROBE command, VDB(R1) is translated to V(R1),
which is the raw data.

For these devices, you need to put a zero-valued voltage source in series with the device (or
terminal) of interest before you can print or plot the current through this voltage source.

®

Suffix Meaning of output variables

none magnitude

DB magnitude in decibels

G group delay @PHASEHFREQUENCY)

I imaginary part

M magnitude

P phase in degrees

R real part

Examples Meaning of output variables for AC analysis
I(R13) imaginary part of current through R13
IGG(M3) group delay of gate current for M3

IR(VIN) real part of | through VIN

IAG(T2) group delay of current at port A of T2

V(2,3) magnitude of complex voltage across nodes 2 & 3
VDB(R1) db magnitude of V across R1

VBEP(Q3) phase of base-emitter V at Q3

VM(2) magnitude of V at node 2

Current outputs for the F and G devices are not available for DC and transient

analyses.

73

Commands .PROBE (Probe)

Noise analysis

For noise analysis, the output variables are predefined as follows:

Output variable Meaning of output variables for noise analysis
INOISE Total RMS summed noise at input node

ONOISE INOISE equivalent at output node

DB(INOISE) INOISE in decibels

DB(ONOISE) ONOISE in decibels

.PRINT (print) and .PLOT (plot) cannot be used for the noise from any one device.

However, the print interval on the .NOISE (noise analysis) command can be used
to output this information.

Section

74

Commands .SAVEBIAS (save bias point to file)

SAVEBIAS (save bias point to file)

Purpose The .SAVEBIAS command saves the bias point node voltages and inductor currents, to a file.
It is used concurrently with OADBIAS (load bias point file).

Only one analysis is specified in a .SAVEBIAS command, which can be OP, TRAN, or DC.
However, a circuit file can contain a .SAVEBIAS command for each of the three analysis
types. If the simulation parameters do not match the keywords and values in the .SAVEBIAS
command, then no file is produced.

General form .SAVEBIAS <“file_name”> <[OP] [TRAN] [DCI1> [NOSUBCKT]
+[TIME=<value> [REPEAT]] [TEMP=<value>]
+ [STEP=<value>] [MCRUN=<value>] [DC=<value>]
+ [DC1=<value>] [DC2=<value>]

Examples .SAVEBIAS "OPPOINT" OP
For the first example, the small-signal operating point (.AC or .OP) bias point is saved.
.SAVEBIAS "TRANDATA.BSP" TRAN NOSUBCKT TIME=10u

In the second example, the transient bias point is written out at the time closest to, but not less
than 10.0 u/sec. No bias point information for subcircuits is saved.

.SAVEBIAS "SAVETRAN.BSP" TRAN TIME=5n REPEAT TEMP=50.0

Use of the [REPEAT] keyword in the third example causes the bias point to be written out
every 5.0 ns when the temperature of the run is 50.0 degrees.

.SAVEBIAS "DCBIAS.SAV" DC

In the fourth example, because there are no parameters supplied, only the very first DC bias
point is written to the file.

.SAVEBIAS "SAVEDC.BSP" DC MCRUN=3 DC1=3.5 DC2=100

The fifth example saves the DC bias point when the following three conditions are all met: the
first DC sweep value is 3.5, the second DC sweep value is 100, and the simulation is on the
third Monte Carlo run. If only one DC sweep is being performed, then the keyword DC can be
substituted for DC1.

Arguments and options

<“file name”>
Any valid file name for the computer system, which must be enclosed in quotation marks.

[NOSUBCKT]
When used, the node voltages and inductor currents for subcircuits are not saved.

[TIME=<value> [REPEAT]]
Used to define the transient analysis time at which the bias point is to be saved.

[TEMP=<value>]
Defines the temperature at which the bias point is to be saved. [STEP=<value>]
The step value at which the bias point is to be saved.

¢=Chapter

75

Commands

Comments

.SAVEBIAS (save bias point to file)

[MCRUN=<value>]
The number of the Monte Carlo or worst-case analysis run for which the bias point is to
be saved.

[DC=<value>], [DC1l=<value>], and [DC2=<value>]
Used to specify the DC sweep value at which the bias point is to be saved.

If REPEAT is not used, then the bias at the next time point greater than or equal to
TIME=<value> is saved. If REPEAT is used, then TIME=<value> is the interval at which the
bias is saved. However, only the latest bias is saved; any previous times are overwritten. The
[TIME=<value> [REPEAT]] can only be used with a transient analysis.

The [DC=<value>] should be used if there is only one sweep variable. If there are two sweep
variables, then [DC1=<value>] should be used to specify the first sweep value and
[DC2=<value>] should be used to specify the second sweep value.

The saved bias point information is in the following format: one or more comment lines that
list items such as:
 circuit name, title, date and time of run, analysis, and temperature, or

» asingleeNODESET (set approximate node voltage for bias pointtommand
containing the bias point voltage values and inductor currents.

Only one bias point is saved to the file during any particular analysis. At the specified time,
the bias point information and the operating point data for the active devices and controlled
sources are written to the output file. When the supplied specifications on the .SAVEBIAS
command line match the state of the simulator during execution, the bias point is written out.

Usage examples

A .SAVEBIAS command and A0ADBIAS (load bias point file) command can be used to
shorten the simulation time of large circuits, and also to aid in convergence.

A typical application for a .SAVEBIAS and a .LOADBIAS command is for a simulation that
takes a considerable amount of time to converge to a bias point. The bias point is saved using
a .SAVEBIAS command so that when the simulation is run again, the previous bias point
calculated is used as a starting point for the bias solution, to save processing time.

The following example illustrates this procedure for a transient simulation.

.SAVEBIAS "SAVEFILE.TRN" TRAN

When the simulation is run, the transient analysis bias point information is saved to the file
savefile.trn in the form of a .NODESET command. This .NODESET command provides
the simulator with a starting solution for determining the bias point calculation for future

simulations. To use this file, replace the .SAVEBIAS command in the circuit file using the
following .LOADBIAS (Load Bias Point File) command.

.LOADBIAS "SAVEFmILE.TRN"

A .SAVEBIAS and .LOADBIAS command should not refer to the same file during the
same simulation run. Use the .SAVEBIAS during the first simulation and the
.LOADBIAS for subsequent ones.

The simulator algorithms have been changed to provide an automatic saving and loading of
bias point information under certain conditions. This automatic feature is used in the

76

Commands

.SAVEBIAS (save bias point to file)

following analysis typesSTEP (parametric analysis).DC (DC analysis)

WCASE (sensitivity/worst-case analysis)MC (Monte Carlo analysis),
.TEMP (temperature).

A typical application is a transient analysis where the bias point is calculated at several
temperatures (such as .TEMP 0 10 20 30). As each new temperature is processed, the bias
point for the previous temperature is used to find the new bias point. Since this process is
automatic, the user does not have to change anything in the circuit file. However, there is some
memory overhead since the bias point information is saved during the simulation. Disable the
automatic saving feature, using the NOREUSE flag option in the

.OPTIONS (analysis options)command as follows:

.OPTIONS NOREUSE
Another application for the .LOADBIAS and .SAVEBIAS command is the handling of
convergence problems. Consider a circuit which has difficulty in starting a DC sweep. The

designer has added a .NODESET command as shown below to help the simulator determine
the bias point solution.

.NODESET V(3)=5.0V V(4)=2.75V

Even though this helps the simulator determine the bias point, the simulator still has to
compute the starting values for each of the other nodes. These values can be saved using the
following statement:

.SAVEBIAS "DCOP.NOD" DC

The next time the simulation is run, the .NODESET and .SAVEBIAS command should be
removed and replaced using the following:

.LOADBIAS "DCOP.NOD"

This provides the starting values for all of the nodes in the circuit, and can assist the simulator
in converging to the correct bias point for the start of the sweep. If convergence problems are

caused by a change in the circuit topology, the designer can edit the bias point save file to
change the values for specific nodes or to add new nodes.

Section

77

Commands .SENS (sensitivity analysis)

SENS (sensitivity analysis)

Purpose The .SENS command performs a DC sensitivity analysis.
General form .SENS <output variable>*
Examples LSENS V(9) V(4,3) V(17) T(VCC)

Arguments and options

<output variable>
Same format and meaning as in the .PRINT command for DC and transient analyses.
However, when <output variable> is a current, it is restricted to be the current through a
voltage source.

Comments By linearizing the circuit about the bias point, the sensitivities of each of the output variables

to all the device values and model parameters is calculated and output data generated. This can
generate large amounts of output data.

Device sensitivities are only provided for the following device types:

* resistors

» independent voltage and current sources

 voltage and current-controlled switches

» diodes

* bipolar transistors

The results of the .SENS command are only available in the output file. They
cannot be viewed in Probe.

¢=Chapter

78

Commands

.STEP (parametric analysis)

STEP (parametric analysis)

Purpose

General form

Examples

The .STEP command performs a parametric sweep for all of the analyses of the circuit.

The .STEP command is similar to ti&EMP (temperature) command in that all of the
typical analyses—such d3C (DC analysis) .AC (AC analysis), and.TRAN (transient
analysisy— are performed for each step.

Once all the runs finish, the specifiggRINT (Print) table or.PLOT (Plot) plot for each
value of the sweep is an output, just as for the . TEMRIGr(Monte Carlo Analysis)
command.

Probe displays nested sweeps as a family of curves.

.STEP LIN <sweep variable name>
+ <start value> <end value> <increment value>

.STEP [DEC |OCT] <sweep variable name>
+ <{start value> <end value> <points value>

.STEP <sweep variable name> LIST <value>*

The first general form is for doing a linear sweep. The second form is for doing a logarithmic
sweep. The third form is for using a list of values for the sweep variable.

.STEP VCE 0OV 10V .5V

LSTEP LIN I2 5mA -2mA 0.1mA

.STEP RES RMOD(R) 0.9 1.1 .001

.STEP DEC NPN QFAST(IS) 1E-18 1E-14 5
.STEP TEMP LIST 0 20 27 50 80 100

.STEP PARAM CenterFreq 9.5kHz 10.5kHz 50Hz

The first three examples are for doing a linear sweep. The fourth example is for doing a
logarithmic sweep. The fifth example is for using a list of values for the sweep variable.

Arguments and options

¢=Chapter

Sweep type
The sweep can be linear, logarithmic, or a list of values. For [linear sweep type], the
keyword LIN is optional, but either OCT or DEC must be specified for the
<logarithmic sweep type>. The sweep types are described below.

Sweep types Meaning

LIN Linear sweep. The sweep variable is swept linearly from the starting
to the ending value. The <increment value> is the step size

OCT Sweep by octaves. The sweep variable is swept logarithmically by
octaves. The <points value> is the number of steps per octave.

DEC Sweep by decades. The sweep variable is swept logarithmically by
decades. The <points value> is the number of steps per decade.

LIST Use a list of values. In this case there are no start and end values.
Instead, the numbers that follow the keyword LIST are the values that
the sweep variable is set to.

79

Commands .STEP (parametric analysis)

The LIST values must be in either ascending or descending order.

<sweep variable name>
The <sweep variable name> can be one of the types described below.

Sweep Variable

Name Meaning

source A name of an independent voltage or current source. During
the sweep, the source’s voltage or current is set to the sweep
value.

model parameter A model type and model name followed by a model parameter
name in parenthesis. The parameter in the model is set to the
sweep value.

temperature Use the keyword TEMP for <sweep variable name>. The
temperature is set to the sweep value. For each value in the
sweep, all the circuit components have their model parameters
updated to that temperature.

global parameter Use the keyword PARAM, followed by the parameter name,
for <sweep variable name>). During the sweep, the global
parameter’s value is set to the sweep value and all expressions
are reevaluated.

<start value>
Can be greater or less than <end value>: that is, the sweep can go in either direction.

<increment value> and <points value>
Must be greater than zero.

Comments The .STEP command is similar to th&C (DC analysis)command and immediately raises
the question of what happens if both .STEP and .DC try to set the same value. The same
guestion can come up usindC (Monte Carlo analysis). The answer is that this is not
allowed: no two analyses (.STEFPEMP (temperature), .MC,

WCASE (sensitivity/worst-case analysis)and .DC) can try to set the same value. This is

flagged as an error during read-in and no analyses are performed.

You can use the .STEP command to look at the response of a circuit as a parameter varies, for
example, how the center frequency of a filter shifts as a capacitor varies. By using .STEP, that
capacitor can be varied, producing a family of AC waveforms showing the variation. Another
use is for propagation delay in transient analysis.

80

Commands .STEP (parametric analysis)

Usage examples

One The .STEP command only steps the DC component of an AC source. In order to step
the AC component of an AC source, a variable parameter has to be created. For example,
Vac 1 0 AC {variable}

.param variable=0

.step param variable 0 5 1
.ac dec 100 1000 1leb6

TWO This is one way of stepping a resistor from 30 to 50 ohms in steps of 5 ohms, using
a global parameter:

.PARAM RVAL =1
R1 1 2 {RVAL}
.STEP PARAM RVAL 30,50,5

The parameter RVAL is global and PARAM is the keyword used by the .STEP command
when using a global parameter.

Three The following example steps the resistor model parameter R. This is another way
of stepping a resistor from 30 to 50 ohms in steps of 5 ohms.

R1 1 2 RMOD 1
.MODEL RMOD RES(R=30)
.STEP RES RMOD(R) 30,50,5

Do not use R={30}.

Here RMOD is the model name, RES is the sweep variable name (a model type), and R is the
parameter within the model to step. To step the value of the resistor, the line value of the
resistor is multiplied by the R parameter value to achieve the final resistance value, that is:

final resistor value = line resistor value - R

Therefore, if the line value of the resistor is set to one ohm, the final resistor valueis 1 - R or
R. Stepping R from 30 to 50 ohms then steps the resistor value from 1 - 30 ohmsto 1 - 50 ohms.

In examples 2 and 3, all of the ordinary analyses (e.g., .DC, .AC, and .TRAN) are run for each
step.

Section

81

Commands .STIMLIB (stimulus library file)

STIMLIB (stimulus library file)

Purpose The .STIMLIB command makes stimulus library files created by StmEd available to PSpice.
General form .STMLIB <file name[.st11>
Examples .STMLIB mylib.st]

.STMLIB volts.stl
.STMLIB dgpulse

Arguments and options

<file name>
Specification that identifies a file containing .STIMULUS commands.

<=Chapter

82

Commands .STIMULUS (stimulus)

STIMULUS (stimulus)

Purpose The .STIMULUS command encompasses only the Transient specification portion of what is
allowed in the V or | device syntax.

General form STIMULUS <stimulus name> <type> <type-specific parameters>*
Examples .STIMULUS TInputPulse PULSE (-1Imv lmv 2ns 2ns 50ns 100ns)
.STIMULUS DigitalPulse STIM (1,1)
+ 0S 1
+ 10NS 0
+ 20NS 1

.STIMULUS 50KHZSIN SIN (0 5 50KHZ 0 0 0)
Arguments and options

<stimulus name>
The name by which the stimulus is referred to by the source devices (V or |), or by the
digital STIM device.

.STIMULUS commands generally appear within stimulus libraries created by StmEd.

¢=Chapter

83

Commands .SUBCKT (subcircuit)

SUBCKT (subcircuit)
.ENDS (end subcircuit)

Purpose The .SUBCKT command/statement starts the subcircuit definition by specifying its name, the

number and order of its terminals, and the names and default parameters that control its
behavior. Subcircuits are instantiated usingX{circuit instantiation) devices. The .ENDS
command marks the end of a subcircuit definition.

General form .SUBCKT <name> [nodel*
+ [OPTIONAL: < <interface node> = <default value> >*]
+ [PARAMS: < <name> = <value> >*]
+ [TEXT: < <name> = <text value> >*]

.ENDS
Examples .SUBCKT OPAMP 1 2 101 102 17
JENDS
.SUBCKT FILTER INPUT, OUTPUT PARAMS: CENTER=100kHz,
+ BANDWIDTH=10kHz
.ENDS
.SUBCKT PLD IN1 IN2 IN3 OUT1
+ PARAMS: MNTYMXDLY=0 TO_LEVEL=0
+ TEXT: JEDEC_FILE="PROG.JED"
JENDS
.SUBCKT 74LS00 A B Y
+ OPTIONAL: DPWR=$G_DPWR DGND=$G_DGND
+ PARAMS: MNTYMXDLY=0 I0_LEVEL=0
JENDS
Arguments and options

<name>
The name is used by an X (Subcircuit Instantiation) device to reference the subcircuit.

[node]*
An optional list of nodes (pins). This is optional because it is possible to specify a
subcircuit that has no interface nodes.

OPTIONAL:
Allows specification of one or more optional nodes (pins) in the subcircuit definition.

¢=Chapter

84

Commands

Comments

.ENDS (end subcircuit)

The subcircuit definition ends with a .ENDS command. All of the netlist between .SUBCKT
and .ENDS is included in the definition. Whenever the subcircuit is used by an X (Subcircuit
Instantiation) device, all of the netlist in the definition replaces the X device.

There must be the same number of nodes in the subcircuit calling statements as in its
definition. When the subcircuit is called, the actual nodes (the ones in the calling statement)
replace the argument nodes (the ones in the defining statement).

Do not use 0 (zero) in this node list. Zero is reserved for the global ground
node.

The optional nodes are stated as pairs consisting of an interface node and its default value. If
an optional node is not specified in an X device, its default value is used inside the subcircuit;
otherwise, the value specified in the definition is used.

This feature is particularly useful when specifying power supply nodes, because the same
nodes are normally used in every device. This makes the subcircuits easier to use because the
same two nodes do not have to be specified in each subcircuit statement. This method is used
in the libraries provided with the Digital Simulation feature.

Subcircuits can be nested. That is, an X device can appear between .SUBCKT and .ENDS
commands. However, subcircuit definitions cannot be nested. That is, a .SUBCKT statement
cannot appear in the statements between a .SUBCKT and a .ENDS.

Subcircuit definitions should contain only device instantiations (statements without a leading
period) and possibly these statements:

IC (initial bias point condition)

« .NODESET (set approximate node voltage for bias point)
¢ .MODEL (model definition)

¢ .PARAM (parameter)
e« .FUNC (function)

Models, parameters, and functions defined within a subcircuit definition are available only
within the subcircuit definition in which they appear. Also, if a .MODEL, .PARAM, or a
.FUNC statement appears in the main circuit, it is available in the main circuit and all
subcircuits.

Node, device, and model names are local to the subcircuit in which they are defined. It is
acceptable to use a name in a subcircuit which has already been used in the main circuit. When
the subcircuit is expanded, all its names are prefixed using the subcircuit instance name: for
example, Q13 becomes X3.Q13 and node 5 becomes X3.5 after expansion. After expansion
all names are unique. The only exception is the use of global node names (refer to your PSpice
user’s guide) that are not expanded.

85

Commands

.ENDS (end subcircuit)

The keyword PARAMS: passes values into subcircuits as arguments and uses them in
expressions inside the subcircuit. The keyword TEXT: passes text values into subcircuits as
arguments and uses them as expressions inside the subcircuit. Once defined, a text parameter
can be used in the following places:

» To specify a JEDEC file name on a PLD device.

» To specify an Intel Hex file name to program a ROM device or initialize a RAM device.
* To specify a stimulus file name or signal name on a FSTIM device.

» To specify a text parameter to a (lower level) subcircuit.

* As part of a text expression used in one of the above.

The text parameters and expressions are currently only used in Digital
Simulation.

Usage examples

One Inthe example of the 74LS00 subcircuit, the following subcircuit reference uses the
default power supply nodes $G_DPWR and $G_DGND:

X1 IN1 IN2 OUT 74LS00

TWO To specify your own power supply nodes MYPOWER and MYGROUND, use the
following subcircuit instantiation:

X2 IN1 IN2 OUT MYPOWER MYGROUND 74LS00

Three If wanted, one optional node in the subcircuit instantiation can be provided. In the
following subcircuit instantiation, the default $G_DGND would be used:

X3 IN1 IN2 OUT MYPOWER 74LS00

Four However, to specify values beyond the first optional node, all nodes previous to that
node must be specified. For example, to specify your own ground node, the default power
node before it must be explicitly stated:

X4 IN1 IN2 OUT $G_DPWR MYGROUND 74LS00

Section

86

Commands .TEMP (temperature)

.TEMP (temperature)

Purpose The .TEMP command sets the temperature at which all analyses are done.
General form .TEMP <temperature value>*
Examples .TEMP 125

.TEMP 0 27 125

The temperatures are in degrees Centigrade. If more than one temperature is given, then all
analyses are performed for each temperature.

It is assumed that the model parameters were measured or derived at the nominal temperature,
TNOM (27°C by default). See th®PTIONS (analysis options)command for setting
TNOM.

.TEMP behaves similarly to the list variant of tBE EP (parametric analysis)statement,
with the stepped variable being the temperature.

¢=Chapter

87

Commands .TEXT (text parameter)

.TEXT (text parameter)

Purpose The .TEXT command precedes a list of names and text values.
General form LTEXT < <name> = "<text value>" >*

LTEXT < <name> = | <text expression> | >*
Examples LTEXT MYFILE = "FILENAME.EXT"

.TEXT FILE = "ROM.DAT", FILE2 = "ROM2.DAT"

.TEXT PROGDAT = |"ROM"+TEXTINT(RUN_NO)+".DAT"|

.TEXT DATAL = "PLD.JED", PROGDAT = |"\PROG\DAT\"+FILENAME |

Arguments and options

<name>
Cannot be a .PARAM name, or any of the reserved parameters names.

<text expression>
Text expressions can contain the following:

Text expressions Definition

enclosed in “” text constants

text parameters previously defined parameters

+ the operator that concatenates two text values

TEXTINT a function which returns a text string which is the integer value
(<value or closest to the value of the <value or expression>; (<value or
expression>) expression> is a floating-point value)

The values can be text constants (enclosed in quotation manksr text expressions
(enclosed in |). Text expressions can contain only text constants or previously defined
parameters. Once defined, a text parameter has the following uses:

» To specify a JEDEC file name on a PLD device.

* To specify an Intel Hex file name to program a ROM device or initialize a RAM device.
» To specify a stimulus file name or signal name on an FSTIM device.

» To specify a text parameter to a subcircuit.

« As part of a text expression used in one of the above.

Text parameters and expressions are only used in digital simulation.

¢=Chapter

88

Commands .TF (transfer)

.TF (transfer)

Purpose The .TF command/statement causes the small-signal DC gain to be calculated by linearizing
the circuit around the bias point.

General form .TF <output variable> <input source name>

Examples LTF V(5) VIN

.TF T(VDRIV) ICNTRL
Arguments and options

<output variable>
This has the same format and meaning as ilRRE&NT (print) statement.

o The gain from <input source name> to <output variable> and the input and output resistances
are evaluated and written to the output file. This output does not require a .PRINT (Print),
.PLOT (plot), or.PROBE (Probe)statement.When <output variable> is a current, it is
restricted to be the current through a voltage source.

The results of the .TF command are only available in the output file. They
cannot be viewed in Probe.

¢=Chapter

89

Commands .TRAN (transient analysis)

.TRAN (transient analysis)

Purpose The .TRAN command causes a transient analysis to be performed on the circuit and specifies
the time period for the analysis.

General form .TRAN[L/0P] <print step value> <final time value>
+[no-print value [step ceiling valuel][SKIPBP]

Examples .TRAN 1ns 100ns
.TRAN/OP 1Ins 100ns 20ns SKIPBP
.TRAN 1ns 100ns Ons .1ns

Arguments and options

[/OP]
Causes the same detailed printing of the bias point thaD#hébias point) command
does for the regular bias point. Without using this option, only the node voltages are
printed for the transient analysis bias point.

<print step value>
Sets the time interval used for printing (.PRINT), plotting (.PLOT), or performing a
Fourier integral on (.FOUR) the results of the transient analysis.

Since the results are computed at different times than they are printed, a 2nd-order
polynomial interpolation is used to obtain the printed values. This applies only to

.PRINT (print) , .PLOT (plot), and.FOUR (Fourier analysis) outputs and does not

affect Probe.

<final time value>
Sets the end time for the analysis.

[no-print value]
Sets the time interval (from TIME=0) that is not printed, plotted, or given to Probe.

[step ceiling value]
Overrides the default ceiling on the internal time step with a lower value.

[SKIPBP]
Skips calculation of the bias point.

When this option is used, the bias conditions are fully determined by the
IC= specifications for capacitors and inductors.

<=Chapter

90

Commands

Comments

.TRAN (transient analysis)

The transient analysis calculates the circuit’'s behavior over time, always starting at TIME=0
and finishing at <final time value>, but you can suppress the output of a portion of the
analysis. Use @RINT (print) , .PLOT (plot), .FOUR (Fourier analysis), or

.PROBE (Probe)to get the results of the transient analysis.

Prior to performing the transient analysis, PSpice computes a bias point for the circuit separate
from the regular bias point. This is necessary because at the start of a transient analysis, the
independent sources can have different values than their DC values.

The internal time step of the transient analysis adjusts as the analysis proceeds: over intervals
when there is little activity, the time step is increased, and during busy intervals it is decreased.
The default ceiling on the internal time step is <final time value>/50, but when there are no
charge storage elements, inductances, or capacitances in the circuit, the ceiling is

<print step value>.

The .TRAN command also sets the variables TSTEP and TSTOP, which are used in defaulting
some waveform parameters. TSTEP is equal to <print step value> and TSTOP is equal to
<final time value>.

Refer to your PSpice user’s guide for more information on setting initial conditions.

Section

91

Commands

.VECTOR (digital output)

VECTOR (digital output)

Purpose
General form

Examples

The .VECTOR command creates files containing digital simulation results.

.VECTOR <number of nodes> <node>*

[POS = <column position>]

[FILE = <filename>]

[RADIX = "Binary" | "Hex" | "Octal"
[BIT = <bit index> 1 1]

[SIGNAMES = <signal names> 1]

.VECTOR 1 CLOCK SIGNAMES=SYSCLK
.VECTOR 4 DATA3 DATA2 DATA1 DATAOQ
.VECTOR 1 ADDR3 P0S=2 RADIX=H BIT=4
.VECTOR 1 ADDR2 P0S=2 RADIX=H BIT=3
1
1

+ + 4+ + +

.VECTOR 1 ADDR1 P0S=2 RADIX=H BIT=2
.VECTOR 1 ADDRO P0S=2 RADIX=H BIT=1

Arguments and options

<“Chapter

<filename>
Specifies the name of the file to which the simulation results are saved. If left blank, the
simulator creates a file namedircuit filename>.vec, where
<circuit filename>.cir is the name of the netlist file.

<number of nodes>
This means the number of nodes in the list.

<node>
This defines the nodes whose states are to be stored.

<column position>
Specifies the column position in the file. By default, the column position is determined
through the order in which the VECTOR command appears in the circuit file, and by the
order of the signals within a .VECTOR command. Valid values for <column position> are
1-255.

RADIX
The radix of the values for the specified nodes is defined if <number of nodes> is greater
than one. Valid values are BINARY, OCTAL, or HEX (you can abbreviate to the first
letter). If <number of nodes> is one, and a radix of OCTAL or HEX is specified, a bit
position within the octal or hex digit via the BIT parameter can also be specified. A
separate .VECTOR command can be used to construct multi-bit values out of single
signals, provided the same POS value is specified. The default radix is BINARY if
<number of nodes> is one. Otherwise, the default radix is HEX. If a radix of OCTAL or
HEX is specified, the simulator creates dummy entries in the vector file header to fill out
the value if <number of nodes> is not an even power of two.

<bit index>
Defines the bit position within a single hex or octal digit when the VECTOR symbol is
attached to a wire. Valid values are one through four if RADIX=HEX, and one through
three if RADIX=OCTAL.

92

Commands

Comments

.VECTOR (digital output)

<signal names>
Defines the names of the signals which appear in the header of the vector file. If
SIGNAMES is not specified, the <node> names are used in the vector file header. If
<number of nodes> is greater than one, names are defined positionally, msb to Isb. If
fewer signal names than <number of nodes> are specified, the <node> names are used for
the remaining unspecified names.

The resulting file contains time and state values for the circuit nodes specified in the statement.
The file format is identical to that used by the digital file stimulus device (FSTIM). Thus, the
results of one simulation can be used to drive inputs of a subsequent simulatieite See
stimulus for more information on the file stimulus file format.

The optional parameters on the .VECTOR command can be used to control the file name,
column order, radix of the state values, and signal names which appear in the file header. Each
parameter is described in detail in the following table.

A different file name can be specified by using the FILE parameter. You can use multiple
.VECTOR commands to specify nodes for the same file.

Section

93

Commands

WATCH

Purpose

General form

Examples

.WATCH (watch analysis results)

(watch analysis results)

The .WATCH command/statement outputs results from DC, AC, and transient analyses to the
PSpice display in text format while the simulation is running.

.WATCH [DCILACILTRAN]
+ [<output variable> [<lower Timit value>,<upper 1imit value>]]*

.WATCH DC V(3) (-1V,4V) V(2,3) V(RI)

.WATCH AC VM(2) VP(2) vMC(Ql)

.WATCH TRAN VBE(Q13) (0V,5V) ID(M2) I(VCC) (0,500mA)
.WATCH DC V([RESET]) (2.5v,10V)

Arguments and options

¢=Chapter

DC, AC, and TRAN
The analysis types whose results are displayed during the simulation. You only need to
specify one analysis type per WATCH command, but there can be a .WATCH command
for each analysis type in the circuit.

<output variable>
A maximum of eight output variables are allowed on a single .WATCH statement.

<lower limit value>,<upper limit value>
Specifies the normal operating range of that particular output variable. If the range is
exceeded during the simulation, the simulator beeps and pauses. At this point, the
simulation can be canceled or continued. If continued, the check for that output variable’s
boundary condition is eliminated. Each output variable can have its own value range.

The first example displays three output variables on the screen. The first variable, V(3), has an
operating range set from minus one volt to four volts. If during the simulation the voltage at
node three exceeds four volts, the simulation will pause. If the simulation is allowed to
proceed, and node three continues to rise in value, the simulation is then not interrupted.
However, if the simulation is allowed to continue and V(3) falls below -1.0 volt, the simulation
would again pause because a new boundary condition was exceeded.

Up to three output variables can be seen on the display at one time. More than three variables
can be specified, but they are not all displayed.

The possible output variables are givenHROBE (Probe) with the exception that digital
nodes cannot be used and group delay is not available.

94

Commands .WCASE (sensitivity/worst-case analysis)

\WCASE (sensitivity/worst-case analysis)

Purpose The .WCASE statement causes a sensitivity and worst-case analysis of the circuit to be
performed.

General form .WCASE <analysis> <output variable> <function> [option]*

Examples .WCASE TRAN V(5) YMAX

.WCASE DC IC(Q7) YMAX VARY DEV

.WCASE AC VP(13,5) YMAX DEVICES RQ OUTPUT ALL
.WCASE TRAN V([OUT1]1,[0UT2]) YMAX RANGE(.4u,.6u)
+ LIST OUTPUT ALL VARY DEV HI

Arguments and options

<analysis>
Only one of DC, AC, or TRAN must be specified for <analysis>. This analysis is repeated
in subsequent passes of the worst-case analysis. All requested analyses are performed
during the nominal pass. Only the selected analysis is performed during subsequent
passes.

<output variable>
Identical in format to that of #2RINT (print) output variable.

<function>
Specifies the operation to be performed on the values of the <output variable> to reduce
these to a single value. This value is the basis for the comparisons between the nominal
and subsequent runs. The <function> must be one of the following:

Function Meaning

YMAX Find the absolute value of the greatest difference in each
waveform from the nominal run.

MAX Find the maximum value of each waveform.

MIN Find the minimum value of each waveform.

RISE_EDGE(<value>) Find the first occurrence of the waveform crossing above the

threshold <value>. The waveform must have one or more
points at or below <value> followed by one above; the
output value listed is where the waveform increases above
<value>.

FALL_EDGE(<value>) Find the first occurrence of the waveform crossing below the
threshold <value>. The waveform must have one or more
points at or above <value> followed by one below; the
output value listed is where the waveform decreases below
<value>.

¢=Chapter

95

Commands

[option]*

.WCASE (sensitivity/worst-case analysis)

Could have any number of the following.

[option] Meaning
LIST Prints the updated model parameters for the sensitivity analysis.
This does not affect the Probe data generated by the simulation.
OUTPUT ALL Prints output from the sensitivity runs, after the nominal (first) run.
The output from any run is governed by the .PRINT, .PLOT, and
.PROBE command in the file. fuTPUT ALL is omitted, then only
the nominal and worst-case runs produce outpuritPUT ALL
ensures that all sensitivity information is saved for Probe.
RANGE" Restricts the range over which <function> can be evaluated. An
(<low value>, asterisk * can be used in place of a <value> to show for all values.
<high value>) For example see the next two rows.
YMAX YMAX is evaluated for values of the sweep variable (e.g., time, and
RANGE(*,.5) frequency) of .5 or less.

MAX RANGE(-1,*)

HI or LOW

VARY DEV]|
VARY LOT]|
VARY BOTH

DEVICES

The maximum of the output variable is found for values of the
sweep variable of -1 or more.

Specify the direction which <function> should move for the
worst-case run is to go (relative to the nominal). If <function> is
YMAX or MAX, the default s, otherwise the default iOw.

By default, any device which has a model parameter specifying
either a DEV tolerance or a LOT tolerance is included in the
analysis. The analysis can be limited to only those devices which
have DEV or LOT tolerances by specifying the appropriate option.
The default isyARY BOTH. WhenvARY BOTH is used, sensitivity to
parameters using both DEV and LOT specifications is checked only
with respect to LOT variations. The parameter is then maximized or
minimized using both DEV and LOT tolerances for the worst-case.
All devices referencing the model have the same parameter values
for the worst-case simulation.

By default, all devices are included in the sensitivity and worst-case

(list of device types)analyses. The devices considered can be limited by listing the device

types after the keywomEVICES. Do not use any spaces or tabs in
the devices list. For example, to only perform the analysis on
resistors and MOSFETSs, enter:

DEVICES RM

* If RANGE is omitted, then <function> is evaluated over the whole sweep range. This is equivalent to

RANGE(*,*).

96

Commands .WCASE (sensitivity/worst-case analysis)

97

Commands

Comments

.WCASE (sensitivity/worst-case analysis)

Multiple runs of the selected analysis (DC, AC, or transient) are performed while parameters are
varied. Unlike MC (Monte Carlo analysis), .WCASE varies only one parameter per run. This
allows PSpice to calculate the sensitivity of the output waveform to each parameter. Once all
the sensitivities are known, one final run is performed using all parameters varied so as to
produce the worst-case waveform. The sensitivity and worst-case runs are performed using
variations on model parameters as specified by the DEV and LOT tolerances on each
.MODEL (model definition) parameter (see pades2for details on the DEV and LOT
tolerances). Other specifications on the .WCASE command control the output generated by the

analysis.

You can run either .MC or .WCASE for a circuit, but not both in the same circuit.

Section

98

Commands

* (comment)

* (comment)

Purpose
General form
Examples

<=Chapter

A statement beginning with an asterisk * is a comment line, which PSpice ignores.
* [any text]

* This is an example of
* a multiple-Tine comment

Use an asterisk at the beginning of each line you want to be a comment. A single asterisk does
not extend to subsequent lines. For example:

* _MODEL ABC NMOQS (.
+ .00))

produces an error message, because the second line is not covered by the first asterisk.

The use of comment statements throughout the input is recommended. It is good practice to
insert a comment line just before a subcircuit definition to identify the nodes, for example:

* +IN -IN V+ V- +0UT -0UuT
.SUBCKT OPAMP 100 101 1 2 200 201

or to identify major blocks of circuitry.

99

Commands ; (in-line comment)

, (In-line comment)

Purpose A semicolon ; is treated as the end of a line.
General form circuit file text ;[any text]
Examples RI3 6 8 10 ; R13 is a

; feedback resistor
€3 15 0 .1U ; decouple supply

o The simulator moves on to the next line in the circuit file. The text on the line after the
semicolon ; is a comment and has no effect. The use of comments throughout the input is
recommended. This type of comment can also replace comment lines, which must start with *
in the first column.

Trailing in-line comments that extend to more that one line can use a semicolon to mark the
beginning of the subsequent comment lines, as shown in the example.

<=Chapter

100

Commands

+ (line continuation)

+ (line continuation)

Purpose
General form

Examples

¢=Chapter

A plus sign + is treated as the continuation of the previous line.

circuit file text
+ more text

.DISTRIBUTION bi_modal (-1,1) (-.5,1) (-.5,0) (.5,0)
+ (.5,1) (1,1)

Because the simulator reads the line preceded by a plus sign as a continuation of the previous
line, you can use the plus sign to break up long lines of command text.

101

Commands Differences between PSpice and Berkeley SPICE2

Differences between PSpice and Berkeley
SPICE?2

The version of SPICE2 referred to is SPICE2G.6 from the University of California at
Berkeley.

PSpice runs any circuit that SPICE2 can run, with these exceptions:

1 Circuits that use .DISTO (small-signal distortion) analysis. U.C. Berkeley SPICE
supports the .DISTO analysis, but contains errors. Also, the special distortion output
variables (e.g., HD2 and DIM3) are not available. Instead of the .DISTO analysis,
MicroSim recommends running a transient analysis and looking at the output spectrum
using the Fourier transform mode in Probe. This technique shows the distortion (spectral)
products for both small-signal and large-signal distortion.

2 These options on th®PTIONS (analysis options)statement are not available in
PSpice:

e« LIMTIM: it is assumed to be 0.

e LVLCOD: no in-line machine code is generated.

e METHOD: a combination of trapezoidal and gear integration is always used.
« MAXORD: a combination of trapezoidal and gear integration is always used.
e LVLTIM: truncation error time step control is always used.

e |TL3: truncation error time step control is always used.

3 The IN= option on the .WIDTH statement is not available. PSpice always reads the entire
input file regardless of how long the input lines are.

4 Voltage coefficients for capacitors, and current coefficients for inductors must be put into
a.MODEL (model definition) statement instead of on the device statement.

5 PSpice does not allow the use of nested subcircuit definitions.

If this construct is used:
.SUBCKT ABC 1 2 3

.SUBCKT DEF 4 5 6

_ENDS

_ENDS

It is recommended that the definitions be separated into:
.SUBCKT ABC 1 2 3

X1 ... DEF

_ENDS

.SUBCKT DEF 4 5 6

.ENDS

<=Chapter

102

Commands Differences between PSpice and Berkeley SPICE2

®

You can nest subcircuit calls.

6 The .ALTER command is not supported in PSpice. Instead, use the
.STEP (parametric analysis)command to modify specific parameters over multiple
PSpice runs.

7 The syntax for the one-dimensional POLY form of E, F, G, anddttdge-controlled

voltage sourceandCurrent-controlled current source) devices is different. PSpice
requires a dimension specification of the form POLY (1), while SPICE does not.

PSpice produces basically the same results as SPICE. There can be some small differences,
especially for values crossing zero, due to the corrections made for convergence problems.

The semiconductor device models are the same as in SPICE.

Section

103

Commands Differences between PSpice and Berkeley SPICE2

104

Analo g devices

Letter Device type Letter Device type
B GaAsFET N Digital input (N device)
C Capacitor o) Digital output (O device)
D Diode Q Bipolar transistor
e Voltage-controlled R Resistor
voltage source -
rrent-controll .
F Current-controlled S Voltage-controlled switch
current source
G Voltage-controlled T Transmission line
current source
H Current-controlled U Diaital primitive summary
voltage source
| Independent current U STIM Stimulus devices
source & stimulus
3 Junction FET v Independent voltage
— source & stimulus
K Inductor coupling W Current-controlled switch
(and magnetic core)
Transmission lin . .
K a S’. =510 S X Subcircuit instantiation
coupling
L Inductor Z IGBT
M New! MOSFET

Commands

DEVEG

Digital devices Device Equations

Incex Glossary YA

Analog devices

Analog devices

This chapter describes the different types of analog devices supported by PSpice and
PSpice A/D. These device types include analog primitives, independent and controlled
sources, and subcircuit calls. Each device type is described separately, and each description
includes the following information as applicable:

* A description and an example of the proper netlist syntax.

* The corresponding model types and their description.

« The corresponding list of model parameters and their descriptions.

» The equivalent circuit diagram and characteristic equations for the model (as required).
» References to publications that the model is based on.

These analog devices include all of the standard circuit components that normally are not
considered part of the two-state (binary) devices that are found in the digital devices.

The model library consists of analog models of off-the-shelf parts that you can use directly in
your circuit designs. Refer to the onlibibrary List for available device models and the
libraries they are located in. You can also implement models usingl@BEL (model
definition) statement and implement macromodels as subcircuits usitgUBEKT

(subcircuit) statement.

TheDevice typessummary table lists all of the analog device primitives supported by
PSpice A/D. Each primitive is described in detail in the sections following the table.

106

Analog devices

Device types

PSpice supports many types of analog devices, including sources and general subcircuits.
PSpice A/D also supports digital devices. The supported devices are categorized into device
types. each of which can have one or more model types. For example, the BJT device type has
three model types: NPN, PNP, and LPNP (Lateral PNP). The description of each devices type
includes a description of any of the model types it supports.

The device declarations in the netlist always begin with the name of the individual device
(instance). The first letter of the name determines the device type. What follows the name
depends on the device type and its requested characteristics. Below is a summary of the device
types and the general form of their declaration formats.

The table below includes the designator (letter) used in device modeling for each
device type.

Analog device summary

Device type Letter Declaration format

Bipolar transistor Q Q<name> <collector node> <base node> <emitter node>
+ [substrate node] <model name> [area value]

Capacitor C C<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]

Voltage-controlled voltage E E<name> <+ node> <- node> <+ controlling node>

source + <- controlling node> <gain>
(additional Analog Behavioral Modeling forms: VALUE,
TABLE, LAPLACE, FREQ, and CHEBY SHEV; additional
POLY form)

Voltage-controlled current G G<name> <+ node> <- node> <+ controlling node>

source + <- controlling node> <transconductance>

(additional Analog Behavioral Modeling forms: VALUE,
TABLE, LAPLACE, FREQ, and CHEBYSHEYV; additional

POLY form)
Current-controlled current F F<name> <+ node> <- node> <controlling V device name>
source + <gain>

(additional POLY form)

Current-controlled switch w W<name> <+ switch node> <- switch node>

+ <controlling V device name> <model name>
Current-controlled voltage H H<name> <+ node> <- node> <controlling V device name>
source + <transresistance>

(additional POLY form)
Digital input (N device) N N<name> <interface node> <low level node> <high level

node>
+ <model name> <input specification>

107

Analog devices

Analog device summary (continued)

Device type Letter Declaration format

Digital output (O Device) (@] O<name> <interface node> <low level node> <high level
node>
+ <model name> <output specification>

Digital primitive summary U U<name> <primitive type> ([parameter value]*)

+ <digital power node> <digital ground node> <node>*
+ <timing model name>

Stimulus device¥ U STIM U<name> STIM (<width value>, <format value>)

+ <digital power node> <digital ground node> <node>*
+ <I/O model name> [TIMESTEP=<stepsize value>]
+ <waveform description>

Diode D D<name> <anode node> <cathode node> <model hame>
[area value]

GaAsSFET B B<name> <drain node> <gate node> <source node>
+ <model name> [area value]

Independent current source & | I<name> <+ node> <- node> [[DC] <value>]

stimulus + [AC <magnitude value> [phase value]] [transient
specification]

Independent voltage source & V V<name> <+ node> <- node> [[DC] <value>]

stimulus + [AC <magnitude value> [phase value]] [transient
specification]

Inductor L L<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]

Inductor coupling (and K K<name> L<inductor name> <L<inductor name>>*

magnetic core) + <coupling value>
K<name> <L<inductor name>>* <coupling value>
+ <model name> [size value]

IGBT Z Z<name> <collector> <gate> <emitter> <model name>
+ [AREA=<value>] [WB=<value>] [AGD=<value>]

+ [KP=<value>] [TAU=<value]

Junction FET J J<name> <drain node> <gate node> <source node>
+ <model name> [area value]

MOSFET M M<name> <drain node> <gate node> <source node>
+ <bulk/substrate node> <model hame>
+ [common model parameter]*

Resistor R R<name> <+ node> <- node> [model name] <value>
+ [TC=<linear temp. coefficient>[,<quadratic temp.
coefficient]]

Subcircuit instantiation X X<name> [node]* <subcircuit name>

+ [PARAMS: <<name>=<value>>*] [TEXT:<<name>=<text
value>>*]

108

Analog devices

Analog device summary (continued)

Device type Letter Declaration format

Transmission line T T<name> <A port + hode> <A port - node>
+ <B port + node> <B port - node> <ideal or lossy
specification>

Transmission line coupling K K<name> T<line name> <T<line name>>*

+ CM=<coupling capacitance> LM=<coupling inductance>

Voltage-controlled switch S S<name> <+ switch node> <- switch node>
+ <+ controlling node> <- controlling node> <model name>

109

Analog devices B

GaAsFET

General form B<name> <drain node> <gate node> <source node> <model name> [area value]
Examples BIN 100 10 O GFAST
B13 22 14 23 GNOM 2.0
Model form .MODEL <model name> GASFET [model parameters]
Description The GaAsFET is modeled as an intrinsic FET using an ohmic resiskeega) in series

with the drain, another ohmic resistanes/@rea) in series with the source, and another
ohmic resistancer@) in series with the gate.

© Drain
§ RD
Cad
£
Al
0—0—{>|—0
Gate RG
C VVVTY <\|/> — CDS
0—{>|—«
£
Al
Cgs
RS
O Source

Arguments and options

[area value]
The relative device area. Its default value is 1.0.

Comments TheLEVEL model parameter selects among different models for the intrinsic GaAsFET as
follows:
LEVEL=1 “Curtice” model (see reference [1])

LEVEL=2 “Raytheon” or “Statz” model (see reference [3]), equivalent to
the GaAsFET model in SPICE3

LEVEL=3 “TOM” model by TriQuint (see reference [4])
LEVEL=4 “Parker-Skellern” model (see reference [5] and [6])
LEVEL=5 “TOM-2" model by TriQuint (see reference [7])

For more information, seeeferences

<=Chapter

110

Analog devices B

®

The TOM-2 model is based on the original TriQuint TOM model, retaining the
desirable features of the TOM model, while improving accuracy in the subthreshold
near cutoff and knee regions (Vds of 1 volt or less). This model includes additional
temperature coefficients related to the drain current and corrects the major
deficiencies in the behavior of the capacitance as a function of temperature.

Capture parts

The following table lists the set of GaAsFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

part name Model type Property Property description
BBREAK GASFET AREA area scaling factor
MODEL GASFET model name

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter.

111

Analog devices B

Model parameters

GaAsFET model parameters for all levels

Model parameter © Description Units Default
AF flicker noise exponent 1
BETA transconductance coefficient amp/¥olt 0.1
BETATCE BETA exponential temperature coefficient %/°C 0
CDS drain-source capacitance farad 0
CGD zero-bias gate-drain p-n capacitance farad 0
CGs zero-bias gate-source p-n capacitance farad 0
EG band gap voltage (barrier height) eV 1.11
FC forward-bias depletion capacitance 0.5
coefficient
1S gate p-n saturation current amp 1E-14
KF flicker noise coefficient 0
LEVEL model index (1, 2, 3, 4, or 5) 1
N gate p-n emission coefficient 1
RD drain ohmic resistance ohm 0
RG gate ohmic resistance ohm 0
RS source ohmic resistance ohm 0
TRD1 RD temperature coefficient (linear) % 0
TRG1 RG temperature coefficient (linear) % 0
TRS1 RS temperature coefficient (linear) < 0
T_ABS absolute temperature °C
T_MEASURED measured temperature °C
T_REL_GLOBAL relative to current temperature °C
T_REL_LOCAL relative to AKO model temperature °C
VBI gate p-n potential volt 1.0
VTO pinchoff voltage volt -2.5
VTOTC VTO temperature coefficient volt/°C 0
XTI IS temperature exponent 0

* For information oim_ABS, T_MEASURED, T_REL_GLOBAL , andT_REL_LOCAL, see theMODEL (model defini-
tion) statement.

112

Analog devices

GaAsFET model parameters specific to model levels

Model parameter Description Units Default
level 1

ALPHA saturation voltage parameter vblt 2.0

LAMBDA channel-length modulation volt 0

M gate p-n grading coefficient 0.5

TAU conduction current delay time sec 0
level 2

ALPHA saturation voltage parameter vblt 2.0

B doping tail extending parameter volt 0.3

LAMBDA channel-length modulation volt 0

M gate p-n grading coefficient 0.5

TAU conduction current delay time sec 0

VDELTA capacitance transition voltage volt 0.2

VMAX capacitance limiting voltage volt 0.5
level 3

ALPHA saturation voltage parameter vblt 2.0

BTRK auxiliary parameter for Monte Carlo analysis* amp/%lt 0

DELTA output feedback parameter (amp-vdlt) 0

DvT auxiliary parameter for Monte Carlo analysis* volt 0

DVTT auxiliary parameter for Monte Carlo analysis* volt 0

113

Analog devices

GaAsFET model parameters specific to model levels (continued)

Model parameter Description Units Default
GAMMA static feedback parameter 0
M gate p-n grading coefficient 0.5
Q power-law parameter 2
TAU conduction current delay time sec 0
VDELTA capacitance transition voltage volt 0.2
VMAX gate diode capacitance limiting voltage volt 0.5
level 4
ACGAM capacitance modulation 0
DELTA output feedback parameter (amp-v’élt) 0
HFETA high-frequency VGS feedback parameter 0
HFE1 HFGAM modulation by VGD volt 0
HFE2 HFGAM modulation by VGS volt 0
HFGAM high-frequency VGD feedback parameter 0
HFG1 HFGAM modulation by VSG volt 0
HFG2 HFGAM modulation by VDG volt 0
IBD gate junction breakdown current amp 0
LAMBDA channel-length modulation volt 0
LFGAM low-frequency feedback parameter 0
LFG1 LFGAM modulation by VSG volt 0
LFG2 LFGAM modulation by VDG volt 0
MVST subthreshold modulation volt 0
MXI saturation knee-potential modulation 0
P linear-region power law exponent 2
Q power-law parameter 2
TAUD relaxation time for thermal reduction sec 0
TAUG relaxation time for GAM feedback sec 0
VBD gate junction breakdown potential volt 1

114

Analog devices

GaAsFET model parameters specific to model levels (continued)

Model parameter Description Units Default
VST subthreshold potential volt 0
XxC capacitance pinchoff reduction factor 0
Xl saturation knee potential factor 1000
z knee transition parameter 0.5
level 5
ALPHA saturation voltage parameter vblt 2.0
ALPHATCE ALPHA temperature coefficient %/°C 0
BTRK auxiliary parameter for Monte Carlo analysis amp/vol? 0
CGDTCE CGD temperature coefficient °t 0
CGSTCE CGS temperature coefficient °t 0
DELTA output feedback parameter (amp-v‘élt) 0
DVT auxiliary parameter for Monte Carlo analysis* volt 0
DVTT auxiliary parameter for Monte Carlo analysis* volt 0
GAMMA static feedback parameter 0
GAMMATC GAMMA temperature coefficient °t 0
ND subthreshold slope drain pull parameter Volt 0
NG subthreshold slope gate parameter 0
Q power-law parameter 2
TAU conduction current delay time sec 0
VBITC VBI temperature coefficient volt/°C 0
VDELTA capacitance transition voltage volt 0.2
VMAX gate diode capacitance limiting voltage volt 0.5

*See auxiliary model parameters BTRK, DVT, and DVTT.

115

Analog devices B

Auxiliary model parameters BTRK, DVT, and DVTT

The parameteBTRK, DVT, andDVTT are auxiliary model parameters that are used to make
the Monte Carlo analysis easier when using PSpice. In the analysis, these affect the
parametersTO andBETA as follows:

VTO =VTO + DVT + DVTT
BETA =BETA +BTRK - (DVT + DVTT)

In Monte Carlo analysis, DEV tolerances placed orptfieor DVTT cause variations in both
VTO andBETA. PSpice does not support correlated DEV variations in Monte Carlo analysis.
Without DVT andDVTT, DEV tolerances placed e/TO andBETA can result in independent
variations; there is a definite correlation betwg&n andBETA on real devices.

TheBTRK, DVT, andDVTT parameters are also used to provide tracking between distinct
GaAsFETSs, such as between depletion mode and enhancement mode. PSpice already
provides a limited mechanism for this, but only allows one DEV and one LOT (or LOT/n and
DEV/n) tolerance per model parameter. The added parameters circumvent this restriction by
extending the capability of Monte Carlo to model correlation between the critical model
parameters.

116

Analog devices B

GaAsFET equations

The equations in this section describe an N-channel GaAsFET. The following variables are

used:
Vgs = intrinsic gate-intrinsic source voltage
Vgd =intrinsic gate-intrinsic drain voltage
Vds = intrinsic drain-intrinsic source voltage
Cds = drain-source capacitance
Cgs = gate-source capacitance
Cgd = gate-drain capacitance
Vt = k-T/q (thermal voltage)
k = Boltzmann constant
q = electron charge
T = analysis temperature (°K)

Tnom = nominal temperature (set by usi@P TIONS (analysis options)TNOM=)

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

GaAsFET equations for DC current: all levels

Ig = gate current area (Igs+igd)

Id =draincurrent=area(Idrain-lgd)

Is =source current area (-ldrain-1gs)
where
Igs = gate-source leakage current

lgd = gate-drain leakage current

117

Analog devices

GaAsFET equations for DC current: specific to model levels

levels 1, 2, 3,and 5
Igs :IS-(eVgs/(N-Vt)_l)

Igd =IS-(gsNw-1)

level 4
lgs =1gs +1g9s
Vgs
where NV,
lgss=1IS-|e -1| +Vgs:- GMIN
and _Vvags
Igs; =1BD -|1—e VBD]
lgd = 1gds + 1gd,
where ngi
D/t
lgdi = 1S -\e -1| +Vgd-GMIN
and _Vvgd
lgd, =1BD - {1—eVBD}
level 1: Idrain

Normal mode: Vds >_ 0
Case 1
for cutoff region: Vgs ¥v1T0 <0
then: Idrain = 0
Case 2
for linear & saturation region: VgsvTo >0
then: Idrain =BETA -(1+LAMBDA -Vds)-(VgsvTO)2tanh(ALPHA -Vds)
Inverted mode: Vds < 0

Switch the source and drain in the Normal mode equations.

118

Analog devices

GaAsFET equations for DC current: specific to model levels

level 2: Idrain
Normal mode: Vds >_ 0
Case 1
for cutoff region: Vgs ¥v10 <0
then: Idrain = 0
Case 2
for linear & saturation region: VgsvT0o >0

then: IdrainBETA -(1+LAMBDA -Vds)-(VgsvTO)?-Kt/(1+8-(VgsvTO))

where
Kt is a polynomial approximation ¢édnh
for linear region: then:
0 < Vds < 3ALPHA Kt =1 - (1 - VdSALPHA/3)®
for saturation region: then:
Vds >3/ALPHA Kt=1

Inverted mode: Vds <0

Switch the source and drain in the Normal mode equations.

119

Analog devices

GaAsFET equations for DC current: specific to model levels

level 3: Idrain
Normal mode: Vds >_ 0

Casel
for cutoff region:
Vgs - Vo <0
then:
Idrain=0
Case 2

for linear & saturation region:
Vgs - Vo 20

then:
Idrain = Idso/(1 +DELTA-Vds-ldso)

where
Idso = BETA-(Vgs-V,,)?-Kt

and
Vio = VTO - GAMMA :Vds

where
Kt is the same as for Level 2.

Inverted mode: Vds <0

Switch the source and drain in the Normal Mode equations.

level 4: Idrain
Normal mode: Vds >_ 0

Idrain = Ids
1+ DELTA [p

avg

Vgst =Vgs -VTO - Vit - V@thyg- Ynt - (VOd — VQdyg) - Npe - (VIS — VOgyg
Vdst =Vds

120

Analog devices B

GaAsFET equations for DC current: specific to model levels

Inverted mode: Vds <0

—lds
1+ DELTA [pavg

Idrain =

Vgst =Vgd -VTO -it - Vgdyyg- Ynt - (VOS - VOdyg) - Nk - (VO -Va3y,9
Vdst =-Vds
where

Ids =BETA - (1+LAMBDA -Vdst)-(VgR - (Vgt -Vdt)?)

Pavg = Vds - lds TAUD - d/ct P4

Yif =LFGAM - LFG1 - Vg4~ LFG2 - VQd, 4

Vgdayg= Vgd -TAUG - d/d Vgd,yg if: Vgd <Vgs
=Vgs -TAUG - did Vgdy,q if: Vgs < Vgd

Ynf = HFGAM - HFGL - Vg, 4- HFG2 - Va4

Nht = HFETA + HFEL - VOd,q + HFE2 - VS, 4

V0Sayg= Vgs -TAUG - d/ct V0Sayg if: Vgd <Vgs
=Vgd - TAUG - d/dt Vgs, g4 if: Vgs <Vgd

Vgst O, 1%

Vgt =VSTO1+MVST Vdst) On %XD%ST 1+ MVST DVdst)U

vdt = %D/(Vdp L/1+Z+Vsat)2+z D\/satz—% D/(Vdp L/1+Z—Vsat)2+z Vsaf
_ vgt -9
Vvdp ‘VdSt[g Bl —vTOU

Vgt QVgt IMXI + X1 QVBI —VTO))
Vgt + Vgt IMXI + XI {VBI-VTO)

Vsat=

121

Analog devices

GaAsFET equations for DC current: specific to model levels

level 5: Idrain
Normal mode: Vds >_ 0
Case 1

For cutoff region:
Vgs-VTO + GAMMA -Vds< 0OANDNG +ND - Vds =0

then:
Idrain=0
Case 2

For linear and saturation region:
Vgs- VTO + GAMMA -Vds> 0 ORNG +ND -Vds# 0

then:
Idrain=Idso/ (1 + DELTA - Vds - Idso)

where
ldso = BETA OQVg)R
J1+ (ALPHA DVds)?

ALPHA [Wds

—(VTO + GAMMA
Vg = Qv DOQB?XDEVQS ((;D/ D/ds)8+ 1%
st

V¢ =(NG +ND [Vds) EB(ETE

Inverted mode: Vds < 0

Switch the source and drain in the Normal mode equations.

122

Analog devices B

GaAsFET equations for capacitance

All capacitances are between terminals of the intrinsic GaAsFET (i.e., to the inside of the
ohmic drain, source, and gate resistances).

all levels
For all conditions: Cds =areacps
level 1
For: Vgs< FC-vBI Cgs= areaCGs-(1-VgsvaI)M
For: Vgs>FC-VBI Cgs= areaCGS-(1-FC)-wM-(1-FC- (1+M)+M-Vgs/VBI)

For: Vgd< FC-vBI Cgd=areacGD-(1-VgdivaI)M
For: Vgd> FC-vBI Cgd=areaCGD-(1-FC)@M.(1-FC-(1+M)+M-Vgd/VBI)
levels 2, 3, and 5
Cgs =area-(CGS-KZ-Kl/(l—Vn/VBI)UZ + CGD-K3)
Cgd= area(CGS-K3-KL/(1-Vn/vBI)' + CGDK2)
where:
Kil=(Q+ (\/e-VTo)/((Ve-VTo)2+VDELTA2)1/2)/2
K2 = (1 + (VgsvVgd)/((Vgs-Vgd)z+(1/ALPHA)2)1/3/2
K3=(1- (VgS-Vgd)/((VgS—ng)2+(1/ALPHA)2)1/2)/2
Ve = (Vgs+Vgd + ((\/gergd)2+(1/A|_PHA)2)1/2)/2
if: (Ve +VvTO + ((\/e-VTO)2+VDELTA2)1/2)/2 <VMAX
then Vn = (Ve + V1O + ((Ve-VTo)2+VDE|_TA2)1’3/2

else Vn = VMAX

123

Analog devices B

level 4

Charge storage is implemented using a modified Statz model.

= 0 0 0 O
Cgs % K1 00+ 2ACGAM + —Y95 54 1 eap mrean1+ 2aceam ——Y9S 5
O Vdsz+o(2D O Vd32+o(2D
- 0 0 0 O
Cgd % (K1 - 2acGAM — —Y98 541 o6p marearn- aceam + —YdS g
0 Vdsz+or2D O Vdsz+or2D
where
Vv
1= 2—<88 {1+XC+(1—XC)—-—-——-—-—-—9—-—-—-——n }
J1=Vge/ VB! V2 +0.2
if: VX <FC . VBI then: Vge =V,
4(1-rc)° W
if: Vx > FC - vBI then: V= VBI|1 - v
-3FC+ X

VBI

_ 1 h,2 01 I\,2 0
V, = Vgs+ACGAM D/ds—é%/gn— gn+0.22D—§%/gn— gn+0‘22[]

_ 1 [2, 420
Vgn= [(Vgs+ACGAM)D\/dS—VTO—é%/dS— Vds“ +a D} 1-XC)

where:

_ _XI_VBI-VTO
Xl+1 2

If the source and drain potentials swap, the model reverses over arange setby a.The
model maintains a straight line relation between gate-source capacitance and gate
bias in the region Vgs > FC - VBI.

124

Analog devices

GaAsFET equations for temperature effect

all levels
VTO(T) =VTO+VTOTC-(T-Tnom)
BETA(T) =BETA-1.0BETATCE(T-Tnom
IS(T) = |5-g(TTom-LEG/N-VY). (T/Tnom)XTIN
RG(T) =RG-(1 +TRG1-(T-Tnom))
RD(T) =RD-(1 +TRD1:(T-Tnom))
RS(T) =RS:(1 +TRS1-(T-Thom))
levels 1, 2, 3, and 4

CGS(T) =CGS-(1+M-(.0004 (T-Tnom)+(1-VvBI(T)/VBI)))
CGD(T) =CGD-(14v-(.0004-(T-Tnom)+(MBI(T)/VBI)))
VvBI(T) =VBI-T/Tnom- 3-Vtin(T/Tnom) - EG(Tnom)-T/Tnom+ EG(T)

where:

EG(T) = silicon bandgap energyl=16 - .000702-4(T+1108

level 5

ALPHA (T) =ALPHA - 1.01aLPHATCE "(T-Tnom)
GAMMA (T)= GAMMA + GAMMATC - (T-Tnhom)
vBI(T) =VBI + VBITC - (T-Tnom)
VMAX(T) =VMAX +VBITC - (T-Tnom)
CGS(T) =CGS - (@ +CGSTCE - (T-Tnom))

CGD(T) =CGD - (1 +CGDTCE - (T-Tnom))

125

Analog devices B

GaAsFET equations for noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

parasitic resistance thermal noise
Is2 = 4 k-T/(RS/ared)
Id2 = 4k-T/(RD/ared)
lg? = 4k-TRRG
intrinsic GaAsFET shot and flicker noise
Id2 = 4-k-T-gm-2/3 +KF-IdAF/FREQUENCY
where:

gm =dldrain/dVgs (at the DC bias poit

126

Analog devices

References

For more information on this GaAsFET model, refer to:

[1]W. R. Curtice, “A MESFET model for use in the design of GaAs integrated circuits,” IEEE
Transactions on Microwave Theory and Techniq#ET-28, 448-456 (1980).

[2] S. E. Sussman-Fort, S. Narasimhan, and K. Mayaram, “A complete GaAs MESFET
computer model for SPICE,” IEEE Transactions on Microwave Theory and Techniques
MTT-32, 471-473 (1984).

[3] H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, “GaAs FET Device and
Circuit Simulation in SPICE,” IEEE Transactions on Electron DeviE€s34, 160-169
(1987).

[4] A. J. McCamant, G. D. McCormack, and D. H. Smith, “An Improved GaAs MESFET
Model for SPICE,” IEEE Transactions on Microwave Theory and Technigoes$8, no. 6,
822-824 (June 1990).

[5] A. E. Parker and D. J. Skellern “Improved MESFET Characterization for Analog Circuit
Design and Analysis,” 199EEE GaAs IC Symposium Technical Diggsp. 225-228,
Miami Beach, October 4-7, 1992.

[6] A. E. Parker, “Device Characterization and Circuit Design for High Performance
Microwave Applications,” IEE EEDMO’93, London, October 18, 1993.

[7] D. H. Smith, “An Improved Model for GaAs MESFETSs,” Publication forthcoming.
(Copies available from TriQuint Semiconductors Corporation or MicroSim.)

Section

127

Analog devices

Capacitor

General form

Examples

Model form

C<name> <(+) node> <(-) node> [model name] <value> [IC=<initial value>]

CLOAD 15 0 20pF

C2 1 2 .2E-12 1C=1.5V

CFDBCK 3 33 CMOD 10pF

.MODEL <model name> CAP [model parameters]

15v ’ ’ Qv

’ ’ CLoad

Arguments and options

Comments

(+) and (-) nodes
Define the polarity when the capacitor has a positive voltage across it. The first node listed
(or pin one in Capture) is defined as positive. The voltage across the component is
therefore defined as the first node voltage, less the second node voltage.

[model name]
If [model name] is left out, then <value> is the capacitance in farads. If [model name] is
specified, then the value is given by the model parameterSaseeitor value formula.

<initial value>
The initial voltage across the capacitor during the bias point calculation. It can also be
specified in a circuit file using a .IC command as follows:

.IC V(+node, -node) <initial value>

Positive current flows from the (+) node through the capacitor to the (-) node. Current flow
from the first node through the component to the second node is considered positive.

For details on using the .IC command in a circuit file,.E@dinitial bias point condition)
and refer to your PSpice user’s guide for more information.

The initial voltage across the capacitor can also be set in Capture by using the IC1 part if the
capacitor is connected to ground or by using the IC2 part for setting the initial conditions
between two nodes. These parts can be found in SPECIAL.OLB.

For more information about setting initial conditions, refer tq the Capture User’s iGyide
are using Capture, or refer to your PSpice user’s guide if you are using PSpice.

<=Chapter

128

Analog devices

Capture parts

For standard C parts, the effective value of the part is set directly by the VALUE property.
For the variable capacitor, C_VAR, the effective value is the product of the base value
(VALUE) and multiplier (SET).

In general, capacitors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. A transient analysis may fail for a circuit with negative components. Negative
capacitors may create instabilities in time that the analysis cannot handle.

Part name xggel Property Property description
C capacitor VALUE capacitance
IC initial voltage across the capacitor during bias
point calculation
C_VAR VALUE base capacitance
SET multiplier

Breakout parts

For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D).

For breakout part CBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

Device Part

type name Part library Property Property description
capacitor CBREAK BREAKOUT.OLB VALUE capacitance
IC initial voltage across the
capacitor during bias point
calculation

MODEL CAP model name

129

Analog devices C

Capacitor model parameters

Model parameters * Description Units Default
c capacitance multiplier 1.0
TC1 linear temperature coefficient ac 0.0
TC2 guadratic temperature coefficient 2C 0.0
T_ABS absolute temperature °C
T_MEASURED measured temperature °C
T_REL_GLOBAL relative to current temperature °C
T_REL_LOCAL relative to AKO model temperature °C

VC1 linear voltage coefficient voit 0.0
VC2 guadratic voltage coefficient valt 0.0

* For information onT_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL , see.MODEL (model definition).

Capacitor equations

Capacitor value formula

If [model name] is specified, then the value is given by:
<value>-C- (1+VC1-V+VC2-V2) - (1+TC1- (T-Tnom)+TC2-(T-Tnom)?)

where <value> is normally positive (though it can be negativendiutero). Tnom is the
nominal temperature (set using TNOM option).

Capacitor equation for noise

The capacitor does not have a noise model.

Section

130

Analog devices D

Diode

General form D<name> <(+) node> <(-) node> <model name> [area valuel
Examples DCLAMP 14 0 DMOD
D13 15 17 SWITCH 1.5
Model form .MODEL <model name> D [model parameters]
Description The diode is modeled as an ohmic resistarReéafea) in series with an intrinsic diode.

Positive current is current flowing from the anode through the diode to the cathode.

Arguments and options

<(+) node>
The anode.

<(-) node>
The cathode.

[area value]
Scaless, ISR, IKF,RS, CJO, andiBV, and has a default value of 1.
IBV andBV are both specified as positive values.

¢=Chapter

131

Analog devices D

Capture parts

The following table lists the set of diode breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Part name Model type Property Property description

DBREAK D, X MODEL D model name
DBREAK3

DBREAKCR

DBREAKVV

DBREAKZ

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information,Seecial considerations

132

Analog devices D

Diode model parameters
Model parameters © Description Unit Default
AF flicker noise exponent 1.0
BV reverse breakdown knee voltage volt infinite
CJOo zero-bias p-n capacitance farad 0.0
EG bandgap voltage (barrier height) eV 1.11
FC forward-bias depletion capacitance coefficient 0.5
IBVL low-level reverse breakdown knee current amp 0.0
1BV reverse breakdown knee current amp 1E-10
IKF high-injection knee current amp infinite
1S saturation current amp 1E-14
ISR recombination current parameter amp 0.0
KF flicker noise coefficient 0.0
M p-n grading coefficient 0.5
N emission coefficient 1.0
NBV reverse breakdown ideality factor 1.0
NBVL low-level reverse breakdown ideality factor 1.0
NR emission coefficient for isr 2.0
RS parasitic resistance ohm 0.0
TBV1 bv temperature coefficient (linear) 2C 0.0
TBV2 bv temperature coefficient (quadratic) 2C 0.0
TIKF ikf temperature coefficient (linear) aCcC 0.0
TRS1 rs temperature coefficient (linear) *C 0.0
TRS2 rs temperature coefficient (quadratic) *2C 0.0
T transit time sec 0.0
T_ABS absolute temperature °C
T_MEASURED measured temperature °C
T_REL_GLOBAL relative to current temperature °C
T_REL_LOCAL Relative to AKO model temperature °C
A p-n potential volt 1.0
XTI IS temperature exponent 3.0

* For more information of_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL , see MODEL (model definition).

133

Analog devices

Diode equations

The equations in this section use the following variables:

vd = voltage across the intrinsic diode only
Vit = k-T/g (thermal voltage)

k = Boltzmann’s constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option

Other variables are listed iode model parameters

Diode equations for DC current

Id = area(Ifwd - Irev)
Ifwd = forward current = Inrm-Kinj + Irec-Kgen
Inrm = normal current = |S2@E™v-1)

if: IKF >0 0
then:Kinj = high-injection factor IKF/(IKF+Inrm))
else: Kinj=1

Irec = recombination currentiSR-(g"¢/NrVvi-1)

Kgen = generation factor = ((1-Vd/\/3p.005)2
Irev = reverse current = Irgy + Irev,,

Irevhigh = |BV - (Vd+BV)I(NBV-Vt)

|reV|0W = |BVL -e(Vd+BV)((NBVL-VY)

Diode equations for capacitance

Cd = Ct +areaCj
Ct = transit time capacitancer®-Gd

Gd = DC conductance = are&INrmKinj * Irec Kgen
dvd

Kinj = high-injection factor
Cj=cJo-(1-vd/iVIMm IF: Vd <FC-VJ
Cj =cJo-(1fc)wm.(1+C-(1+v)+M-VdMI) IF: Vd > FC-VJ

Cj = junction capacitance

134

Analog devices D

Diode equations for temperature effects

|S(T) = |S.g(T/Tnom-1)-EG/(N-Vt) (T/Tnom)(T'/N

ISR(T) = ISR-gTTom-D) EGNRVY (T/TnOM)TNR

IKF(T) = IKF-(1 +TIKF-(T-Tnom))

BV(T) =BV-(1 +TBV1-(T-Tnom) +TBV2-(T-Thom})

RS(T) =RsS:(1 +TRS1-(T-Tnom) +TRS2:(T-Tnomy)

VI(T) =VvJ3-T/Tnom - 3-VIn(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)
Eg(T) = silicon bandgap energy = 1.16 - .0007@2T#1108)

CJO(T) =cJO-(1 +M-(.0004-(T-Tnom)+(MI(T)/NVJI)))

Diode equations for noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

parasitic resistance thermal noise
Inz2 = 4k-T/(RS/ared)
intrinsic diode shot and flicker noise
Inz2=2.q-1d + KF-ld*/FREQUENCY

References

For a detailed description of p-n junction physics, refer to:

[1] A. S. Grove, Physics and Technology of Semiconductor Devioés Wiley and Sons,
Inc., 1967.

Also, for a generally detailed discussion of the U.C. Berkeley SPICE models, including the
diode device, refer to:

[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE
McGraw-Hill, 1988.

Section

135

Analog devices E/G

Voltage-controlled voltage source

Voltage-controlled current source

General form E<name> <(+) node> <(-) node> <(+) controlling node> <(-) controlling node>
<gain>

E<name> <(+) node> <(-) node> POLY(<value>)
+ < <(+) controlling node> <(-) controlling node> >*
+ < <{polynomial coefficient value> >*

E<name> <(+) <node> <(-) node> VALUE = { <expression> }

E<name> <(+) <node> <(-) node> TABLE { <expression> } =
+ < <input value>,<output value> >*

E<name> <(+) node> <(-) node> LAPLACE { <expression> } =
+ { <transform> }

E<name> <(+) node> <(-) node> FREQ { <expression> } = [KEYWORD]
+ < <frequency value>,<magnitude value>,<phase value> >*
+ [DELAY = <delay value>]

E<name> <(+) node> <(-) node> CHEBYSHEV { <expression> } =
+ <[CLPJ] [HP] [BP] [BRI>,<cutoff frequencies>*,<attenuation>*

Examples EBUFF 1 2 10 11 1.0
EAMP 13 0 POLY(1) 26 0 0 500

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005

ESQROOT 5 0 VALUE = {5V*SQRT(V(3,2))}

ET2 2 0 TABLE {V(ANODE,CATHODE)} = (0,0) (30,1)

ERC 5 0 LAPLACE {V(10)} = {1/(1+.001*s)}

ELOWPASS 5 0 FREQ {V(10)}=(0,0,0)(5kHz, 0,0)(6kHz -60, 0) DELAY=3.2ms
ELOWPASS 5 0 CHEBYSHEV {V(10)} = LP 800 1.2K .1dB 50dB

GBUFF 1 2 10 11 1.0

GAMP 13 0 POLY(1) 26 0 0 500

GNONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
GPSK 11 6 VALUE = {5MA*SIN(6.28*10kHz*TIME+V(3))!}

GT ANODE CATHODE VALUE = {200E-6*PWR(V(1)*V(2),1.5)}
GLOSSY 5 0 LAPLACE {V(10)} = fexp(-sqrt(C*s*(R+L*s)))}

Description The voltage-controlled voltage source (E) and the voltage-controlled current source (G)
devices have the same syntax. For a voltage-controlled current source just substitute G for E.
G generates a current, whereas E generates a voltage.

1v + 10v 1v + 10v

2v 11v 2V 11v

EBuff GBuff

¢Chapter

136

Analog devices E/G

Arguments and options

POLY(<value>)
Specifies the number of dimensions of the polynomial. The number of pairs of controlling
nodes must be equal to the number of dimensions.

(+) and (-) nodes
Output nodes. Positive current flows from the (+) node through the source to the (-) node.

The <(+) controlling node> and <(-) controlling node>
Are in pairs and define a set of controlling voltages. A particular node can appear more
than once, and the output and controlling nodes need not be different. The TABLE form
has a maximum size of 2048 input/output value pairs.

FREQ
If a DELAY value is specified, the simulator modifies the phases in the FREQ table to
incorporate the specified delay value. This is useful for cases of tables which the simulator
identifies as being non-causal. When this occurs, the simulator provides a delay value
necessary to make the table causal. The new syntax allows this value to be specified in
subsequent simulation runs, without requiring the user to modify the table.

If a KEYWORD is specified for FREQ tables, it alters the values in the table. The
KEYWORD can be one of the following:

* MAG causes magnitude of frequency response to be interpreted as a raw value instead
of dB.

» DB causes magnitude to be interpreted as dB (the default).
* RAD causes phase to be interpreted in radians.
» DEG causes phase to be interpreted in degrees (the default).

* R_I causes magnitude and phase values to be interpreted
as real and imaginary magnitudes.

Comments The first form and the first two examples apply to the linear case; the second form and the third
example are for the nonlinear case. The last five forms and examples are analog behavioral
modeling (ABM) that have expression, look up table, Laplace transform, frequency response,
and filtering. Refer to your PSpice useguide for more information on analog behavioral
modeling.

Chebyshev filters have two attenuation values, given in dB, which specify the pass band ripple
and the stop band attenuation. They can be given in either order, but must appear after all of
the cutoff frequencies have been given. Low pass (LP) and high pass (HP) have two cutoff
frequencies, specifying the pass band and stop band edges, while band pass (BP) and band
reject (BR) filters have four. Again, these can be given in any order.

®

You can get a list of the filter Laplace coefficients for each stage by enabling

the LIST option in the Simulation Settings dialog box. (Click the Options tab,

then select the Output file Category and select Device Summary.) The output
is written to the .out file after the simulation is complete.

For the linear case, there are two controlling nodes and these are followed by the gain. For all
cases, including the nonlinear case (POLY), refer to your PSpice user’s guide.

Expressiongannot be used for linear and polynomial coefficient values in a
voltage-controlled voltage source device statement.

137

Analog devices E/G

Basic SPICE polynomial expressions (POLY)

PSpice A/D (and SPICE) use the following syntax:

<controlled source> <connecting nodes>
+POLY (<dimension>) <controlling input> <coefficients>

where

<controlled source> s <[E][F][G][H]device name>, meaning the device type is one of
E,F, G, orH

<connecting nodes> specifies <(+node_name, -node_name)> pair between which the
device is connected

<dimension> is the dimension <value> of the polynomial describing the
controlling function

<controlling input> specifies <(+node_name, -node_name)>* pairs used as input to the
voltage controlled source (device types E and G), or
<V device name>* for the current controlled source (device types
F and H), and where the number of controlling inputs for either
case equals <dimension>

<coefficients> specifies the coefficient <values>* for the polynomial transfer
function

If the source is one-dimensional (there is only one controlling source), POLY(1) is required
unless the linear form is used. If the source is multidimensional (there is more than one
controlling source), the dimension needs to be included in the keyword, for instance
POLY(2).
Caution must be exercised with the POLY form. For instance,

EWRONG 1 O POLY(1) (1,0) .5 1.0

tries to set node 1 to .5 volts greater than node 1. In this case, any analyses which you specify
will fail to calculate a result. In particular, PSpice A/D cannot calculate the bias point for a
circuit containing EWRONG. This also applies to the VALUE form of EWRONG:

(EWRONG 1 O VALUE = {0.5 * V(1)}).

Basic controlled source properties

Part name Property Description

E GAIN gain

F gain

G transconductance

H transresistance
EPOLY, FPOLY, COEFF polynomial coefficient

GPOLY, HPOLY

PSpice A/D has a built-in capability allowing controlled sources to be defined with a
polynomial transfer function of any degree and any dimension. Polynomials have associated

138

Analog devices

E/G

coefficients for each term. Consider a voltage-controlled source with voltag¥s,V.. V,,.
The coefficients are associated with the polynomial according to this convention:

Vout = Py +
Pl'vl + Pz'Vz + - PH'Vn +
Pra1 ViVy + Prap Vp Vo + oo Py VgV
Pone1 Vo Vo + Popsp- Vo V3 + o0 Popppap VooV +

Parscacn-2yon Vo'V
2 2
Paiscotm-2)y+ent1 V1 V1 + Priscacn-2y h+ons2 V1o Vo + oo

The above is written for a voltage-controlled voltage source, but the form is similar for the
other sources.

The POLY device types shown Basic controlled source propertiesare defined with a
dimension of one, meaning there is only one controlling source. However, similar devices can
be defined of any degree and dimension by creating parts with appropriate coefficient and
TEMPLATE properties and the appropriate number of input pins.

The current-controlled device models (F, FPOLY, H, and HPOLY) contain a current-sensing
voltage source. When netlisted, they generate two device declarations to the circuit file set:
one for the controlled source and one for the independent current-sensing voltage source.

When defining a current-controlled source part of higher dimension, the TEMPLATE
property must account for the same number of current-sensing voltage sources (equal to the
dimension value). For example, a two dimensional current-controlled voltage source is
described by the following polynomial equation:

Vout = CO + Clll + Czlz + C].].Ilz + Clzlllz + C22122
To create the two dimensional HPOLY?2 part, these properties must be defined:

COEFFO 1
COEFF1I =1
COEFF2 1
COEFF11 =
COEFF12 =
COEFF22
COEFFS = @COEFFO @COEFF1 @COEFF2 @COEFF11 @COEFF12 @COEFF22
TEMPLATE = H"@REFDES %5 %6 POLY(2) VH1"@REFDES VHZ2"@REFDES
\n+ @COEFFS \nVHI"@REFDES %1 %2 0V \nVH2"@REFDES %3 %4 0V

The TEMPLATE definition is actually contained on a single line. The VH1 and VH2
fragments after the \n characters represent the device declarations for the two current-sensing
voltage sources required by this part. Also, the part graphics must have the appropriate
number of pins. When placing an instance of HPOLY2 in your schematic, the GOEFF
properties must be appropriately set.

[N

Implementation examples

Following are some examples of traditional SPICE POLY constructs and equivalent ABM
parts which could be used instead.

139

Analog devices

E/G

Example 1: four-input voltage adder

This is an example of a device which takes four input voltages and sums them to provide a
single output voltage.

The representative polynomial expression would be as follows:

Vour = 0.0 + (1.0)Vy + (1.0)V, + (1.0)V3 + (1.0)Vy

The corresponding SPICE POLY form would be as follows:

ESUM 100 101 POLY(4) (1,0) (2,0) (3,0) (4,0) 0.0 1.0 1.0
+ 1.0 1.0

This could be represented with a single ABM expression device configured with the following
expression properties:

EXP1 = V(1,0) +
EXpP2 = v(2,0) +
EXP3 = V(3,0) +
EXP4 = V(4,0)

Following template substitution for the ABM device, the output becomes:
V(OUT) = { V(1,0) + V(2,0) + V(3,0) + V(4,0) }

Example 2: two-input voltage multiplier

This is an example of a device which takes two input voltages and multiplies them together
resulting in a single output voltage.

The representative polynomial expression would be as follows:

Vour = 0.0 + (0.0)V; + (0.0)V, + (0.0)V{2 + (1.0)V1V,

The corresponding SPICE POLY form would be as follows:

EMULT 100 101 POLY(2) (1,0) (2,0) 0.0 0.0 0.0 0.0 1.0

This could be represented with a single MULT device. For additional examples of a voltage
multiplier device, refer to the Analog Behavioral Modeling chapter of your PSpice user’'s
guide.

Example 3: voltage squarer

This is an example of a device that outputs the square of the input value.

For the one-dimensional polynomial, the representative polynomial expression reduces to:
Vout = Py + Py-V + P,oVZ + .. P V"

The corresponding SPICE POLY form would be as follows:

ESQUARE 100 101 POLY(1) (1,0) 0.0 0.0 1.0

This could be represented by a single instance of the MULT part, with both inputs from the
same net. This results in the following:

Vout = (Vin)z

Section

140

Analog devices F/H

Current-controlled current source

Current-controlled voltage source

General form F<name> <(+) node> <(-) node>
+ <controlling V device name> <gain>

F<name> <(+) node> <(-) node> POLY(<value>)
+ <controlling V device name>*
+ < <{polynomial coefficient value> >*

Examples FSENSE 1 2 VSENSE 10.0
FAMP 13 0 POLY(1) VIN O 500
FNONLIN 100 101 POLY(2) VCNTRL1 VCINTRLZ2 0.0 13.6 0.2 0.005

Description The Current-Controlled Current Source (F) and the Current-Controlled Voltage Source (H)
devices have the same syntax. For a Current-Controlled Voltage Source just substitute an H
for the F. The H device generates a voltage, whereas the F device generates a current.

Arguments and options

(+) and (-)
Output nodes. A positive current flows from the (+) node through the source to the (-)
node. The current through the controlling voltage source determines the output current.
The controlling source must be an independent voltage source (V device), although it
need not have a zero DC value.

POLY (<value>)
Specifies the number of dimensions of the polynomial. The number of controlling voltage
sources must be equal to the number of dimensions.

Comments The first General Form and the first two examples apply to the linear case. The second form
and the last example are for the nonlinear case.

For the linear case, there must be one controlling voltage source and its name is followed by
the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user’s guide.

®

In a current-controlled current source device statement, expressions cannot
be used for linear and polynomial coefficient values.

Basic SPICE polynomial expressions (POLY)

For more information on the POLY form, seasic SPICE polynomial expressions

(POLY).

<=Chapter

141

Analog devices AY,

Independent current source & stimulus

Independent voltage source & stimulus

General form I<name> <(+) node> <(-) node>
+ [[DC] <value> 1]
+ [AC <magnitude value> [phase value]]
+ [STIMULUS=<stimulus name>]
+ [transient specification]

Examples IBIAS 13 0 2.3mA
IAC 2 3 AC .001
IACPHS 2 3 AC .001 90
IPULSE 1 0 PULSE(-1mA ImA 2ns 2ns 2ns 50ns 100ns)
I3 26 77 DC .002 AC 1 SIN(.002 .002 1.5MEG)

Description This element is a current source. Positive current flows from the (+) node through the source
to the (-) node: in the first example, IBIAS drives node 13 to have a negative voltage. The
default value is zero for the DC, AC, and transient values. None, any, or all of the DC, AC,
and transient values can be specified. The AC phase value is in degrees. The pulse and
exponential examples are explained later in this section.

/lSv ‘lSv
P P
™3 |
=/ K —/

\W/OV h Ov

IBias VBias

The independent current source & stimulus (I) and the independent voltage
source & stimulus (V) devices have the same syntax. For an independent
voltage source & stimulus just substitute a V for the I. The V device functions
identically and has the same syntax as the | device, except that it generates
voltage instead of current.

Thevariables TSTEP and TSTOP, which are used in defaulting some waveform parameters,
are set by theTRAN (transient analysis)command. TSTEP is <print step value> and

TSTOP is <final time value>. The .TRAN command can be anywhere in the circuit file; it
need not come after the voltage source.

¢=Chapter

142

Analog devices AY,

Arguments and options

<stimulus name>

References &STIMULUS (stimulus) definition.

[transient specification]

Use this value... To produce this result...

EXP (<parameters>) an exponential waveform

PULSE (<parameters>) a pulse waveform

PWL (<parameters>) a piecewise linear waveform
SFFM (<parameters>) a frequency-modulated waveform
SIN (<parameters>) a sinusoidal waveform

143

Analog devices AY,

Independent current source & stimulus (EXP)

General form EXP (<i1> <i2> <tdl> <tcl> <td2> <tc2>)
Examples IRAMP 10 5 EXP(1 5 1 .2 2 .5)

Waveform parameters

Parameter Description Units Default
<il> Initial current amp none
<i2> Peak current amp none
<td1> Rise (fall) delay sec 0
<tcl> Rise (fall) time constant sec TSTEP
<td2> Fall (rise) delay sec <td1¥$TEP
<tc2> Fall (rise) time constant sec TSTEP
Description The EXP form causes the current to be <i1> for the first <td1> seconds. Then, the current

decays exponentially from <il> to <i2> using a time constant of <tc1>. The decay lasts
td2-td1 seconds. Then, the current decays from <i2> back to <il> using a time constant of
<tc2>.Independent current source and stimulus exponential waveform formulas

describe the EXP waveform.

L 1 i ik JE 4, by [N]

Independent current source and stimulus
exponential waveform formulas

Time period Value

0 to <td1> i1

<td1> to <td2> i1 + (i2-i1)- (e (TIME-td1)/tcl)

<td2> to TSTOP i1+ (i2-11). ((&TME-dD)/tely_q_o-(TIME-td2)/tc2)y

144

Analog devices AY,

Independent current source & stimulus (PULSE)

General form PULSE (<il> <i2> <td> <tr> <tf> <pw> <per>)

Example ISW 10 5 PULSE(1A 5A 1sec .lsec .4sec .bsec 2sec)

Waveform parameters

Parameters Description Units Default

<il> Initial current amp none

<i2> Pulsed current amp none
<td> Delay sec 0

<tf> Fall time sec TSTEP

<tr> Rise time sec TSTEP

<pw> Pulse width sec TSTOP

<per> Period sec TSTOP

Description The PULSE form causes the current to start at <i1>, and stay there for <td> seconds. Then, the

current goes linearly from <il> to <i2> during the next <tr> seconds, and then the current
stays at <i2> for <pw> seconds. Then, it goes linearly from <i2> back to <i1> during the next
<tf> seconds. It stays at <i1> for per-(tr+pw+tf) seconds, and then the cycle is repeated except

for the initial delay of <td> secondsi.dependent current source and stimulus pulse
waveform formulas describe the PULSE waveform.

[
AW
2o
i - e . : = H
e 8.0 E . F.0n LR] 00w ke n #.0n
o §_FAILAE
Fimn
I_MILSE
Trana Imud. Eprsa Togpns PULEE
[| Er |
I2: % L 5

™ i 1 FER =

145

Analog devices AY,

Independent current source and stimulus
pulse waveform formulas

Time Value
0 il
td il
td+tr i2
td+tr+pw i2
td+tr+pw+tf i1
td+per il
td+per+tr i2

146

Analog devices AY,

Independent current source & stimulus (PWL)

General form PWL
+ [TIME_SCALE_FACTOR=<value>]

+ [VALUE_SCALE_FACTOR=<value>]
+ (corner_points)*

wherecorner_points are:

(<tn>, <in>) to specify a point
FILE <filename> to read point values from a file
REPEAT FOR <n> (corner_points)*
ENDREPEAT to repeat <n> times
REPEAT FOREVER (corner_points)*
ENDREPEAT to repeat forever
Examples vl 12 PWL (0,1) (1.2,5) (1.4,2) (2,4) (3,1)
v2 3 4 PWL REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
v3 5,6 PWL REPEAT FOR 5 FILE DATAL.TAB
+ ENDREPEAT
v4 7 8 PWL TIME_SCALE_FACTOR=0.1
+ REPEAT FOREVER
+ REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
+ REPEAT FOR 5 FILE DATAL.TAB
+ ENDREPEAT
+ ENDREPEAT

n volt square wave (where nis 1, 2, 3, 4, then 5); 75% duty cycle; 10 cycles; 1 microseconds
per cycle:
.PARAM N=1

.STEP PARAM N 1,5,1
vl 1 0 PWL

+ TIME_SCALE_FACTOR=1e-6 ;all time units are scaled to
+ microseconds

+ REPEAT FOR 10

+ (.25, 0)(C.26, {N})(.99, {(N})(1, 0)

+ ENDREPEAT

5 volt square wave; 75% duty cycle; 10 cycles; 10 microseconds per cycle; followed by 50%
duty cycle n volt square wave (where nis 1, 2, 3, 4, then 5) lasting until the end of simulation:

.PARAM N=.2

.STEP PARAM N .2, 1.0, .2

Vi 1 0 PWL

TIME_SCALE_FACTOR=1e-5 ; all time units are
scaled to 10 us

VALUE_SCALE_FACTOR=5

REPEAT FOR 10

(.25, 0)(.26, 1)(.99, 1)(1, O)

ENDREPEAT

+ + 4+ + + o+

REPEAT FOREVER

(+.50, 0)

(+.01, {N}) ; iteration time .51
(+.48, {N}) ; iteration time .99
(1, 0)

ENDREPEAT

+ + + + + +

147

Analog devices AY,

Assuming that a PWL specification has been given for a device to generate two triangular
waveforms:

V3 10 PWL (Ims, 1)(2ms, 0)(3ms, 1)(4ms, 0)
Or, to replace the above with
V3 1 0 PWL FILE TRIANGLE.IN

where the filetriangle.in would need to contain:
(Ims, 1)(2ms, 0)(3ms, 1)(4ms, 0)

Waveform parameters

Parameter Description Units Default
<tn> time at corner seconds none
<vn> voltage at corner volts none
<n> number of repetitions positive integer, 0, or -1 none

* <tn> and <n> cannot be expressions; <vn> may be an expression.

Description The PWL form describes a piecewise linear waveform. Each pair of time-current values
specifies a corner of the waveform. The current at times between corners is the linear
interpolation of the currents at the corners.

L Y

0s 1.0s Z.0s 3.0s 4.0s 5.0s
o i_PUWL
Time
i_PUL
Tranzient Spec Type: PUWL Corners: .000, -000)

000,
.200,
.400,
000,
.00,

-000)
-000)
.000)
.0O0)
-000)

O WN
-
WN R RO
RANOES

Arguments and options

<time_scale_factor> and/or <value_scale_factor>
Can be included immediately after the PWL keyword to show that the time and/or current
value pairs are to be multiplied by the appropriate scale factor. These scale factors can be
expressions, in which case they are evaluated once per outer simulation loop, and thus
should be composed of expressions not containing references to voltages or currents.

<tn> and <in>
The transient specification corner points for the PWL waveform, as shown in the first
example. The <in> can be an expression having the same restrictions as the scaling
keywords, but <tn> must be a literal.

148

Analog devices AY,

<file name>
The text file that supplies the time-current (<tn> <in>) pairs. The contents of this file are
read by the same parser that reads the circuit file, so that engineering units (e.g., 10us) are
correctly interpreted. Note that the continuation + signs in the first column are unnecessary
and therefore discouraged.

A typical file can be created by editing an existing PWL specification, replacing all + signs
with blanks (to avoid unintentional +time). Only numbers (with units attached) can appear
in the file; expressions for <tn> and <n> values are invalid. All absolute time points in
<file name> are with respect to the last (<tn> <in>) entered. All relative time points are
with respect to the last time point.

REPEAT ... ENDREPEAT
These loops permit repetitions.

They can appear anywhere a (<tn> <in>) pair can appear. Absolute times within REPEAT
loops are with respect to the start of the current iteration. The REPEAT ... ENDREPEAT
specifications can be nested to any depth. Make sure that the current value associated with
the beginning and ending time points (within the same REPEAT loop or between adjacent
REPEAT loops), are the same when 0 is specified as the first point in a REPEAT loop.

<n>
A REPEAT FOR -1 ... ENDREPEAT is treated as if it had be@RPEAT FOREVER ...

ENDREPEAT. A REPEAT FOR O ... ENDREPEAT is ignored (other than syntax checking of
the enclosed corner points).

149

Analog devices AY,

Independent current source & stimulus (SFFM)

General form SFFM (<ioff> <iampl> <fc> <mod> <fm>)

Example IMOD 10 5 SFFM(2 1 8Hz 4 1Hz)

Waveform parameters

Parameters Description Units Default
<ioff> offset current amp none
<iampl> peak amplitude of current amp none
<fc> carrier frequency hertz 1/TSTOP
<mod> modulation index 0
<fm> modulation frequency hertz T8TO0P
Description The SFFM (Single-Frequency FM) form causes the current, as illustrated below, to follow the
formula:

foff + fampl-sin(2p-fc-TIME + mod-sin(2p-fm-TIME))

2.00a AN Ay L AN ARSI AR RN
I

o i_SFFM

i_SFFM
Transient Spec Type: SFFM
IOFF : 2 FM 1
IAMPL: 1
FC H
MOD : 4

150

Analog devices AY,

Independent current source & stimulus (SIN)

General form SIN (<ioff> <iampl> <freg> <td> <df> <phase>)
Examples ISIG 10 5 SIN(Z2 2 5Hz 1sec 1 30)

Waveform parameters

Parameters Description Units Default
<ioff> offset current amp none
<iampl> peak amplitude of current amp none
<freq> frequency hertz 1sTOP
<td> delay sec 0
<df> damping factor sec 0
<phase> phase degree 0
Description The sinusoidal (SIN) waveform causes the current to start at <ioff> and stay there for <td>
seconds.

Then, the current becomes an exponentially damped sine lwdeeendent current
source and stimulus sinusoidal waveform formuladescribe the SIN waveform.

i_SIN

Tranzient Spec Type: SIN
IOFF : 2 DF 1
IAMPL: 2 PHASE 30
FREQ : 5
D HE |

The SIN waveform is for transient analysis only. It does not have any effect on AC analysis.
To give a value to a current during AC analysis, use an AC specification, such as:

IAC 3 0 AC 1mA

where IAC has an amplitude of one milliampere during AC analysis, and can be zero during
transient analysis. For transient analysis use, for example:

ITRAN 3 0 SINCO 1ImA 1kHz)

where ITRAN has an amplitude of one milliampere during transient analysis and is zero
during AC analysis. Refer to your PSpice user’s guide.

151

Analog devices AY,

Independent current source and stimulus
sinusoidal waveform formulas

Time period Value
to <td> ioff+iamplsin(2rt- phase/360°)
<td> toTsTop ioff+iamplsin(2re (freq- (TIME-td)+phase/360°y(TME-td)-df

Section

152

Analog devices J

Junction FET

General form J<name> <drain node> <gate node> <source node> <model name> +[area valuel
Examples JIN 100 1 0 JFAST
J13 22 14 23 JNOM 2.0
Model form .MODEL <model name> NJF [model parameters]
.MODEL <model name> PJF [model parameters]
Description The JFET is modeled as an intrinsic FET using an ohmic resisritzeda) in series with

the drain, and using another ohmic resistarsgafea) in series with the source. Positive
current is current flowing into a terminal.

. O
Drain

Cod RD

Cgs
RS

Source(

Arguments and options

[areavalue]
The relative device area. It has a default value of 1.0.

¢=Chapter

153

Analog devices J

Capture parts

The following table lists the set of JFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Part name Model type Property Property description

JBREAKN NJF AREA area scaling factor
MODEL NJF model name

JBREAKP PJF AREA area scaling factor
MODEL PJF model name

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information,deeel parameters

154

Analog devices J
Model parameters
gﬂaﬁgﬁieters * Description Units Default
AF flicker noise exponent 1
ALPHA ionization coefficient volt 0
BETA transconductance coefficient amp/yolt 1E-4
BETATCE BETA exponential temperature coefficient %/°C 0
CGD zero-bias gate-draip-n capacitance farad
CGs zero-bias gate-sourgen capacitance farad
FC forward-bias depletion capacitance coefficient 0.5
1S gatep-n saturation current amp 1E-14
ISR gatep-n recombination current parameter amp 0
KF flicker noise coefficient 0
LAMBDA channel-length modulation volt 0
M gatep-n grading coefficient 0.5
N gatep-n emission coefficient
NR emission coefficient for isr
PB gatep-n potential volt 1.0
RD drain ohmic resistance ohm
RS source ohmic resistance ohm 0
T_ABS absolute temperature °C
T_MEASURED measured temperature °C
T_REL_GLOBAL relative to current temperature °C
T_REL_LOCAL relative to AKO model temperature °C
VK ionization knee voltage volt 0
VTO threshold voltage volt -2.0
VTOTC VTO temperature coefficient volt/°C 0
XTI IS temperature coefficient 3

* For information onT_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL, see. MODEL (model definition).

®

VTO < 0 means the device is a depletion-mode JFET (for both N-channel and
P-channel) and vTO > 0 means the device is an enhancement-mode JFET. This
conforms to U.C. Berkeley SPICE.

155

Analog devices J

JFET equations

The equations in this section describe an N-channel JFET. For P-channel devices, reverse the
sign of all voltages and currents.

The following variables are used:

Vgs = intrinsic gate-intrinsic source voltage
Vgd = intrinsic gate-intrinsic drain voltage
Vds = intrinsic drain-intrinsic source voltage
Cgs = gate-source capacitance

Cgd = gate-drain capacitance

Vit = k-T/g (thermal voltage)

k = Boltzmann'’s constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

Other variables are listed Model parameters

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

156

Analog devices

JFET equations for DC current

all levels
Ig = gate current area(lgs + lgd)

Igs = gate-source leakage current = In + Ir-Kg

In = normal current 3S-(ges™v-1)

Ir = recombination current ISR (gVssNrR V-1

Kg = generation factor = ((1-Vg&#)2+0.005)2
Igd = gate-drain leakage current = In + Ir-Kg + li

In = normal current 1S (g/e®™vo-1)

Ir = recombination current ISR (g/e#/rRV-1)

Kg = generation factor = ((1-Vgel)2+0.005)2

li = impact ionization current

for forward saturation region:
0 < VgsvTO < Vds

then:
li = Idrain-ALPHA -vdif gV«

where
vdif = Vds - (VgsvTO)

else:
li=0

Id = drain current ;area (Idrain-lgd)

Is = source current area (-ldrain-1gs)

157

Analog devices J

JFET equations for DC current (continued)

all levels: Idrain

Normal mode: Vds >_ 0
Case 1
for cutoff region:vVgsvT0 <0
then: Idrain =0
Case 2
for linearregion Vds <VgsVTO
then: Idrain=BETA - (1+LAMBDA -Vds)-Vds-(2-(Vgs-VTO)-Vds)
Case 3
for saturatiorregion: 0<Vgs-vVTO <Vds
then: Idrain= BETA - (1+LAMBDA -Vds)-(Vgs-VTO)?
Inverted mode: Vds <0

Switch the source and drain in the normal mode equations above.

JFET equations for capacitance

All capacitances are between terminals of the intrinsic JFET (that is, to the inside of the ohmic
drain and source resistances).

gate-source depletion capacitance

For: Vgs< FC-PB
Cgs =areaCGS-(1-Vgs/PB)™

For: Vgs> FC-PB
Cgs= areaCGS-(1-FC)-@m.(1-FC-(1+M)+M-Vgs/PB)

gate-drain depletion capacitance

For: Vgd< FC-PB
Cgd=areaCGD-(1-Vgd/PB)™

For: Vgd> FC-PB
Cgd=areacaGD-(1-FC)ww:(1-FC-(1+M)+M-Vgd/PB)

158

Analog devices J

JFET equations for temperature effects

The drain and source ohmic (parasitic) resistances have no temperature dependence

VTO(T) = VTO+VTOTC-(T-Tnom)
BETA(T) = BETA-1.0BETATCE (FTrom)
1S(T) = |S-Mnom 1) EGINVY (T/TOM)XTIN
whereEG=1.11
ISR(T) = ISR-gMmomeciNRv) (T/TNOM)<TINR
where EG =1.11
PB(T) = PB-T/Tnom - 3-Viin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)
whereEg(T) = silicon bandgap energy = 1.16- .00076£(TF+1108)
CGS(T) = CGS-(1+M-(.0004-(T-Tnom)+(4PB(T)/PB)))
CGD(T) = CGD-(1+M-(.0004-(T-Tnom)+(#PB(T)/PB)))

JFET equations for noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

parasitic resistance thermal noise
Is2 =4k-T/(RS/ared)
Id2 =4k T/(RD/area)
intrinsic JFET shot and flicker noise
Idraire= 4-k-T-gm-2/3 + KF-ldrair//FREQUENCY
where gnm= didrain/dvgs (at the DC bias point)

Reference

For more information about the U.C. Berkeley SPICE models, including the JFET device,
refer to:

[1] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE
McGraw-Hill,
1988.

Section

159

Analog devices K

Inductor coupling (and magnetic core)

Transmission line coupling

General form K<name> L<inductor name> <L<inductor name>>* <coupling value>
K<name> <L<inductor name>>* <coupling value> <model name> [size value]

K<name>T<transmission Tine name>T<transmission line name>
+ Cm=<capacitive coupling> Lm=<inductive coupling>

Examples KTUNED L30UT L4IN .8
KTRNSFRM LPRIMARY LSECNDRY 1
KXFRM L1 L2 L3 L4 .98 KPOT_3C8
K2ZLINES T1 T2 Lm=lm Cm=.5p
Model form .MODEL <model name> CORE [model parameters]

Description

L3out] ® ® [Lain

KTuned

This device can be used to define coupling between inductors (transformers) or between
transmission lines. This device also refers to a nonlinear magnetic core (CORE) model to
include magnetic hysteresis effects in the behavior of a single inductor (winding), or in
multiple coupled windings.

<=Chapter

160

Analog devices K

Inductor coupling

Arguments and options

K<name> L<inductor name>
Couples two or more inductors.

Place a period (.) on the first node of each inductor. For example:

I1' 10 AC 1mA
L1'1 0 10uH
Lz 2 0 10uH
Rz 2 0.1
K1z L1 L2 1

The current through L2 is in the opposite direction as the current through L1. The polarity
is determined by the order of the nodes in the L devices and not by the order of inductors
in the K statement.

<coupling value>
This is the coefficient of mutual coupling, which must be between -1.0 and 1.0.

This coefficient is defined by the equation
{coupling value> = Mij/(Li'Lj)Uz

where
Li,Lj= a coupled-pair of inductors
Mi = the mutual inductance betweeinaind L

For transformers of normal geometry, use 1.0 as the value. Values less than 1.0 occur in
air core transformers when the coils do not completely overlap.

<model hame>
If <model name> is present, four things change:

» The mutual coupling inductor becomes a nonlinear, magnetic core device. The
magnetic core’s B-H characteristics are analyzed using the Jiles-Atherton model (see
Inductor coupling: Jiles-Atherton model).

» Theinductors become windings, so the number specifying inductance now specifies the
number of turns.

» The list of coupled inductors could be just one inductor.
* A model statement is required to specify the model parameters.

[size value]
Has a default value of 1.0 and scales the magnetic cross-section. Itis intended to represent
the number of lamination layers, so only one model statement is needed for each
lamination type. For example:

L1 59 20 ; inductor having 20 turns
K1 L1 1 K528T500_3C8; Ferroxcube toroid core

L2z 3 8 15 ; primary winding having
; 15 turns
L3 4 6 45 ; secondary winding having
45 turns

K2 L2 L3 1 K528T500_3C8; another core (not the same as K1)

161

Analog devices K

Here is a Probe B-H display of 3C8 ferrite (Ferroxcube).

Comments The linear branch relation for transient analysis is

dl; dl;
V, = |_i._|+ Mij. 14 My — +---

For U.C. Berkeley SPICEZ2: if there are several coils on a transformer, then there must be K
statements coupling all combinations of inductor pairs. For instance, a transformer using a
center-tapped primary and two secondaries could be written:

* PRIMARY
L1 1 2 10uH

L2 2 3 10uH

* SECONDARY

L3 11 12 10uH

L4 13 14 10uH

* MAGNETIC COUPLING
K1z L1 L2
K13 L1 L3
K14 L1 L4
K23 L2 L3
K24 L2 L4
K34 L3 L4

This older technique is still supported, but not required, for simulation. The same transformer
can also be written:

* PRIMARY

L1 1 2 10uH

L2 2 3 10uH

* SECONDARY

L3 11 12 10uH

L4 13 14 10uH

* MAGNETIC COUPLING
KALL L1 L2 L3 L4 1

L e

Do not mix the two techniques.

162

Analog devices

The simulator uses the Jiles-Atherton model [sdector coupling: Jiles-Atherton model)

to analyze the B-H curve of the magnetic core and calculate values for inductance and flux
for each of the windings.

The state of the nonlinear core can be viewed in Probe by spedifyirgx) for the
magnetization ok (kxxx) for the magnetizing influence. These values are not available for
.PRINT (print) or.PLOT (plot) output.

Capture parts

See your PSpice user’s guide for information about using nonlinear magnetic cores with
transformers.

Part name xggel Property Property description
XFRM_LINEAR transformer L1 VALUE winding inductances in Henries
L2_VALUE
COUPLING coefficient of mutual coupling
(must lie between 0 and 1)
K_LINEAR transformer Ln inductor reference designator
XFRM_NONLINEAR transformer L1 _TURNS number of turns on each winding

L2_TURNS

COUPLING coefficient of mutual coupling
(must lie between 0 and 1)

MODEL nonlinear CORE model name

Breakout parts

For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model which is derived from the intrinsic PSpice A/D D model
(MODEL DBREAK D)

Using the KBREAK part

The inductor coupling part, KBREAK, can be used to couple up to six independent inductors
on a schematic. A MODEL property is provided for using nonlinear magnetic core (CORE)

163

Analog devices K

models, if desired. By default, KBREAK references the KBREAK model contained in
breakout.11b; this model, in turn, uses the default CORE model parameters.

Part
name

inductor coupling KBREAK BREAKOUT.OLB COUPLING coupling factor

Device type Part library Property Description

Li inductor reference
designator

The KBREAK part can be used to:

» Provide linear coupling between inductors.

» Reference a CORE model in a configured model library file.

» Define a user-defined CORE model with custom model parameter values.

The dot convention for the coupling is related to the direction in which the inductors are
connected. The dot is always next to the first pin to be netlisted. For example, when the
inductor part L is placed without rotation, the dotted pin is the left one. Rotate on the Edit
menu (Ctrl]+HR)) rotates the inductor +90making this pin the bottom pin.

Nonlinear coupling is not included in PSpice A/D Basics+.

For nonlinear coupling L1 must have a value; the rest may be left blank. The
model must reference a CORE model such as those contaii@d3NETIC.LIB or other
user-defined models. VALUE is set to the number of windings.

For linear coupling L1 and at least one other Li must have values; the rest may be
left blank. The model reference must be blank. VALUE must be in Henries.

164

Analog devices K

Inductor coupling model parameters

Model parameters ~ Description Units Default

A Thermal energy parameter amp/meter 1E+3
AREA Mean magnetic cross-section Tm 0.1

c Domain flexing parameter 0.2
GAP Effective air-gap length cm 0

K Domain anisotropy parameter amp/meter 500
LEVEL Model index 2

MS Magnetization saturation amp/meter 1E+6
PACK Pack™ (stacking) factor 1.0
PATH Mean magnetic path length cm 1.0

*See.MODEL (model definition).
**Flux is proportional to PACK.

Inductor coupling: Jiles-Atherton model

The Jiles-Atherton model is based on existing ideas of domain wall motion, including flexing
and translation. The model derives an anhysteric magnetization curve by using a mean field
technigue, in which any domain is coupled to the magnetic figland the bulk

magnetizationy). This anhysteric value is the magnetization that would be reached in the
absence of domain wall pinning. Hysteresis is modeled by the effects of pinning of domain
walls on material defect sites. This impedance to motion and flexing due to the differential
field exhibits all of the main features of real, nonlinear magnetic devices, such as the initial
magnetization curve (initial permeability), saturation of magnetization, coercivity,
remanence, and hysteresis loss.

A magnetic material that is comprised of loosely coupled domains has an equilibrium B-H
curve, called the anhysteric. This curve is the locus of B-H values generated by superimposing
a DC magnetic bias and a large AC signal that decays to zero. It is the curve representing
minimum energy for the domains and is modeled, in theory, by

Map= MS-H/([H| + A)
where

M,,- the anhysteric magnetization

MS = the saturation magnetization

H = the magnetizing influence (after GAP correction)
A = a thermal energy parameter

For a given magnetizing influence) (the anhysteric magnetization is the global flux level
the material would attain if the domain walls could move freely. The walls, however, are
stopped or pinned on dislocations in the material. The wall remains pinned until enough
magnetic potential is available to break free, and travel to the next pinning site. The theory

165

Analog devices

supposes a mean energy required, per volume, to move domain walls. This is analogous to
mechanical drag. A simplified equation of this is

change-in-magnetization = potential/drag

The irreversible domain wall motion can, therefore, be expressed as
i/ dH = (Mg, - M)/K

wherek is the pinning energy per volume (drag).

Reversible wall motion comes from flexing in the domain walls, especially when it is pinned
at a dislocation due to the magnetic potential (that is, the magnetization is not the anhysteric
value).

The theory supposes spherical flexure to calculate energy values and arrives at the
(simplified) equation:

Moy /dH = C-d(M,,-M)/dH
wherec is the domain flexing parameter.

The equation for the total magnetization is the sum of these two state equations:
aM/dH = (1/(1 + C))-(My, - M)/K) + (C/(1 + C))-aM,,/dH

Including air-gap effects in the inductor coupling model

If the gap thickness is small compared with the other dimensions of the core, you can assume
that all of the magnetic flux lines go through the gap directly and that there is little fringing
flux (having a modest amount of fringing flux only increases the effective air-gap length).
Checking the field values around the entire magnetic path gives the equation:

Hcore-Lcore + Hgap-Lgap = n-1

where n-l is the sum of the amp-turns of the windings on the core. Also, the magnetization in
the air-gap is negligible, so that Bgap = Hgap and Bgap = Bcore. These combine in the
previous equation to yield:

Hcore-Lcore + Bcore-Lgap = n-1I

This is a difficult equation to solve, especially for the Jiles-Atherton model, which is a state
equation model rather than an explicit function (which one would expect, because the B-H
curve depends on the history of the material). However, there is a graphical technique that
solves for Bcore and Hcore, givenl, which is to:

1 Take the non-gapped B-H curve.

2 Extend a line from the current valuerofi having a slope ofLcore/Lgap (this would
be vertical ifLgap = 0).

3 Find the intersection of the line using the B-H curve.

The intersection is the value for Bcore and Hcore fontheof the gapped core. Thel

value is the apparent or external value of Hcore, but the real value of Hcore is less. The result
is a smaller value for Bcore and for the sheared-over B-H curves of a gapped core. The
simulator implements the numerical equivalent of this graphical technique.

The resulting B-H values are recorded in the Probe data filg asandH, ,p;rent-

166

Analog devices

Getting core inductor coupling model values

Characterizing core materials can be performed using Parts, and verified by using PSpice and
Probe. The model uses MKS (metric) units, however the results for Probe are converted to
Gauss and Oersted, which can be displayed asitgx) andH (Kxxx). The traditional B-H

curve is made by a transient run, ramping current through a test inductor, then displaying
B(Kxxx) and setting the X axis t0(Kxxx).

For more information on the Jiles-Atherton model, see Reference RfHfrences

Transmission line coupling

If a K device is used to couple two transmission lines, then two coupling parameters are
required.

Device Description Units Default
Cm capacitive coupling farad/length none
Lm inductive coupling henries/length* none

* Length units must be consistent using the LEN parameter for the transmission lines being coupled.

These parameters can be thought of as the off-diagonal terms of a capacitive coupling matrix,
[c], and an inductive coupling matrix,][respectively. {] and [L] are both symmetric
matrices, and for two coupled lines, the following relationships hold:

[C] - |1 Cr2 [L] = (Fula
Ca1 C22 Lo Lo
Cm=C12=C2Ilm =L12=121

C,, represents the charge induced on the first conductor when the second conductor has a
potential of one volt. In general, for a system of N coupled lingss @e charge on thid'j
conductor when théhjconductor is set to one volt, and all other conductors are grounded. The
diagonal of the matrix is determined with the understanding that the self-capacitance is really
the capacitance between the conductor and ground, so that:

Ci = Cig*) |G
where Gy is equal to the capacitance per unit length fortthteainsmission line, and is

provided along with the T device that describesHenk. The simulator calculateg; @om
this.

The values of in the matrix are negative values. Note that the simulator assigrjse|the
appropriate ¢, so that the sign used when specifyimgis ignored.

L, is defined in terms of the flux between tibcbnductor and the ground plane, when the
2"%conductor carries a current of one ampere. If there are more than two conductors, all other
conductors are assumed to be open.

L1 is equal to the inductance per unit length for tHéirfe and is obtained directly from the
appropriate T device.

167

Analog devices

Example

Lossy lines

The following circuit fragment shows an example using two coupled lines:

T1 102 0 R=.31 L=.38u G=6.3u C=70p LEN=1
T2 304 0 R=.29 L=.33u G=6.0u C=65p LEN=1
K12 T1 T2 Lm=.04u Cm=6p

This fragment leads to the following [C] and [L]:

— |76p—-6 — |0.38u 0.04

= oot 1= oo ooat

The model used to simulate this system is based on the approach described by Tripathi and
Rettig in Reference [1] oReferencesand is extended for lossy lines by Roychowdhury and

Pederson in Reference [2]. The approach involves computing the system propagation modes
by extracting the eigenvalues and eigenvectors of the matrix product [L][C].

This model is not general for lossy lines.

For the lossy line case, the matrix product to be decoupled is actually:
[R+sL]I[G+sC]
where:

s = the Laplace variable
R = the resistance per unit length matrix
G = the conductance per unit length matrix.

The modes obtained from [L][C] represent a high frequency asymptote for this system.
Simulation results should be good approximations for low-loss lines. However, as shown in
reference [2], the approximation becomes exact for homogeneous, equally-spaced lossy lines,
provided that coupling beyond immediately adjacent lines is negligible (i.e., the coupling
matrices are tridiagonal and Toeplitz).

Coupled ideal lines can be modeled by setting R and G to zero. The Z0/TD parameter
set is not supported for coupled lines.

168

Analog devices K

References

For a further description of the Jiles-Atherton model, refer to:

[1] D.C. Jiles, and D.L. Atherton, “Theory of ferromagnetic hysteresis,” Journal of
Magnetism and Magnetic Material, 48 (1986).

For more information on transmission line coupling, refer to:

[1] Tripathi and Rettig, “A SPICE Model for Multiple Coupled Microstrips and Other
Transmission Lines,” IEEE MTT-S Internal Microwave Symposium Djde335.

[2] Roychowdhury and Pederson, “Efficient Transient Simulation of Lossy Interconnect,”
Design Automation Conference,
1991.

Section

169

Analog devices

Inductor

General form L<name> <(+) node> <(-) node> [model name] <value>
+ [IC=<initial value>]

Examples LLOAD 15 0 20mH
L2 12 .2E-6

LCHOKE 3 42 LMOD .03
LSENSE 5 12 2UH IC=2mA

Model form .MODEL <model name> IND [model parameters]

15v v
LLoad

Arguments and options

(+) and (-) nodes

Define the polarity when the inductor has a positive voltage across it.

The first node listed (or pin one in Capture), is defined as positive. The voltage across the
component is therefore defined as the first node voltage less the second node voltage.

Positive current flows from the (+) node through the inductor to the (-) node. Current flow
from the first node through the component to the second node is considered positive.

[model name]

If [model name] is left out, then the effective value is <value>.

If [model name] is specified, then the effective value is given by the model parameters;
seelnductance value formula

If the inductor is associated with a Core model, then the effective value is the number of
turns on the core. Otherwise, the effective value is the inductance. See the Model Form
statement for the K device inductor coupling (and magnetic core)for more

information on the Core model.

<initial value>

<=Chapter

Is the initial current through the inductor during the bias point calculation.

It can also be specified in a circuit file using a statement as follows:
.IC I(L<name>) <initial value>

For details on using the .IC statement in a circuit file, see

IC (initial bias point condition) and refer to your PSpice user’s guide for more
information.

170

Analog devices

Capture parts

For standard L parts, the effective value of the part is set directly by the VALUE property.

In general, inductors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. A transient analysis may fail for a circuit with negative components. Negative
inductors may create instabilities in time that the analysis cannot handle.

Part name xggel Property Property description
L inductor VALUE inductance

IC initial current through the inductor during
bias point calculation

XFRM_LINEAR transformer L1 _VALUE winding inductances in Henries
L2 _VALUE

COUPLING coefficient of mutual coupling (must be
between 0 and 1)

K_LINEAR transformer Ln inductor reference designator

171

Analog devices

Breakout parts

For non-stock passive and semiconductor devices, Capture provides a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters. Another approach is to use the model editor to derive an
instance model and customize this. For example, you could add device and/or lot tolerances
to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model
(MODEL DBREAK D).

For breakout part LBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

Device Part Part library file Property Description

type name
inductor LBREAK BREAKOUT.OLB VALUE inductance
IC initial current through the
inductor during bias point
calculation

MODEL IND model name

172

Analog devices L

Inductor model parameters

Model parameters * Description Units Default
L Inductance multiplier 1.0
L1 Linear current coefficient arip 0.0
L2 Quadratic current coefficient arap 0.0
TC1 Linear temperature coefficient aC 0.0
TC2 Quadratic temperature coefficient 2C 0.0
T_ABS Absolute temperature °C
T_MEASURED Measured temperature °C
T_REL_GLOBAL Relative to current temperature °C
T_REL_LOCAL Relative to AKO model temperature °C

* For information onT_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL , see MODEL (model definition).

Inductor equations

Inductance value formula

If [model name] is specified, then the effective value is given by:
<value>-L- (1+4IL1-I+IL2-1?) - (1+TC1- (T-Tnom)+TC2-(T-Tnom)?)

where <value> is normally positive (though it can be negative, but not zero). Tnom is the
nominal temperature (set using TNOM option).

Inductor equation for noise

The inductor does not have a noise model.

Section

173

Analog devices

MOSFET

General form M<name> <drain node> <gate node> <source node>

+ + + + 4+ +

+

<bulk/substrate node> <model name>
[L=<value>] [W=<value>]
[AD=<value>] [AS=<value>]
[PD=<value>] [PS=<value>]
[NRD=<value>] [NRS=<value>]
[NRG=<value>] [NRB=<value>]
[M=<value>] [N=<value>]

Examples M1 14 2 13 0 PNOM L=25u W=12u
M13 15 3 0 0 PSTRONG
M16 17 3 0 O PSTRONG M=2
M28 0 2 100 100 NWEAK L=33u W=12u
+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10

Model form .MODEL <model name> NMOS [model parameters]
.MODEL <model name> PMOS [model parameters]

Description The MOSFET is modeled as an intrinsic MOSFET using ohmic resistances in series with the
drain, source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel
with the drain-source channel.

Drain
RD

Cgb
ole

Cgd Chbd
are ¥

——K—
o R % ~ | RB
Gate <_>Idra|n W

——
Cgs Cbs
\/F

A

?es
Source

Arguments and options
Land W

¢Chapter

are the channel length and width, which are decreased to get the effective channel
length and width. They can be specified in the devid€)DEL (model definition), or
.OPTIONS (analysis options)statements. The value in the device statement supersedes
the value in the model statement, which supersedes the value in the .OPTIONS statement.
Defaults for L and W can be set in the .OPTIONS statement. If L or W defaults are not
set, their default value is 100 u.

[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo
analysis.

174

Analog devices

AD and AS
The drain and source diffusion areas. Defaults for AD and AS can be set in the .OPTIONS
statement. If AD or AS defaults are not set, their default value is 0.

PD and PS
The drain and source diffusion perimeters. Their default value is 0.

JS
Can specify the drain-bulk and source-bulk saturation currents. JS is multiplied by AD
and AS.

Can also specify the drain-bulk and source-bulk saturation currents. IS is an absolute
value.

CJ
Can specify the zero-bias depletion capacitances. CJ is multiplied by AD and AS.

CJSwW
Can also specify the zero-bias depletion capacitances. CIJSW is multiplied by PD and PS.

CBD and CBS
Can also specify the zero-bias depletion capacitances. CBD and CBS are absolute values.

NRD, NRS, NRG, and NRB
Multipliers (in units of squares) that can be multiplied by RSH to yield the parasitic
(ohmic) resistances of the drain (RD), source (RS), gate (RG), and substrate (RB),
respectively. NRD, NRS, NRG, and NRB default to 0.

Consider a square sheet of resistive material. Analysis shows that the resistance between
two parallel edges of such a sheet depends upon its composition and thickness, but is
independenbf its size as long as it sgjuare In other words, the resistance will be the

same whether the square’s edge is 2 mm, 2 cm, or 2 m. For this reason, the sheet resistance
of such a layer, abbreviat&EH, has units of ohms per square.

M (NP)
A parallel device multiplier (default = 1), which simulates the effect of multiple devices
in parallel. (NP is an alias for M.)

The effective width, overlap and junction capacitances, and junction currents of the
MOSFET are multiplied by M. The parasitic resistance values (e.g., RD and RS) are
divided by M. Note the third example: it shows a device twice the size of the second
example.

175

Analog devices M

N (NS)
A series device multiplier (default value= 1.0) for the Level 5 model only, which
simulates an approximation of the effect of multiple devices in series. NS is an aliased
name for N.

There are some things to keep in mind while using this parameter. The parameter N is used
to derive the effective length, Leff = N - (L+DL), of a transistor drawn as N elements of
width W and length L in series (in other words, the drain of element [K] is the source of
element [K+1], and the gates are tied together). The short-channel effects included in the
pinch-off voltage calculation, however, are evaluated using the effective length L+DL of
each element. Except for this, everything is calculated as if the transistor were laid out as
a single element of length L=Leff-DL=N - (L+DL)-DL.

In this compact formulation, the intermediate drain/source diffusions appearing along the
channel are ignored (that is, junction capacitance and diffusion resistances are assumed to
be zero). As a consequence, DC, AC and transient analyses can yield different results
compared with the standard device declaration, particularly at higher frequencies. A
closer match is obtained for long devices, or devices with low RS and RD and high
UCRIT. Be sure to evaluate the accuracy of this compact formulation and to check the
validity of the underlying approximations.

Comments The simulator provides six MOSFET device models, which differ in the formulation of the
I-V characteristic. TheEVEL parameter selects among different models as shown below. For
more information, seBeferences

LEVEL=1 Shichman-Hodges model (see reference [1])

LEVEL=2 geometry-based, analytic model (see reference [2])
LEVEL=3 semi-empirical, short-channel model (see reference [2])
LEVEL=4 BSIM model (see reference [3])

LEVEL=5 EKV model version 2.6 (see reference [10])

LEVEL=6 BSIM3 model version 2.0 (see reference [7])

LEVEL=7 BSIM3 model version 3.1 (see reference [8])

176

Analog devices

Capture parts

The following table lists the set of MOSFET breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Part name xggel Property Property description

MBREAKN NMOS L channel length

MBREAKN3 w channel width

MBREAKN4 AD drain diffusion area

MBREAKP PMOS AS source diffusion area

MBREAKP3 PD drain diffusion perimeter

MBREAKP4 PS source diffusion perimeter
NRD relative drain resistivity (in squares)
NRS relative source resistivity (in squares)
NRG relative gate resistivity (in squares)
NRB relative substrate resistivity (in squares)
M device multiplier

(simulating parallel devices)

MODEL NMOS or PMOS model name

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information,dE&FET model parameters

177

Analog devices M

MOSFET model parameters

For all model levels

The parameters common to all model levels are primarily parasitic element values such as
series resistance, overlap and junction capacitance, and so on.

Model levels 1, 2, and 3

The DC characteristics of the first three model levels are defined by the parametems,
LAMBDA, PHI, andGAMMA. These are computed by the simulator if process parameters
(e.g.,TOX, andNSUB) are given, but the user-specified values always ovexideis positive
(negative) for enhancement mode and negative (positive) for depletion mode of N-channel
(P-channel) devices.

®

The default value for TOX is 0.1 u for Levels 2 and 3, but is unspecified for Level 1,
which discontinues the use of process parameters.

For MOSFETSs the capacitance model has been changed to conserve charge, affecting only the
Level 1, 2, and 3 models.

Effective length and width for device parameters are calculated with the formula:
P =R+ R/L.+ RJW,
where:

L. = effective length =L - (LD - 2)
W, = effective width =W - (WD - 2)

See.MODEL (model definition) for more information.

Model level 4

®

Unlike the other models in PSpice, the BSIM model is designed for use with a process
characterization system that provides all parameters. Therefore, there are no
defaults specified for the parameters, and leaving one out can cause problems.

TheLEVEL=4 (BSIM1) model parameters are all values obtained from process
characterization, and can be generated automatically. Referenc&fpoéncesdescribes

a means of generating a process file, which must then be convertdd @il (model
definition) statements for inclusion in the Model Library or circuit file. (The simulator does
not read process files.)

The level 4 (BSIM) and level 6 (BSIM3 version 2) models have their own capacitance model,
which conserves charge and remains unchanged. References [6] and [7] describe the
equations for the capacitance due to channel charge.

In the followingMOSFET model parameterslist, parameters marked witl{ @ the Default
column also have corresponding parameters with a length and width dependency. For

178

Analog devices

M

example, VFB is a basic parameter using units of volts, and LVFB and WVFB also exist and
have units of volft. The formula

P=PR +PRJ/L.+ R,/W,
is used to evaluate the parameter for the actual device, where:

L. = effective length =L - DL
W, = effective width = W - DW

Model level 5 (EKV version 2.6)

The EKV model is a scaleable and compact model built on fundamental physical properties
of the device. Use this model to design low-voltage, low-current analog, and mixed
analog-digital circuits that use sub-micron technologies. The charge-based static, quasi-static
dynamic, and noise models are all derived from the normalized transconductance-to-current
ratio, which is accurately described for all levels of current, including the moderate inversion
region. A single I-V expression preserves the continuity of first- and higher-order derivatives
with respect to any terminal voltage in all regions of device operation.

Version 2.6 models the following:

» geometrical and process related aspects of the device (oxide thickness, junction depth,
effective channel length and width, and so on)

» effects of doping profile and substrate effects
« weak, moderate, and strong inversion behavior
» mobility effects due to vertical and lateral fields and carrier velocity saturation

» short-channel effects such as channel-length modulation, source and drain charge sharing,
and the reverse short channel effect

» thermal and flicker noise modeling
« short-distance geometry and bias-dependent device matching for Monte Carlo analysis.

For more detailed model information, see reference [1Bledérences

Additional notes

Note 1 ThebL andbw parameters usually have a negative value.

Note 2 0 (zero) and O (the letter O) are not interchangeable. For examplg,qjgeot
VvT0 (VTO is referenced to the bulk); use, notEO; useQo, notQO.

Note 3 Use theavto, AKP, andAGAMMA model parameters with a DEV tolerance to
perform Monte Carlo and Sensitivity/Worst-Case analyses. Their default values cannot be
changed.

The device-to-device matching of MOSFETSs depends on the gate area, W - LAdSIng
AKP, andAGAMMA with a DEV tolerance applies the matching scaling law for the model
equations and derives the device matching statistics (DEV tolerance) from a single
normalized parameter. (Without these parameters, you would need to use a dedicated
.MODEL card with a DEV tolerance forro, KP andGAMMA for each value of the gate area
used in your design.)

179

Analog devices

M

Do not apply the LOT specification, which is a measure of the ability of the process to control
the absolute value of a model parametefVitD, AKP, andAGAMMA , because this would be
redundant with the LOT specification faro, KP, andGAMMA.

Note 4 Use the model parametebIF with the device parallel multiplier, M, to set

default values forD, AS, PD, andPS. UseHDIF only for the MOSEKYV (Level 5) model.

WhenHDIF is specified, the following equations are used.

NRD = HDIF/W

NRS = HDIF/W

For M = 1, the following equations are used.

AD = (2 [HDIF) DV
AS = (2[HDIF) DW
PD = 2 [{(2[HDIF) + W)

PS = 2[{2[HDIF) +W

For M= 2 and even:

AD = HDIF DW
AS = (HDIF + (2 HDIF)/M) OV
PD = (2[HDIF) + W

PS = (2[HDIF) + W + 2 [{(2HDIF) + W)/M

For M= 2 and odd:

AD = (HDIF + (HDIF/M)) DW
AS = (HDIF + (HDIF/M)) W
PD = (2[HDIF) + W + ((2 HDIF) + W)/M

PS = (2[HDIF) + W + ((2 CHDIF) + W)/M

Note 5 If RGSH is specified, the default value for NRG is set to 0.5 - W/L.

Note 6 The model parameter®X, NSUB, VFB, UO, andvMAX accomodate scaling
behavior of the process and basic intrinsic model parameters, as well as statistical circuit
simulation. These parameters are only used¥, GAMMA, and/orPHI, VTO, KP, andUCRIT

are not specified, respectively. Furthermore, a simpler mobility reduction model due to
vertical field is accessible through the mobility reduction coefficieHiTA. THETA is only
used ife0 is not specified.

180

Analog devices M

Model level 6 (BSIM3 version 2.0)

®

The Level 6 Advanced parameters should not be changed unless the detail structure
of the device is known and has specific, meaningful values.

The BSIM3 model is a physical model using extensive built-in dependencies of important
dimensional and processing parameters. It includes the major effects that are important to
modeling deep-submicrometer MOSFETS, such as threshold voltage reduction, nonuniform
doping, mobility reduction due to the vertical field, bulk charge effect, carrier velocity
saturation, drain-induced barrier lowering (DIBL), channel length modulation (CLM),
hot-carrier-induced output resistance reduction, subthreshold conduction, source/drain
parasitic resistance, substrate current induced body effect (SCBE), and drain voltage
reduction in LDD structure. For additional, detailed model informationReéerences

Additional notes

Note 1 If any of the following BSIM3 version 2.0 model parameters are not explicitly
specified, they are calculated using the following equations.

VTHO = VFB +PHI +K ,/PHI

K1 = GAMMA2 -2 [K2./(PHI-VBM)

ko = (GAMMA1 —GAMMA2)(,/PHI-VBX —./PHI)
2,/PHI(/PHI-VBX - ,/PHI) + VBM

VBF = VTHO —PHI -K1./PHI

_ [INPEAK[J
PHI = 2V In ===

[2GeNPEAK
GAMMAL = —3E

COX

2ge.NSUB
GAMMA?2 = VA Ihbedid

COX
VBX

PHI —q INPEAK [XT2/(2g,)

ssiTOXX-

£OX

LITL

Note 2 Default values listed for the BSIM3 version 2.0 parameigrs)B, UC, UAL,
AB1, anduci are used for simplified mobility modeling.

Model level 7 (BSIM3 version 3.1)

The BSIM3 version 3.1 model was developed by the University of California, Berkeley, as a
deep submicron MOSFET model with the same physical basis as the BSIM3 version 2 model,
but with a number of major enhancements, such as a single I-V expression to describe current
and output conductance in all regions of device operation, better modeling of narrow width
devices, a reformulated capacitance model to improve short and narrow geometry models, a

181

Analog devices

M

new relaxation time model to improve transient modeling, and improved model fitting of
various W/L ratios using one parameter set. BSIM3 version 3.1 retains the extensive built-in
dependencies of dimensional and processing parameters of BSIM3 version 2. For additional,
detailed model information, see Reference [8References

Additional notes

Note 1 If any of the following BSIM3 version 3.1 model parameters are not explicitly
specified, they are calculated using the following equations:

If VTHO is not specified, then:
VTHO = VFB + @K1, /¢,
where:
VFB=-1.0
If VTHO is specified, then:
VFB = VTHO — @, +K1 /o,

2
VBX = (pS_QM

2 [k
_ o 4x1070
CF = O In%l Tox O
where 116 (7:02010%(T2)
Ey(T)=the energy bandgap at temperature"T=" (T + 1109

Note 2 If k1 AND K2 are not specified, they are calculated using the following
equations:

K1 = GAMMA2 —2K2 /@,—VBM

GAMMAL —GAMMA2)(,/@s— VBX —
Ko = ()(JPs NEA)
2, Jo(,Jo,—VBM — [o,) + VBM

where:
¢ = 2Vtdn %%,HE
vt = KOT
q
n = 1450100 — og 15'5 exp21.5565981- %%g

Note 3 If NCH is not given andAMMAL is given, then:

GAMMA12 [{Cox)?2
29 |j':si

If neitherGAMMAL norNCH is given, themiCH has a default value of
1.7e23 1/mM andGAMMAL is calculated fronNCH:

2%, [INCH
GAMMAL = q#

Cox

NCH =

182

Analog devices

If GAMMA2 is not given, then:

[2qk; INSUB
GAMMA2 = 4+ ——Sl

Cox

Note 3 If cGso is not given andLC>0, then:
CGSO= (DLC [Cox) —CGSL

If the previously calculatedGso<0, then:

CGS0=0

Else:

CGS0=0.6 -XJ - Cox

Note 4 If CGDO is not given and DLC>0, then:
CGDO= (DLC [Cox) —CGSL

If the previously calculatedGDO<O0, then

CGDO=0

Else:

CGD0=0.6 -XJ - Cox

183

Analog devices

MOSFET model parameters

Parameter " Description Unit Default
all levels
AF flicker noise exponent 1
CBD zero-bias bulk-draip-n capacitance farad 0
CBS zero-bias bulk-sourge-n capacitance farad 0
CGBO gate-bulk overlap capacitance/channel length farad/meter 0O
CGDO gate-drain overlap capacitance/channel width farad/meter 0O
CGSsO gate-source overlap capacitance/channel width farad/meter 0O
CJ bulk p-n zero-bias bottom capacitance/area farad/meted
CISwW bulk p-n zero-bias sidewall capacitance/length farad/meter 0O
FC bulk p-n forward-bias capacitance coefficient 0.5
GDSNOI channel shot noise coefficient (use with NLEV=3) 1
IS bulk p-n saturation current amp 1E-14
JS bulk p-n saturation current/area amp/meter O
JSSW bulk p-n saturation sidewall current/length amp/meter 0
KF flicker noise coefficient 0
L channel length meter DEFL
LEVEL model index 1
MJ bulk p-n bottom grading coefficient 0.5
MJISW bulk p-n sidewall grading coefficient 0.33
N bulk p-n emission coefficient 1
NLEV noise equation selector 2
PB bulk p-n bottom potential volt 0.8
PBSW bulk p-n sidewall potential volt PB
RB bulk ohmic resistance ohm 0
RD drain ohmic resistance ohm 0
RDS drain-source shunt resistance ohm infinite
RG gate ohmic resistance ohm 0
RS source ohmic resistance ohm 0
RSH drain, source diffusion sheet resistance ohm/square 0
T bulk p-n transit time sec 0

184

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
T ABS T absolute temperature °C
T_MEASURED T measured temperature °C
T_REL_GLOBAL Tt relative to current temperature °C
T REL_LOCAL t relative to AKO model temperature °C
W channel width meter DEFW

levels 1, 2, and 3

DELTA width effect on threshold 0

ETA static feedback (Level 3) 0

GAMMA bulk threshold parameter volt see pagé./8
KP transconductance coefficient amp/¥olt 2.0E-5
KAPPA saturation field factor (Level 3) 0.2
LAMBDA channel-length modulation (Levels 1 and 2) Yvolt 0.0

LD lateral diffusion (length) meter 0.0

NEFF channel charge coefficient (Level 2) 1.0

NFS fast surface state density 1l/em 0.0

NSS surface state density 1l/em none

NSUB substrate doping density 1/em none

PHI surface potential volt 0.6

THETA mobility modulation (Level 3) volt 0.0

TOX oxide thickness meter see pdges
TPG Gate material type: +1

+1 = opposite of substrate
-1 = same as substrate
0 = aluminum

UCRIT mobility degradation critical field (Level 2) volt/cm 1.0E4
UEXP mobility degradation exponent (Level 2) 0.0
UTRA (not used) 0.0

mobility degradation transverse field coefficient

uo surface mobility cmeivolt-sec 600
(The second character is the letter O, not the
numeral zero.)

VMAX maximum drift velocity meter/sec 0

185

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
VTO zero-bias threshold voltage volt 0
WD lateral diffusion (width) meter 0
XJ metallurgical junction depth (Levels 2 and 3) meter 0
XQcC fraction of channel charge attributed to drain 1.0
level 4™

DL Channel shortening mu-m

(1E-6*m)
Dw Channel narrowing mu-m

(1E-6*m)
ETA Zero-bias drain-induced barrier lowering C

coefficient

K1 Body effect coefficient volt 4
K2 Drain/source depletion charge sharing coefficient 4
MUS Mobility at zero substrate bias and Vds=Vdd sfyolt-sec
MUz Zero-bias mobility crivolt-sec
NO Zero-bias subthreshold slope coefficient 4
NB Sens. of subthreshold slope to substrate bias C
ND Sens. of subthreshold slope to drain bias 4
PHI Surface inversion potential volt C
TEMP Temperature at which parameters were measured °C
TOX Gate-oxide thickness mu-m

(1E-6*m)
uo Zero-bias transverse-field mobility degradation Yolt 4
ul Zero-bias velocity saturation p/volt C
VDD Measurement bias range volts
VFB Flat-band voltage volt 4
WDF Drain, source junction default width meter
X2E Sens. of drain-induced barrier lowering effect to volt? 4

substrate bias

X2MS Sens. of mobility to substrate bias @ Vds=0 2fgpitz-sec (
X2MZ Sens. of mobility to substrate bias @ Vds=0 2fgpitz.sec (
X2U0 Sens. of transverse-field mobility degradation volt2 C

effect to substrate bias

186

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
X2u1 Sens. of velocity saturation effect to substrate bigg/volt? C
X3E Sens. of drain-induced barrier lowering effect to volt* C
drain bias @ Vds = vdd
X3MS Sens. of mobility to drain bias @ Vds=Vvdd twoltz-sec
X3u1 Sens. of velocity saturation effect on drain p/volt 4
XPART Gate-oxide capacitance charge model flag.
XPART=0 selects a 40/60 drain/source charge
partition in saturation, whilgPART=1 selects a
0/100 drain/source charge partition.
level 5: process parameters
COoX gate oxide capacitance per unit area F/m 0.7E-3
XJ junction depth m 0.1E-6
Dw channel width correction m 0.0
see page./9
DL channel length correction m 0.0
see pagé /9
HDIF length of heavily doped diffusion contact to gate m 0.0
see page./9
level 5: basic intrinsic parameters
VTO long-channel threshold voltage \% 0.5
see pagé /9
GAMMA body effect parameter SN 1.0
PHI bulk Fermi potential (-2) \% 0.7
KP transconductance parameter AV 50.0E-6
EO mobility reduction coefficient Vim 1.0E12
see pagé /9
UCRIT longitudinal critical field Vim 2.0E6

level 5: channel length modulation and charge sharing parameters

LAMBDA

WETA

LETA

depletion length coefficient (channel length
modulation)

narrow-channel effect coefficient

short-channel effect coefficient

0.5

0.25
0.1

187

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default

level 5: impact ionization related parameters

IBA first impact ionization coefficient 1/m 0.0
BB second impact ionization coefficient Vim 3.0E8
IBN saturation voltage factor for impact ionization 1.0

level 5: intrinsic temperature parameters

TCV threshold voltage temperature coefficient V/IK 1.0E-3
BEX mobility temperature exponent -15
UCEX longitudinal critical field temperature exponent 0.8
IBBT temperature coefficient foBB 1/K 9.0E-4

level 5: matching parameters

AVTO area related threshold voltage temperature V-m 1.0E-6
coefficient see pagé.79
AKP area related gain mismatch parameter m 1.0E-6
see pagé /9
AGAMMA area related body effect mismatch parameter JV mm 1.0E-6
see pagé /9

level 5: resistance parameters

RBC bulk contact resistance ohm 0.0

RBSH bulk layer sheet resistance ohm/square 0.0

RDC drain contact resistance ohm 0.0

RGC gate contact resistance ohm 0.0

RGSH gate layer sheet resistance ohm/square 0.0
see pagé80

RSC source contact resistance ohm 0.0

level 5: temperature parameters

TR1 first-order temperature coefficient for drain, sourcec! 0.0
series resistance

TR2 second-order temperature coefficient for drain, °C~2 0.0
source series resistance

TRB temperature coefficient for bulk series resistance ~1°C 0.0

TRG temperature coefficient for gate series resistance —1eoc 0.0

XTI drain, source junction current temperature 0.0
exponent

188

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
level 5: optional parameters
NSUB channel doping meter see pddtd
THETA mobility reduction coefficient voit see pagé80
TOX oxide thickness meter see pdftd
uo low-field mobility cm’ see pagéso
volt [kec
VFB flat-band voltage volt see padéo
VMAX saturation velocity meter/sec see pagé
level 5: setup parameters
SATLIM ratio defining the saturation limit 4 i, 54.6
level 6

A0 bulk charge effect coefficient NMOS 1.0

bulk charge effect coefficient PMOS 4.4
Al first non-saturation coefficient NMOS v 0.0

first non-saturation coefficient PMOS 1V 0.23
A2 second non-saturation coefficient NMOS 1.0

second non-saturation coefficient PMOS 0.08
AT saturation velocity temperature coefficient m/sec 3.3E4
BULKMOD bulk charge model selector:

NMOS 1
PMOS 2

CDSC drain/source and channel coupling capacitance 2F/m 2.4E-4
CDSCB body bias sensitivity of CDSC F/\Mm 0.0
DL channel length reduction on one side m 0.0
DROUT channel length dependent coefficient of the DIBL 0.56

effect on Rout
DsuB subthreshold DIBL coefficient exponent DROUT
DVTO first coefficient of short-channel effect on threshold 2.2

voltage
DvT1 second coefficient of short-channel effect on 0.53

threshold voltage
DvT2 body bias coefficient of short-channel effect on 1/V -0.032

threshold voltage

189

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
DW channel width reduction on one side m 0.0
ETAO DIBL coefficient in subthreshold region 0.08
ETAB body bias coefficient for the subthreshold DIBL 1/V -0.07
coefficient
K1 first-order body effect coefficient SNV see patf&l
K2 second-order body effect coefficient see paje
K3 narrow width effect coefficient 80.0
K3B body effect coefficient of K3 Y 0.0
KETA body bias coefficient of the bulk charge effect. v -0.047
KT1 temperature coefficient for threshold voltage \% -0.11
KT1L channel length sensitivity of temperature V-m 0.0
coefficient for threshold voltage.
KT2 body bias coefficient of the threshold voltage 0.022
temperature effect
NFACTOR subthreshold swing coefficient 1.0
NGATE poly gate doping concentration 18m
NLX lateral nonuniform doping coefficient m 1.74E-7
NPEAK peak doping concentration near interface Frem 1.7E17
NSUB substrate doping concentration 1fem 6.0E16
PCLM channel length modulation coefficient 1.3
PDIBL1 first output resistance DIBL effect coefficient 0.39
PDIBL2 second output resistance DIBL effect coefficient 0.0086
PSCBE1 first substrate current body effect coefficient V/im 4.24E8
PSCBE2 second substrate current body effect coefficient m/V 1.0E-5
PVAG gate dependence of Early voltage 0.0
RDSO contact resistance ohms 0.0
RDSW parasitic resistance per unit width ohmg/ 0.0
m
SATMOD saturation model selector: 2

For semi-empirical output:
resistance model 1

For physical output:
resistance model 2

190

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default

SUBTHMOD subthreshold model selector: 2

no subthreshold model 0
BSIM1 subthreshold model 1
BSIM3 subthreshold model 2
BSIM3 subthreshold model
using log current 3

TNOM temperature at which parameters are extracted. deg. C 27
TOX gate oxide thickness m 1.5E-8
UA first-order mobility degradation coefficient m/V 2.25E-9
UAl temperature coefficient farA m/V 4.31E-9
uB second-order mobility degradation coefficient (nfV) 5.87E-19
uBl temperature coefficient fars (m/V)2 -7.61E-18
uc body effect mobility degradation coefficient v 0.0465
ucCi temperature coefficient farc Y -0.056
UTE mobility temperature exponent -1.5
VOFF offset voltage in subthreshold region \% -0.11
VSAT saturation velocity at Temp~OM cm/sec 8.0E6
VTHO threshold voltage at Vbs=0 for large channel length V see [fige
W0 narrow width effect parameter m 2.5E-6
XJ junction depth m 1.5E-7
XPART charge partitioning coefficient: 0.0

no charge model < 0.0
40/60 partition = 0.0
50/50 partition = 0.5
0/100 partition = 1.0

level 6 advanced

CIT capacitance due to interface trapped charge 2F/m 0.0

EM critical electrical field in channel Vim 4.1E7

ETA drain voltage reduction coefficient due to LDD 0.3
GAMMAL body effect coefficient near the interface JV see [fife
GAMMA2 body effect coefficient in the bulk SN see pdfl
LDD total length of the LDD region m 0.0

LITL characteristic length related to current depth m see pahe

191

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
PHI surface potential under strong inversion Y see faje
uo mobility at Temp=TNOM:
NMOS cm?/V-sec 670.0
PMOS cm?V-sec 250.0
VBM maximum applied body bias Y -5.0
VBX vbs at which the depletion width equals XT Y see pHike
VFB flat-band voltage \% see pagel
VGHIGH voltage shift of the higher bound of the transition V 0.12
region
VGLOW volt.age shift of the lower bound of the transition V -0.12
region
XT doping depth m 1.55E-7
level 7: control parameters
CAPMOD flag for the short-channel capacitance model none 2
MOBMOD mobility model selector none 1
NOIMOD flag for noise model none 1
NQSMOD flag for NQS model none 0
PARAMCHK flag for model parameter checking none 0
level 7: AC and capacitance parameters
CF fringing field capacitance F/im see pab?
CKAPPA coefficient for lightly doped region overlap F/m 0.6
capacitance fringing field capacitance
CLC constant term for the short-channel model m 0.1E-6
CLE exponential term for the short-channel model none 0.6
CGBO gate-bulk overlap capacitance per unit channel F/m 0.0
length
CGDL light-doped drain-gate region overlap capacitance F/m 0.0
CGDO non-LDD region drain-gate overlap capacitance F/m see pagé83
per channel length
CGSL light-doped source-gate region overlap capacitance F/m 0.0
CGSO non-LDD region source-gate overlap capacitanceF/m see pagé83
per channel length
CJ bottom junction capacitance per unit area +/m 5.0E-4

192

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default

CISwW source/drain side junction capacitance per unit F/m 5.0E-10
periphery

CISWG source/drain gate sidewall junction capacitance pefm CISW
unit width

DLC length offset fitting parameter from C-V m LINT

bwcC width offset fitting parameter from C-V m WINT

MJ bottom junction capacitance grading coefficient none 0.5

MISW source/drain side junction capacitance grading none 0.33
coefficient

MISWG source/drain gate sidewall junction capacitance none MISW
grading coefficient

PB bottom built-in potential V 1.0

PBSW source/drain side junction built-in potential Y 1.0

PBSWG source/drain gate sidewall junction built-in \% PBSW
potential

VFBCV flat-band voltage parameter V -1.0

(for capmMOD = 0 only)
XPART charge partitioning rate flag none 0.0

level 7: bin description parameters

BINUNIT bin unit scale selector none 1.0
LMAX maximum channel length m 1.0
LMIN minimum channel length m 0.0
WMAX maximum channel width m 1.0
WMIN minimum channel width m 0.0

level 7: DC parameters

A0 bulk charge effect coefficient for channel length none 1.0
Al first non-saturation effect parameter v 0.0
A2 second non-saturation factor none 1.0
AGS gate-bias coefficient of Abulk Y 0.0
ALPHAO first parameter of impact-ionization current m/V 0.0
BO bulk charge effect coefficient for channel width m 0.0
Bl bulk charge effect width offset m 0.0

193

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default

BETAO second parameter of impact-ionization current V 30.0

CDSC drain/source to channel coupling capacitance 2F/m 2.4E-4

CDSCB body-bias sensitivity ofDSC FIVm? 0.0

CDSCD drain-bias sensitivity ofDSC F/Vm? 0.0

CIT interface trap capacitance Fm 0.0

DELTA effective Vds parameter \% 0.01

DROUT L-dependence coefficient of the DIBL correction none 0.56
parameter in Rout

DsuB DIBL coefficient exponent in subthreshold region none DROUT

DVTO first coefficient of short-channel effect on thresholaghone 2.2
voltage

DVTOW first coefficient of narrow-width effect on threshold1/m 0.0
voltage for small-channel length

DvT1 second coefficient of short-channel effect on none 0.53
threshold voltage

DVT2 body-bias coefficient of short-channel effecton 1/V -0.032
threshold voltage

DVTW1 second coefficient of narrow-width effect on 1/m 5.3E6
threshold voltage for small channel length

DVTW2 body-bias coefficient of narrow-width effect for 1/V -0.032
small channel length

DWB coefficient of substrate body bias dependence of m/v1/2 0.0
Weff

DWG coefficient of gate dependence of Weff m/V 0.0

ETAO DIBL coefficient in subthreshold region none 0.08

ETAB body-bias coefficient for the subthreshold DIBL 1/V -0.07
effect

JS source-drain junction saturation current per unit Alm? 1.0E-4
area

JSW sidewall saturation current per unit length A/m 0.0

K1 first-order body effect coefficient V2 0.5

see paga82
K2 second-order body effect coefficient none 0.0
see pagés82
K3 narrow width coefficient none 80.0

194

Analog devices

MOSFET model parameters (continued)

Parameter " Description Unit Default
K3B body effect coefficient ok3 AY 0.0
KETA body-bias coefficient of bulk charge effect v -0.047
LINT length offset fitting parameter from I-V without m 0.0
bias
NFACTOR subthreshold swing factor none 1.0
NGATE poly gate doping concentration g 0.0
NLX lateral non-uniform doping parameter m 1.74E-7
PCLM channel length modulation parameter none 1.3
PDIBLC1 first output resistance DIBL effect correction none 0.39
parameter
PDIBLC2 second output resistance DIBL effect correction none 0.0086
parameter
PDIBLCB body effect coefficient of DIBL correction v 0.0
parameter
PRWB body effect coefficient oRDSW 1/v12 0.0
PRWG gate-bias effect coefficient @sw AY 0.0
PSCBE1 first substrate current body effect parameter Vim 4.24E8
PSCBE2 second substrate current body effect parameter Vim 1.0E-5
PVAG gate dependence of Early voltage none 0.0
RDSW parasitic resistance per unit width Q-pm"R 0.0
RSH source-drain sheet resistance Q/square 0.0
uo mobility at TempFNOM
NMOS 670.0 cm?/(V-sec)
PMOS 250.0
UA first-order mobility degradation coefficient m/\V 2.25E-9
uB second-order mobility degradation coefficient (n%’V) 5.87E-19
uc body effect of mobility degradation coefficient A% -4.65E-11 when
MOBMOD=1 or 2
Y -0.046 when
MOBMOD=3
VBM maximum applied body-bias in threshold voltage V -3.0
calculation
VOFF offset voltage in the subthreshold region at large W -0.08

and L

195

Analog devices M
MOSFET model parameters (continued)

Parameter " Description Unit Default

VSAT saturation velocity at Temp~OM m/sec 8.0E4

VTHO threshold voltage@Vbs=0 for large L \% 0.7 (NMOS)
-0.7 (PMOS)
see pagéds8l

Wo narrow-width parameter m 2.5E-6

WINT width-offset fitting parameter from I-V without ~ m 0.0

bias
WR width-offset from Weff for Rds calculation none 1.0
Level 7: flicker noise parameters

AF frequency exponent none 1.0

EF flicker exponent none 1.0

EM saturation field Vim 4.1E7

KF flicker noise parameter none 0.0

NOIA noise parameter A none 1.0E20 (NMOS)
9.9E18 (PMOS)

NOIB noise parameter B none 5.0E4 (NMOQOS)
2.4E3 (PMOS)

NoOIC noise parameter C none -1.4E-12(NMOS)
1.4E-12 (PMOS)

level 7: NQS parameter
ELM Elmore constant of the channel none 5.0
level 7: process parameters

GAMMAL body effect coefficient near the surface 13, see pagé82

GAMMA2 body effect coefficient in the bulk NP see pagé82

NCH channel doping concentration 1Rm 1.7E17

NSUB substrate doping concentration 1fem 6.0E16

TOX gate-oxide thickness m 1.5E-8

VBX Vbs at which the depletion regionxF Vv see pagd.82

XJ junction depth 1.5E-7

XT doping depth m 1.55E-7

level 7: temperature parameters
AT temperature coefficient for saturation velocity m/sec 3.3E4

196

Analog devices M

MOSFET model parameters (continued)

Parameter " Description Unit Default
KT1 temperature coefficient for threshold voltage \% -0.11
KT1L channel length dependence of the temperature V*m 0.0
coefficient for threshold voltage
KT2 body-bias coefficient of threshold voltage none 0.022
temperature effect
NJ emission coefficient of junction none 1.0
PRT temperature coefficient f®@DsSW Q-pm 0.0
TNOM temperature at which parameters are extracted °C 27.0
UAl temperature coefficient farA m/V 4.31E-9
UB1 temperature coefficient fars (M/V)>2 -7.61E-18
ucCi temperature coefficient farc m/\V?2 -5.6E -11 when
MOBMOD=1 or 2
v -0.056when
MOBMOD=3
UTE mobility temperature exponent none -1.5
XTI junction current temperature exponent coefficient none 3.0

level 7: W and L parameters

LL coefficient of length dependence for length offset ““th 0.0

LLN power of length dependence for length offset none 1.0

LW coefficient of width dependence for length offset -Y¥fY 0.0

LWL coefficient of length and width cross term for ~ mtWN*LN-— g0
length offset

LWN power of width dependence for length offset none 1.0

WL coefficient of length dependence for width offset Wi 0.0

WLN power of length dependence of width offset none 1.0

WW coefficient of width dependence for width offset ~ "VM§{N 0.0

WWL coefficient of length and width cross term for widtbmWWN*WLN g o
offset

WWN power of width dependence of width offset none 1.0

*See. MODEL (model definition).

**A C in the Default column indicates that the parameter may have corresponding parameters exhibiting length and width dependence.
SeeModel level 4

t For information oil_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL, see. MODEL (model definition).

197

Analog devices M

MOSFET Equations

These equations describe an N-channel MOSFET. For P-channel devices, reverse the signs of
all voltages and currents.

In the following equations:

Vbs = intrinsic substrate-intrinsic source voltage
Vbd = intrinsic substrate-intrinsic drain voltage
Vds = intrinsic drain-intrinsic source voltage

Vdsat = saturation voltage

Vgs = intrinsic gate-intrinsic source voltage
Vad = intrinsic gate-intrinsic drain voltage
Vt = k-T/q (thermal voltage)

Vth = threshold voltage

Cox = the gate oxide capacitance per unit area.
f = noise frequency

k = Boltzmann’s constant

q = electron charge

Leff = effective channel length

Weff = effective channel width

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

Other variables are frodOSFET model parameters

Positive current is current flowing into a terminal (for example, positive drain current
flows from the drain through the channel to the source).

198

Analog devices

MOSFET equations for DC current

all levels
Ig = gate current=0
Ib = bulk current = Ibs+Ibd
where
Ibs = bulk-source leakage current =(ggs®-vi-1)
Ibd = bulk-drain leakage current = ¢t vo-1)
where
if
JS=0,0rAS=0,0rAD =0

then
Iss=1IS
Ids = IS
else

Iss= AS-JS + PSJSSW
Ids=AD-Js + PD-Jssw

Id = drain current = Idrain-Ibd
Is = source current = -Idrain-lbs
level 1: Idrain

Normal mode: Vds > 0
Case 1
for cutoff region: Vgs-y, <0

then: Idrain = 0
Case 2
for linear region: Vds < Vgs-y§

then: Idrain = (W/L) KP/2)-(1HAMBDA -Vds)-Vds-(2-(Vgs-})-Vds)
Case 3
for saturation region: 8 Vgs-V,, < Vds

then: Idrain = (W/L)(KP/2)- (14 AMBDA -Vds)-(Vgs-\)?

where
Vo = VTO+GAMMA -((PHI-Vbs)/2-pHi1/2)

Inverted mode: Vds <0
Switch the source and drain in the normal mode equations above.
Levels 2 and 3: Idrain

See reference [2] ¢gieferencedor detailed information.

199

Analog devices M

MOSFET equations for capacitance

All capacitances are between terminals of the intrinsic MOSFET, in other words, to
the inside of the ohmic drain and source resistances. For levels 1, 2, and 3, the
capacitance model has been changed to conserve charge.

levels 1, 2, and 3
Cbs = bulk-source capacitance = area cap. + sidewall cap. + transit time cap.
Cbd = bulk-drain capacitance = area cap. + sidewall cap. + transit time cap.

where
if

cBS=0 ANDcBD =0
then

Chs = ASCJ-Cbsj + PSLIsSwW-Cbss+ TT-Gbs
Cbd =AD-cJ-Cbdj + PDcJsw-Cbds+ TT-Gds

else
Cbs=cBs-Cbsj+ PScisw-Chss+ TT-Gbs
Cbd=cBD-Chdj+ PD-cisw-Chds+ TT-Gds
where
Gbs= DC bulk-source conductancedlbs/dVbs
Gbd = DC bulk-drain conductancedlbd/dVbd

Vbs < FC-PB

then
Cbsj = (1-Vbsts)™MJ
Cbss = (1-VbsiBsw)MISW

Vbs >FC-PB

then
Cbsj = (2Fc) M. (1-FC- (1+MJ)+MJI-VbsPB)
Cbss = (3FC)aMISW. (1 FC. (1+MISW)+MISW -Vbs/PBSW)

Vbd < FC-PB

then
Chdj = (1-Vbdps)™
Chds = (1-Vbdtasw)MISW

Vbd > FC-PB

then
Chdj = (1Fc)eMh.(1-FC-(1+MJ)+MJI-Vbd/PB)
Chds = (3FC)@MISW).(1-FC-(1+MISW))

200

Analog devices

Cgs = gate-source overlap capacitan@sso-W
Cgd = gate-drain overlap capacitanceGbo-W
Cgb = gate-bulk overlap capacitanceGBO-L
levels 4 and 6

See references [6] and [7] BEferences

MOSFET equations for temperature effects

The ohmic (parasitic) resistances have no temperature dependence.

all levels
IS(T) = IS -gEa(Tnom)-Tmom - Eg(mM
IS(T) = IS -gEa(Tnom)-Trmnom - EgM)M
ISSW(T) = ISSW -gEalTrom) Trinom - Egyve
PB(T) =PB-T/Tnom - 3-Vin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)
PBSW(T) =PBSW-T/Tnom - 3-Viin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)
PHI(T) = PHI-T/Tnom - 3-Vtin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)

where
Eg(T) = silicon bandgap energy = 1.16 - .0007@2T#1108)

CBD(T) = CBD+(1+MJ-(.0004-(T-Tnom)+(3PB(T)/PB)))
CBS(T) =CBS-(1+MJ-(.0004-(T-Tnom)+(1rB(T)/PB)))
CJ(T) =cJ-(1+mJ-(.0004-(T-Tnom)+(1PB(T)/PB)))

CISW(T) = CISwW-(1+MIsw-(.0004-(T-Tnom)+(1=B(T)/PB)))
KP(T) =KP-(T/Tnom}

UO(T) = Uo-(T/Tnom)32

MUS(T) = MUS-(T/Tnom)32

Muz() = MUZ-(T/Tnom)32

X3MS(T) = X3MS-(T/Tnom)32

201

Analog devices M

MOSFET equations for noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth).

The model paramet@ILEV is used to select the form of shot and flicker noise GIENOI is

the channel shot noise coefficient model parameter. When<3, the original SPICE2 shot
noise equation is used in both the linear and saturation regions, but the use of this equation
may produce inaccurate results in the linear region. Whew=3, a different equation is

used that is valid in both linear and saturation regions.

The model parametess andkF are used in the small-signal AC noise analysis to determine
the equivalent MOSFET flicker noise.

For more information, see reference [5 erences

MOSFET channel shot and flicker noise
Icharf = Ishof+Iflick
intrinsic MOSFET flicker noise

for NLEV = 0 flick2 = KF OdrainAF
COX [Leff? (¥
= inAF
for NLEV = 1 flick2 = —KF OdrainA
COX DWeffOLeffOf
2
for NLEV = 2,NLEV =3 Iflick2 = KF Chm
COX DWeffOLeffOfF
intrinsic MOSFET shot noise
for NLEV < 3
|5h0t2 = @m
NLEV = 2
for 3 IshOIZESEkDTXBX(Vgs—Vth)mXGDSNOI
3 l+a
where
for linear region:
a=1-(Vds/Vdsat)
for saturation region:
a=0
parasitic resistance thermal noise
RD Id2=4-k-T/RD
RG lg2 = 4k T/IRG
RS Is? = 4k-T/IRS
RB Ib2 = 4k-T/RB

202

Analog devices

References

For a more complete description of the MOSFET models, refer to:

[1] H. Shichman and D. A. Hodges, “Modeling and simulation of insulated-gate field-effect
transistor switching circuits,” IEEE Journal of Solid-State Cir¢i8ts-3, 285, September
1968.

[2] A. Vladimirescu, and S. Lui, “The Simulation of MOS Integrated Circuits Using SPICE2,”
Memorandum No. M80/7, February 1980.

[3] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “BSIM: Berkeley Short-Channel
IGFET Model for MOS Transistors,” IEEE Journal of Solid-State CircGits-22, 558-566,
August 1987.

[4]J. R. Pierret, “A MOS Parameter Extraction Program for the BSIM Model,” Memorandum
No. M84/99 and M84/100, November 1984.]

[5] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE
McGraw-Hill, 1993.

[6] Ping Yang, Berton Epler, and Pallab K. Chatterjee, “An Investigation of the Charge
Conservation Problem for MOSFET Circuit Simulation,” IEEE Journal of Solid-State
Circuits, Vol. SC-18, No.1, February 1983.

[7] 3.H. Huang, Z.H. Liu, M.C. Jeng, K. Hui, M. Chan, P.K. KO, and C. Hu,
“BSIM3 Manual,” Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720.

[8] Department of Electrical Engineering and Computer Science, “BSIM3v3.1 Manual,”
University of California, Berkeley, CA 94720.

[9]J. C. Bowers, and H. A. Neinhaus, SPICE2 Computer Models for HEXAppsication
Note 954A, reprinted in HEXFET Power MOSFET Databook, International Rectifier
Corporation #HDB-3.

[10]M.Bucher,C.Lallement,C.Enz,F.Theodoloz,F.Krummenacher. TheEPFL-EKVMOSFET
Model Equations for Simulation Technical Report: Model VersionRl€ctonics

Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Updated September, 1997.

For more information on References [2] and [4], contact:

Software Distribution Office
EECS/ERL Industrial Liaison Program
205 Cory Hall #1770

University of California

Berkeley, CA 94720-1770

(510) 643-6687

Section

203

Analog devices Q

Bipolar transistor

General form Q<name> < collector node> <base node> <emitter node>
+ [substrate node] <model name> [area value]
Examples Ql 14 2 13 PNPNOM

Q13 15 3 0 1 NPNSTRONG 1.5
Q7 VC 5 12 [SUB] LATPNP

Model form .MODEL <model name> NPN [model parameters]
.MODEL <model name> PNP [model parameters]
.MODEL <model name> LPNP [model parameters]

Arguments and options

[substrate node]
is optional, and if not specified, the default is the ground.

Because the simulator allows alphanumeric names for nodes, and because there is no easy
way to distinguish these from the model names, the name (not a number) used for the
substrate node needs to be enclosed with square brackets []. Otherwise, nodes would be
interpreted as model names. See the third example.

[area value]
is the relative device area and has a default value of 1.

Description The bipolar transistor is modeled as an intrinsic transistor using ohmic resistances in series
with the collector RC/area), with the base (value varies with currentBpelar transistor
eguationg, and with the emitteiRE/area).

Collector

Qo @ lepi (if RCO > 0)

Py A

Cic / Ibc1/BR Cis
B % 4 % l_/zﬁlbcz Z& ;F | Substrate
ase (? (LPNP only)
(Ibe -

TR ;%Cje S}IbeZ iz

Ibel/BF

Ibcl)/Kgb
RE

Substrate
(LPNP only) Emitter

Positive current is current flowing into a terminal.

<=Chapter

204

Analog devices Q

For model parameters with alternate names, sughraandvA (the alternate name is shown
by using parentheses), either name can be used.

For model types NPN and PNP, the isolation junction capacitance is connected between the
intrinsic-collector and substrate nodes. This is the same as in SPICE2, or SPICES, and works
well for vertical IC transistor structures. For lateral IC transistor structures there is a third
model, LPNP, where the isolation junction capacitance is connected between the
intrinsic-base and substrate nodes.

Capture parts

The following table lists the set of bipolar transistor breakout parts designed for customizing
model parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Part name Model type Property Property description
QBREAKL LPNP AREA area scaling factor
MODEL LNP model name
QBREAKN NPN AREA area scaling factor
QBREAKNS3 MODEL NPN model name
QBREAKN4
QBREAKP PNP AREA area scaling factor
QBREAKP3 MODEL PNP model name
QBREAKP4

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. SBaolar transistor model parametersfor more

information.

205

Analog devices

Bipolar transistor model parameters

Model parameters ~ Description Units Default
AF flicker noise exponent 1.0
BF ideal maximum forward beta 100.0
BR ideal maximum reverse beta 1.0
cJCc base-collector zero-bias p-n capacitance farad 0.0
CJE base-emitter zero-bias p-n capacitance farad 0.0
CJS (CCS) substrate zero-bias p-n capacitance farad 0.0
CN guasi-saturation temperature coefficient for hole 2.42 NPN
mobility 2.20 PNP
D guasi-saturation temperature coefficient for 0.87 NPN
scattering-limited hole carrier velocity 0.52 PNP
EG bandgap voltage (barrier height) eVv 1.11
FC forward-bias depletion capacitor coefficient 0.5
GAMMA epitaxial region doping factor 1E-11
IKF (IK) corner for forward-beta high-current roll-off amp infinite
IKR corner for reverse-beta high-current roll-off amp infinite
IRB current at which Rb falls halfway to amp infinite
1S transport saturation current amp 1E-16
ISC (C4) T base-collector leakage saturation current amp 0.0
ISE (C2) T base-emitter leakage saturation current amp 0.0
ISS substrate p-n saturation current amp 0.0
ITF transit time dependency on Ic amp 0.0
KF flicker noise coefficient 0.0
MJC (MC) base-collector p-n grading factor 0.33
MJE (ME) base-emitter p-n grading factor 0.33
MJS (MS) substrate p-n grading factor 0.0
NC base-collector leakage emission coefficient 2.0
NE base-emitter leakage emission coefficient 15
NF forward current emission coefficient 1.0
NK high-current roll-off coefficient 0.5
NR reverse current emission coefficient 1.0

206

Analog devices

Model parameters

Description

Units Default

NS
PTF
Qco

QUASIMOD

RB
RBM

RC

RCO T

RE

TF

TR

TRB1

TRB2

TRC1

TRC2

TRE1

TRE2

TRM1

TRM2

T_ABS
T_MEASURED
T_REL_GLOBAL
T_REL_LOCAL
VAF (VA)

VAR (VB)

VG

VJC (PC)

VJE (PE)

substrate p-n emission coefficient
excess phase @ 1ftIF)Hz
epitaxial region charge factor

guasi-saturation model flag for temperature
dependence

if QUASIMOD = 0, then nGAMMA, RCO, VO
temperature dependence

if QUASIMOD = 1, then includ&AMMA, RCO, VO
temperature dependence

zero-bias (maximum) base resistance
minimum base resistance

collector ohmic resistance

epitaxial region resistance

emitter ohmic resistance

ideal forward transit time

ideal reverse transit time

RB temperature coefficient (linear)
RB temperature coefficient (quadratic)
RC temperature coefficient (linear)
RC temperature coefficient (quadratic)
RE temperature coefficient (linear)

RE temperature coefficient (quadratic)
RBM temperature coefficient (linear)
RBM temperature coefficient (quadratic)
absolute temperature

measured temperature

relative to current temperature

relative to AKO model temperature
forward Early voltage

reverse Early voltage

degree

coulomb

ohm
ohm
ohm
ohm
ohm
sec
sec
2C
20
*C
»C
2C
»C
C
oC
°C
°C
°C
°C
volt

volt

guasi-saturation extrapolated bandgap voltage at 0° KV

base-collector built-in potential

base-emitter built-in potential

volt

volt

1.0
0.0
0.0

0.0
RB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

infinite
infinite
1.206
0.75
0.75

207

Analog devices Q
Model parameters ~ Description Units Default
VIS (PS) substrate p-n built-in potential volt 0.75
VO carrier mobility knee voltage volt 10.0
VTF transit time dependency on Vbc volt infinite
XCJc fraction ofcJc connected internally to Rb 1.0
XCJCcz2 fraction ofcJc connected internally to Rb 1.0
XCJS fraction ofcJs connected internally to Rc
XTB forward and reverse beta temperature coefficient 0.0
XTF transit time bias dependence coefficient 0.0
XTI (PT) IS temperature effect exponent 3.0

* For information onT_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL, see MODEL (model definition).

T The parameterSE (C2) andISC (C4) can be set to be greater than one. In this case, they are interpreted as multisierste&d of
absolute currents: that is,IBE is greater than one, then it is replaced$fy-IS. Likewise forISC.

1 If the model parametd®CO is specified, then quasi-saturation effects are included.

Distribution of the CJC capacitance

The distribution of the CJC capacitance is specifiedd andxcJic2. The model

parameteKxcJc? is used likexcJic. The differences between the two parameters are as
follows.

Branch XCJC XCJC2

intrinsic base to intrinsic collector XCJC*CJC XCJCc2*CJC
extrinsic base tmtrinsic collector (1.0 - XCJC)*CJC not applicable
extrinsic base textrinsic collector not applicable (1.0 -XCJC2)*CIC

WhenxcJcz2 is specified in the range< XCJC2 < 1.0, XCJC is ignored. Also, the extrinsic
base to extrinsic collector capacitancexg) and the gain-bandwidth product (Ft2) are
included in the operating point information (in the output listing generated during a Bias Point
Detail analysis,OP (bias point)). For backward compatibility, the parameteonc and the
associated calculation of Cbx and Ft remain unchanged. Cbx and Ft appears in the output
listing only whenxcJc is specified.

The use okcJC2 produces more accurate results because (the fraction of£JC associated

with the intrinsic collector node) now equals the ratio of the device’s emitter area-to-base
area. This results in a better correlation between the measured data and the gain bandwidth
product (Ft2) calculated by PSpice.

XCJs, which is valid in the range< XCJS < 1.0, specifies a portion of thels capacitance

to be between the external substrate and external collector nodes instead of between the
external substrate and internal collector nodes. \Wbe® is 1,CJs is applied totally between
the external substrate and internal collector nodes. \Wbahis 0,CJS is applied totally
between the external substrate and external collector codes.

208

Analog devices Q

Bipolar transistor equations
The equations in this section describe an NPN transistor. For the PNP and LPNP devices,
reverse the signs of all voltages and currents.
The following variables are used:
Vbe = intrinsic base-intrinsic emitter voltage
Vbc = intrinsic base-intrinsic collector voltage
Vbs = intrinsic base-substrate voltage
Vbw = intrinsic base-extrinsic collector voltage (quasi-saturation only)
Vbx
Vce = intrinsic collector-intrinsic emitter voltage
Vijs

extrinsic base-intrinsic collector voltage

(NPN) intrinsic collector-substrate

voltage

= (PNP) intrinsic substrate-collector
voltage

= (LPNP) intrinsic base-substrate

voltage

Vt = kT/q (thermal voltage)

k = Boltzmann’s constant
q = electron charge
T = analysis temperature (°K)

Tnom = nominal temperature (set using the TNOM option)

Other variables are listed Bipolar transistor model parameters

Positive current is current flowing into a terminal.

209

Analog devices

Bipolar transistor equations for DC current

Ib = base current area (IbelBF + Ibe2 + Ibcl#R + Ibc2)
Ic = collector current area (Ibel/Kgb - Ibc1/Kgb - IbcBR - Ibc2)
Ibel = forward diffusion current rs- (gvbeiFvi-1)
Ibe2 = non-ideal base-emitter currense: (ge/™evi-1)
Ibcl = reverse diffusion currentis: (/bR vo-1)
Ibc2 = non-ideal base-collector currentse - (gvbe/tc--1)
Kgb = base charge factor = Kql-(1+(1+4-KegZp
Kgl = 1/(1 - VbcoVAF - VbeNAR)
Kg2 = lbelliKF + IbclIKR
Is = substrate currentarealSs-(es®Nsvi-1)
Rb = actual base parasitic resistance
Case 1
for: IRB = infinite (default value)
then: Rb =RBM + (RB-RBM)/Kgb)/area
Case 2
For:IRB >0
then:

Rb = RBM + 3:RB-RBM)- % Yarea

where:
x= (L (144/ 1) Ob/(arealRB))Y2—1

(24/12) QIb/ (areadRB))1/2

210

Analog devices Q

Bipolar transistor equations for capacitance

All capacitances, except Cbx, are between terminals of the intrinsic transistor which is inside
of the collector, base, and emitter parasitic resistances. Chx is between the intrinsic collector
and the extrinsic base.

base-emitter capacitance
Cbe = base-emitter capacitance = Ctlereta:Cjbe
Ctbe = transit time capacitance = tf-Gbe
tf = effectiveTF = TF- (1+XTF-(Ibel/(Ibel-arealTF))z-g/bci1.44-VTF)
Gbe = DC base-emitter conductancalié¢)/(dVb)
Ibe = Ibel + Ibe2
Cjbe =CJE-(1-VbeWNJE)™E IF Vbe <FC-VJE
Cjbe =CJE-(1+FC)-t+m®.(1+C-(1+MIE) +MIE-VbeNMJIE) IF Vbe >FC-VIE
base-collector capacitance
Cbc = base-collector capacitance = CthareaxcJc-Cjbc
Ctbc = transit time capacitancerr-Gbc
Gbc = DC base-collector conductancedtb€)/(dVbc)
Cjbc =cJc-(1-Vbchaic)me IF Vbc <FC-vJC
Cjbc =cic-(1+c)wmo.(1Fc-(1+mIC)+MIC-VbchiC) IF Vbc >FC-viC
extrinsic-base to intrinsic-collector capacitance
Cbx = extrinsic-base to intrinsic-collector capacitanegea (1-XCJC)-Cjbx
Cjbx =cJc-(1-VbxANJic)me IF Vbx <FC-vJC

Cjbx =cJc-(1+Fc)wmo.(1+C-(1+vIC)+MIC-VbxAIC) IF Vbx >FC-viC

substrate junction capacitance

Cjs = substrate junction capacitancarea Cjjs
Cijjs =cJs-(1-VjshJs)ms(assumescC = 0) IF Vjs<0
Cjjs =CJs-(1+4v3s-VjshJs) IF Vjs>0

211

Analog devices Q

Bipolar transistor equations for quasi-saturation effect

Quasi-saturation is an operating region where the internal base-collector metallurgical
junction is forward biased, while the external base-collector terminal remains reverse biased.

This effect is modeled by extending the intrinsic Gummel-Poon model, adding a new internal
node, a controlled current source, lepi, and two controlled capacitances, represented by the
charges Qo and Qw. These additions are only included if the model paragw@ier

specified. See reference [3]@Eferencedor the derivation of this extension.

lepi =area(vo-(Vt-(K(Vbc)-K(Vbn)4dn((1+K(Vbc))/(1+K(Vbn))))+Vbc-Vbn))RCo-(|Vbc-Vbnivo)
Qo =areaQco-(K(Vbc)-1-GAMMA/2)
Qw =areaQco-(K(Vbn)-1-GAMMA/2)

where "
K(v) = (1+GAMMA -gvv)

212

Analog devices Q

Bipolar transistor equations for temperature effect

IS(T) = IS-@mmom-b-ecivvo (T/Tnom) T
where N =1

ISE(T) = (ISE/(T/Tnom)T8).gTTnom-1)-EGINEV) (T/TnOMXTVNE

ISC(T) = (ISC/(T/Tnom)<Ts).grmom-1EG/NC-V) (T/Tnom)TNe

ISS(T) = (1SS/(T/TnomT8).gmTnom-1-EGINSV) (T/TNOMXTINS

BF(T) =BF-(T/Tnom)™e

BR(T) =BR:(T/TnomXm®

RE(T) =RE-(1+TRE1:(T-Tnom}TRE2:(T-Tnom})

RB(T) =RB-(1+TRB1:(T-Tnom)fRB2-(T-Tnom})

RBM(T) = RBM:(1+TRM1-(T-Tnom}TRM2-(T-Tnom¥)

RC(T) =RC:(1+TRC1:(T-Tnom}TRC2:(T-Tnom})

VJIE(T) =VJIE-T/Tnom - 3-ViIn(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)

VJIC(T) =VvJc-T/Tnom - 3-Vin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)

VIS(T) =Vv3Is-T/Tnom - 3-Vin(T/Tnom) - Eg(Tnom)-T/Tnom + Eg(T)
where Eg(T) = silicon bandgap energy = 1.16 - .0007AZ-¥1108)

CJE(T) = CJE-(1+4vIE-(.0004 - (T-Tnom)+(IIE(T)/VIE)))

CJC(T) =cJc-(1+vIC-(.0004-(T-Tnom)+(dIC(T)/VIC)))

CJS(T) =cJs-(14vIs-(.0004-(T-Tnom)+(dS(T)/VIS)))

The development of the temperature dependencies for the quasi-saturation model
parameters GAMMA, RCO, and VO are described in reference [3] on page 214.
These temperature dependencies are only used when the model parameter
QUASIMOD =1.0.

GAMMA(T) = GAMMA(Tnom)-(T/Tnom?-exp(—q/G/k-(llT - 1/Tnom))
RCO(T) = RcoO(Tnom):(T/TnomyN

VvO(T) =vOo(Tnom)-(T/Tnom§N - P

213

Analog devices Q

Bipolar transistor equations for noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power
densities (per unit bandwidth):

parasitic resistances thermal noise

RC Ic2 = 4k-T/(RChrea)
RB Ib2=4k-T/RB
RE le2 = 4k-T/(RE&red
base and collector currents shot and flicker noise
1B Ibz=2g-1b + KF-IBf/FREQUENCY
IC Icz2=2q-lc
References

For a more information on bipolar transistor models, refer to:
[1] lan Getreu, Modeling the Bipolar Transistdektronix, Inc. part# 062-2841-00.

For a generally detailed discussion of the U.C. Berkeley SPICE models, including the bipolar
transistor, refer to:

[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE
McGraw-Hill, 1988.

For a description of the extension for the quasi-saturation effect, refer to:

[3] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, and H. K. Dirks, “A
Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects,” IEEE
Transactions on Electron DevicdsD-32, 1103-1113 (1985).

Section

214

Analog devices

Resistor

General form

Examples

Model form

R<name> <(+) node> <(-) node> [model name] <value>
+ [TC = <TC1> [,<TC2>1]

RLOAD 15 0 2K
Rz 1 2 2.4E4 TC=.015,-.003
RFDBCK 3 33 RMOD 10K

.MODEL <model name> RES [model parameters]

RLoad

Arguments and options

Comments

(+) and (-) nodes
Define the polarity when the resistor has a positive voltage across it.

[model name]
Affects the resistance value; deesistor value formulas

The first node listed (or pin 1 in Capture) is defined as positive. The voltage across the
component is therefore defined as the first node voltage minus the second node voltage.

Positive current flows from the (+) node through the resistor to the (-) node. Current flow from
the first node through the component to the second node is considered positive.

Temperature coefficients for the resistor can be specified in-line, as in the second example. If
the resistor has a model specified, then the coefficients from the model are used for the
temperature updates; otherwise, the in-line values are used. In both cases the temperature
coefficients have default values of zero. Expressions cannot be used for the in-line
coefficients.

Capture parts

For standard R parts, the effective value of the part is set directly by the VALUE property.
For the variable resistor, R_VAR, the effective value is the product of the base value
(VALUE) and multiplier (SET).

In general, resistors should have positive component values (VALUE property). In all cases,
components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often
in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming
from the real to the RLC equivalent, it is possible to end up with negative component values.

¢=Chapter

215

Analog devices

R

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise
analyses. In the case of resistors, the noise contribution from negative component values come
from the absolute value of the component (components are not allowed to generate negative
noise). A transient analysis may fail for a circuit with negative components. Negative
components may create instabilities in time that the analysis cannot handle.

Part name Model type Property Property description
R resistor VALUE resistance
TC linear and quadratic temperature

coefficients
TOLERANCE device tolerance (see p&R
R_VAR variable resistor VALUE base resistance
SET multiplier

The RBREAK part must be used if you want a LOT tolerance. In that case, use the
Model Editor to edit the RBREAK instance.

Breakout parts

For non-stock passive and semiconductor devices, Capture has a set of breakout parts
designed for customizing model parameters for simulation. These are useful for setting up
Monte Carlo and worst-case analyses with device and/or lot tolerances specified for
individual model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix
BREAK. By default, the model name is the same as the part name and references the
appropriate device model with all parameters set at their default. For instance, the DBREAK
part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model
(.MODEL DBREAK D). Another approach is to use the model editor to derive an instance
model and customize this. For example, you could add device and/or lot tolerances to model
parameters.

For breakout part RBREAK, the effective value is computed from a formula that is a function
of the specified VALUE property.

E,E\élce Part name Part library file Property Description
resistor RBREAK BREAKOUT.OLB VALUE resistance

MODEL RES model name

216

Analog devices

Resistor model parameters

Model parameters Description Units Default
R resistance multiplier 1.0
TC1 linear temperature coefficient ac 0.0
TC2 guadratic temperature coefficient 2C 0.0
TCE exponential temperature coefficient %/°C 0.0
T_ABS absolute temperature °C
T_MEASURED measured temperature °C
T_REL_GLOBAL relative to current temperature °C
T_REL_LOCAL relative to AKO model temperature °C

* For information onT_MEASURED, T_ABS, T_REL_GLOBAL , andT_REL_LOCAL , see MODEL (model definition).

217

Analog devices

Resistor equations

Resistor value formulas

One If [model name] is included aritCE is specified, then the resistance is given by:
<value>-R-1.0E (-Tnom)

where <value> is normally positive (though it can be negativendiutero). Tnom is the
nominal temperature (set using TNOM option).

TwO If [model name] is included armtE is not specified, then the resistance is given by:
<value>-R-(1FC1-(T-Tnom)HC2-(T-Tnom})
where <value> is usually positive (though it can be negative, but not zero).

Resistor equation for noise

Noise is calculated assuming a 1.0-hertz bandwidth. The resistor generates thermal noise
using the following spectral power density (per unit bandwidth):

i2=

4k-T/resistance

Section

218

Analog devices

Voltage-controlled switch

General form

Examples

Model form

Description

Comments

S<name> <(+) switch node> <(-) switch node>
+ <(+) controlling node> <(-) controlling node>
+ <model name>

S12 13 17 2 0 SMOD
SESET 5 0 15 3 RELAY

.MODEL <model name> VSWITCH [model parameters]

The voltage-controlled switch is a special kind of voltage-controlled resistor. This switch
model was designed to minimize numerical problems. However, there are a few things to

consider; se€pecial considerations
- e
13v v

17v Ov
S12

The resistance between the <(+) switch node> and <(-) switch node> depends on the voltage
between the <(+) controlling node> and <(-) controlling node>. The resistance varies
continuously between thRON andROFF model parameters.

A resistance of 1/GMIN is connected between the controlling nodes to keep them from
floating. See theOPTIONS (analysis options)statement for setting GMIN.

Although very little computer time is required to evaluate switches, during transient analysis
the simulator must step through the transition region using a fine enough step size to get an
accurate waveform. Applying many transitions can produce long run times when evaluating
the other devices in the circuit at each time step.

=Chapter

219

Analog devices S

Capture parts

Ideal switches

Summarized below is the available voltage-controlled switch part type imd¢heout.s1b
part library. To create a time-controlled switch, connect the switch control pins to a voltage
source with the appropriate voltage vs. time values (transient specification).

Part type Part Name Model type
Voltage-Controlled Switch SBREAK VSWITCH

The VSWITCH model defines the on/off resistance and the on/off control voltage or current
thresholds. This switch has a finite on resistance and off resistance, and it changes smoothly
between the two as its control voltage (or current) changes. This behavior is important
because it allows PSpice A/D to find a continuous set of solutions for the simulation. You can
make the on resistance very small in relation to the other circuit impedances, and you can
make the off resistance very large in relation to the other circuit impedances.

Voltage-controlled switch model parameters

Model Parameters Description Units Default
ROFF ™~ off resistance ohm 1E+6
RON on resistance ohm 1.0
VOFF control voltage for off state volt 0.0
VON control voltage for on state volt 1.0

*See, MODEL (model definition).

* RON andROFF must be greater than zero and less than 1/GMIN

Special considerations

* Using double precision numbers, the simulator can only handle a dynamic range of about
12 decades. Making the ratioR®FF to RON greater than 1E+12 is not recommended.

» Also, it not recommend to make the transition region too narrow. Remember that in the
transition region the switch has gain. The narrower the region, the higher the gain and the
greater the potential for numerical problems. The smallest allowed value for
[VON-VOFFL]is RELTOL - (MAX([VONL], [VOFFL])))+ VNTOL.

220

Analog devices

Voltage-controlled switch equations

In the following equations:

Ve = voltage across control nodes o
Lm =log-mean of resistor values Ia{(RON-ROFF)
Lr = log-ratio of resistor values (RON/ROFF)
Vm = mean of control voltages ¥@N+VOFF)/2
Vvd = difference of control voltages \#ON-VOFF

k = Boltzmann’s constant

T = analysis temperature (°K)

221

Analog devices S

Voltage-controlled switch equations for switch resistance

Rs = switch resistance
For: voN > VOFF
if:
V¢ > VON
then:
Rs =RON
if:
V¢ < VOFF

then:
Rs =ROFF

if:
VOFF < V¢ <VON
then:
Rs =exgLm + 3-Lr-(Vc-Vm)/(2-Vd) - 2-Lr-(Vc-Vnijvd?)
For: vON < VOFF
if:
\Vc < VON
then:
Rs =RON
if:
V¢ > VOFF

then:
Rs =ROFF

if:
VOFF > V¢ >VON

then:
Rs =exgLm - 3-Lr-(Vc-Vm)/(2-Vd) + 2-Lr-(Vc-Vnijvd?)

Voltage-controlled switch equation for noise

Noise is calculated assuming a 1.0-hertz bandwidth. The voltage-controlled switch generates
thermal noise as if it were a resistor having the same resistance that the switch has at the bias
point, using the following spectral power density (per unit bandwidth):

i2=4k-T/Rs

Section

222

Analog devices

Transmission line

Description

Comments

The transmission line device is a bidirectional delay line with two ports, A and B. The (+) and
(-) nodes define the polarity of a positive voltage at a port.

During transient.T[RAN (transient analysis) analysis, the internal time step is limited to
be no more than one-half the smallest transmission delay, so short transmission lines cause
long run times.

The simulation status window displays the properties of the three shortest transmission lines
in a circuit if a transient run’s time step ceiling is set more frequently by one of the
transmission lines. This is helpful when you have a large number of transmission lines. The
properties displayed are:

* % loss: percent attenuation at the characteristic
delay (i.e., the degree to which the line is lossy)

* time step ceiling: induced by the line
* 9% of line delay: time step size at percentage of characteristic delay

These transmission line properties are displayed only if they are slowing down the simulation.

For a line that uses a model, the electrical length is given after the model name. Example T5
of Examplesuses TMOD to specify the line parameters and has an electrical length of one
unit.

All of the transmission line parameters from either the ideal or lossy parameter set can be
expressions. In addition, R and G can be general Laplace expressions. This allows the user to
model frequency dependent effects, such as skin effect and dielectric loss. However, this adds
to the computation time for transient analysis, since the impulse responses must be obtained
by an inverse FFT instead of analytically.

<“Chapter

223

Analog devices

Ideal line

General form

Description

Comments

T<name> <A port (+) node> <A port (-) node>

<B port (+) node> <B port (-) node>

+ [model namel

+ Z0=<value> [TD=<value>] [F=<value> [NL=<value>]]

+ IC= <near voltage> <near current> <far voltage> <far current>

+

As shown below, port A’s (+) and (-) nodes are 1 and 2, and port B’s (+) and (-) nodes are 3
and 4, respectively.
11, O-IS

70 (")delayed 13 (Rdelayed 11

()delayed V3-v4 (Odelayed V1-V2

®

2 4

For the ideal line, IC sets the initial guess for the voltage or current across the ports. The
<near voltage> value is the voltage across A(+) and A(-) and the <far voltage> is the voltage
across B(+) and B(-). The <near current> is the current through A(+) and A(-) and the

<far current> is the current through B(+) and B(-).

For the ideal case, Z0 is the characteristic impedance. The transmission line’s length can be
specified either by TD, a delay in seconds, or by F and NL, a frequency and a relative
wavelength at F. NL has a default value of 0.25 (F is the quarter-wave frequency). Although
TD and F are both shown as optional, one of the two must be specified.

Both Z0 (Z-zero) and ZO (Z-O) are accepted by the simulator.

224

Analog devices

Lossy line

General form

Examples

Model form
Description

Comments

T<name> <A port (+) node> <A port (-) node>
+ <B port (+) node> <B port (-) node>

+ [<model name> [electrical length value] 1]
+ LEN=<value> R=<value> L=<value>

+ G=<value> C=<value>

T1 1 2 3 4 70=220 TD=115ns

T2 1 2 3 4 70=220 F=2.25MEG

T3 12 3 4 70=220 F=4.5MEG NL=0.5

T4 1 2 3 4 LEN=1 R=.311 L=.378u G=6.27u C=67.3p
T5 1 2 3 4 TMOD 1

.MODEL <model name> TRN [model parameters]

The simulator uses a distributed model to represent the properties of a lossy transmission line.
That is, the line resistance, inductance, conductance, and capacitance are all continuously
apportioned along the line’s length. A common approach to simulating lossy lines is to model
these characteristics using discrete passive elements to represent small sections of the line.

This is the lumped model approach, and it involves connecting a set of many small subcircuits
in series as shown below:

1 1

Lumped line segment

This method requires that there is enough lumps to adequately represent the distributed
character of the line, and this often results in the need for a large netlist and correspondingly
long simulation times. The method also produces spurious oscillations near the natural
frequencies of the lumped elements.

An additional extension allows systems of coupled transmission lines to be simulated.
Transmission line coupling is specified using the K device. This is done in much the same way
that coupling is specified for inductors. See the descriptidneafsmission line couplingfor

further details.

The distributed model allows freedom from having to determine how many lumps are
sufficient, and eliminates the spurious oscillations. It also allows lossy lines to be simulated
in a fraction of the time necessary when using the lumped approach, for the same accuracy.

For a lossy line, LEN is the electrical length. R, L, G, and C are the per unit length values of
resistance, inductance, conductance, and capacitance, respectively.

Example T4 specifies a lossy line one meter long. The lossy line model is similar to that of the
ideal case, except that the delayed voltage and current values include terms which vary with
frequency. These terms are computed in transient analysis using an impulse response
convolution method, and the internal time step is limited by the time resolution required to
accurately model the frequency characteristics of the line. As with ideal lines, short lossy lines
cause long run times.

225

Analog devices T

Capture parts

Ideal and lossy transmission lines

Listed below are the properties that you can set per instance of an ideal (T) or lossy (TLOSSY)
transmission line. The parts contained in the TLINE.SLB part library contain a variety of
transmission line types. Their part properties vary.

Part name Model type Property Property description

T transmission line Z0 characteristic impedance

TD transmission delay

F frequency for NL

NL number of wavelengths or wave number
TLOSSY transmission line LEN electrical length

R per unit length resistance

L per unit length inductance

G per unit length conductance

C per unit length capacitance

*Not available for Basics+ users.

PSpice A/D uses a distributed model to represent the properties of a lossy transmission line.
That is, the line resistance, inductance, conductance, and capacitance are all continuously
apportioned along the line’s length.

A common approach to simulating lossy lines is to model these characteristics using discreet
passive elements to represent small sections of the line. This is the lumped model approach,
and it involves connecting a set of many small subcircuits in series. This method requires that
enough lumps exist to adequately represent the distributed characteristic of the line. This often
results in the need for a large netlist and correspondingly long simulation time. The method
also produces spurious oscillations near the natural frequencies of the lumped elements.

The distributed model used in PSpice A/D frees you from having to determine how many
lumps are sufficient, and eliminates the spurious oscillations. It also allows lossy lines to be
simulated with the same accuracy in a fraction of the time required by the lumped approach.

In addition, you can make R and G general Laplace expressions. This allows frequency
dependent effects to be modeled, such as skin effect and dielectric loss.

226

Analog devices

Coupled transmission lines

Listed below are the properties that you can set per instance of a coupled transmission line
part. The part library provides parts that can accommodate up to five coupled transmission

lines. You can also create new parts that have up to ten coupled lines.

Part name Model type Property Property description
T2COUPLED coupled transmission line—LEN electrical length
T3COUPLED symmetric . .
TACOUPLED R per unit length resistance
T5COUPLED L per unit length inductance
G per unit length conductance
T2COUPLEDX coupled transmission line—LEN electrical length
T3COUPLEDX asymmetric
TACOUPLEDX : :
T5COUPLEDX R per unit length resistance
L per unit length inductance
G per unit length conductance
C per unit length capacitance
LM per unit length mutual
inductance
CM per unit length mutual
capacitance
KCOUPLE2 transmission line coupling T1 name of first coupled line
matrix
T2 name of second coupled
line
LM per unit length mutual
inductance
CM per unit length mutual
capacitance
KCOUPLE3 Tl name of first coupled line
KCOUPLE4
KCOUPLES T2 Ir_lame of second coupled
ine
T3 name of third coupled line
LMij per unit length mutual
inductance between line Ti
and line Tj
CMij per unit length mutual
capacitance between line Ti
and line Tj

*T2COUPLEDX is functionally identical to T2COUPLED. However, the T2COUPLEDX implementation uses
the expansion of the subcircuit referenced by T2COUPLED.

227

Analog devices

Simulating coupled lines

Use the K device to simulate coupling between transmission lines. Each of the coupled
transmission line parts provided in the standard part library translate to K device and T device
declarations in the netlist. PSpice A/D compiles a system of coupled lines by assembling
capacitive and inductive coupling matrices from all of the K devices involving transmission
lines. Though the maximum order for any one system is ten lines, there is no explicit
limitation on the number of separate systems that may appear in one simulation.

The simulation model is accurate for:
e ideal lines
* low-loss lossy lines

» systems of homogeneous, equally spaced high-loss lines

For more information, s€Bransmission line coupling

Simulation considerations

When simulating, transmission lines with short delays can create performance bottlenecks by
setting the time step ceiling to a very small value.

If one transmission line sets the time step ceiling frequently, PSpice A/D reports the three
lines with the shortest time step. The status window displays the percentage attenuation, step
ceiling, and step ceiling as percentage of transmission line delay.

If your simulation is running reasonably fast, you can ignore this information and let the
simulation proceed. If the simulation is slowed significantly, you may want to cancel the
simulation and modify your design. If the line is lossy and shows negligible attenuation,
model the line as ideal instead.

228

Analog devices T

Transmission line model parameters

Model

parameters ~ Description Units ™ Default

for all transmission lines

IC Sets the initial condition and all four values must
be entered.

Four values are expected when IC is specified: the
near-end voltage, the near-end current, the far-end
voltage, and the far-end current, given in that order.

for ideal transmission lines

Z0 characteristic impedance ohms none
D transmission delay seconds none
F frequency fomL Hz none

NL relative wavelength none 0.25

for lossy transmission lines

R per unit length resistance ohms/unit length none
L per unit length inductance henries/unit length none
G per unit length conductance mhos/unit length none
c per unit length capacitance farads/unit length none
LEN** physical length _agrees with RLGC none

*SeeMODEL (model definition). The order is from the most commonly used to the least commonly used parameter.
** Any length units can be used, but they must be consistent. For instance, if LEN is in feet, then the units of R mustdf®at.oh
*** A Jossy line with R=G=0 andLEN=1 is equivalent to an ideal line wilhO = A/E andD = LEN OJL [C

229

Analog devices T

References

For more information on how the lossy transmission line is implemented, refer to:

[1] Roychowdhury and Pederson, “Efficient Transient Simulation of Lossy Interconnect,”
Design Automation Conference,
1991.

Section

230

Analog devices \%

Independent voltage source & stimulus

The Independent Current Source & Stimulus (1) and the Independent Voltage Source &

Stimulus (V) devices have the same syntax.|8éependent current source & stimulus

¢Chapter

231

Analog devices W

Current-controlled switch

General form W<name> <(+) switch node> <(-) switch node>
+ <controlling V device name> <model name>
Examples W12 13 17 VC WMOD
WRESET 5 0 VRESET RELAY
Model form .MODEL <model name> ISWITCH [model parameters]
Description The current-controlled switch is a special kind of current-controlled resistor.

T
R
w1l

This model was chosen for a switch to try to minimize numerical problems. However, there
are a few things to consider; seépecial considerations

2

Arguments and options

<controlling V device name>
The current that the resistance between the <(+) switch node> and <(-) switch node>
depends on.

RON andROFF
Must be greater than zero and less than 1/GMIN. The resistance varies continuously
between them.

Comments A resistance of 1/GMIN is connected between the controlling nodes to keep them from
floating. SeeOPTIONS (analysis options)for information on setting GMIN.

Although very little computer time is required to evaluate switches, during transient analysis

the simulator must step through the transition region using a fine enough step size to get an
accurate waveform. Having many transitions can produce long run times when evaluating the
other devices in the circuit for many times.

<=Chapter

232

Analog devices

Capture parts

Ideal switches

Summarized below is the available current-controlled switch part type limé¢heout.s1b
part library. To create a time-controlled switch, connect the switch control pins to a voltage
source with the appropriate voltage vs. time values (transient specification).

Device type Part name Model type
Current-controlled switch WBREAK ISWITCH

The ISWITCH model defines the on/off resistance and the on/off control voltage or current
thresholds. This switch has a finite on resistance and off resistance, and it changes smoothly
between the two as its control voltage (or current) changes. This behavior is important
because it allows PSpice A/D to find a continuous set of solutions for the simulation. You can
make the on resistance very small in relation to the other circuit impedances, and you can
make the off resistance very large in relation to the other circuit impedances.

As with current-controlled sources (F, FPOLY, H, and HPOLY), WBREAK contains a
current-sensing voltage source. When netlisted, WBREAK generates two device declarations
to the circuit file set:

» one for the controlled switch
» one for the independent current-sensing voltage source

If you want to create a new part for a current-controlled switch (with, for example, different
on/off resistance and current threshold settings in the ISWITCH model), the TEMPLATE
property must account for the additional current-sensing voltage source.

233

Analog devices W

Current-controlled switch model parameters

Model . .

parameters * Description Units Default
IOFF control current for off state amp 0.0
ION control current for on state amp 1E-3
ROFF off resistance ohm 1E+6
RON on resistance ohm 1.0

*See.MODEL (model definition).

Special considerations

Using double precision numbers, the simulator can handle only a dynamic range of about 12
decades. Therefore, it is not recommended making the raRiOFefto RON greater than
1.0E+12.

Similarly, it is also not recommended making the transition region too narrow. Remembering
that in the transition region the switch has gain. The narrower the region, the higher the gain
and the greater the potential for numerical problems. The smallest allowed vahgfor

-IOFF[J is RELTOL - (MAX(JON[, (IOFF[]))+ ABSTOL .

Current-controlled switch equations

In the following equations:

Ic = controlling current y
Lm =log-mean of resistor valuedn{(RON-ROFF) 2)
Lr = log-ratio of resistor values l(RON/ROFF)

Im = mean of control currents 1ON+IOFF)/2

Id = difference of control currentsiSN-IOFF

k = Boltzmann’s constant

T = analysis temperature (°K)

234

Analog devices W

Current-controlled switch equations for switch resistance

For: 10N > I1OFF

if:
Ic > 10N
then:
Rs =RON
if:
Ic <IOFF
then:
Rs =ROFF
if:
IOFF < Ic <ION
then:
Rs =exgLm + 3:-Lr-(Ic-Im)/(2-1d) - 2-Lr-(Ic-Insjld?)
For: IoN < IOFF
if:
Ic <ION
then:
Rs =RON
if:
Ic > IOFF
then:
Rs =ROFF
if:
IOFF > Ic >I10N
then:
Rs =exgLm - 3-Lr-(Ic-Im)/(2-1d) + 2-Lr-(Ic-Intjld3)

Current-controlled switch equation for noise

Noise is calculated assuming a 1.0-hertz bandwidth. The current-controlled switch generates
thermal noise as if it were a resistor using the same resistance as the switch has at the bias
point, using the following spectral power density (per unit bandwidth):

i2=4k-T/Rs

Section

235

Analog devices X

Subcircuit instantiation

Purpose This statement causes the referenced subcircuit to be inserted into the circuit using the given
nodes to replace the argument nodes in the definition. It allows a block of circuitry to be
defined once and then used in several places.

General form X<name> [nodel]* <subcircuit name> [PARAMS: <<name> = <value>>*]
+ [TEXT: < <name> = <text value> >*]
Examples X12 100 101 200 201 DIFFAMP

XBUFF 13 15 UNITAMP

XFOLLOW IN OUT VCC VEE OUT OPAMP

XFELT 1 2 FILTER PARAMS: CENTER=200kHz
X27 Al A2 A3 Y PLD PARAMS: MNTYMXDLY=1

+ TEXT: JEDEC_FILE=MYJEDEC.JED

XNANDI 25 28 7 MYPWR MYGND PARAMS: IO_LEVEL=2

Arguments and options

<subcircuit name>
The name of the subcircuit’s definition. SE&JBCKT (subcircuit).

PARAMS:
Passes values into subcircuits as arguments and into expressions inside the subcircuit.

TEXT:
Passes text values into subcircuits and into text expressions inside the subcircuit.

Comments There must be the same number of nodes in the call as in the subcircuit’s definition.

Subcircuit references can be nested; that is, a call can be given to subcircuit A, whose
definition contains a call to subcircuit B. The nesting can be to any level, but must not be
circular: for example, if subcircuit A’s definition contains a call to subcircuit B, then subcircuit
B’s definition must not contain a call to subcircuit A.

Section
<=Chapter

236

Analog devices Z

IGBT

General form /<name> <collector> <gate> <emitter> <model name>
+ [AREA=<value>] [WB=<value>] [AGD=<value>]
+ [KP=<value>] [TAU=<value>]

Examples ZDRIVE 1 4 2 IGBTA AREA=10.1u WB=91u AGD=5.1u KP=0.381
/231 3 2 9 IGBT27
Model form .MODEL <model name> NIGBT [model parameters]
Description Theequivalent circuit for the IGBT is shown below. It is modeled as an intrinsic device (not

as a subcircuit) and contains five DC current components and six charge (capacitive)
components. An overview of the model equations is included below. For a more detailed
description of the defining equations see references [1] through f&fefences

G
o
E(s)
o
ngs/dtGD oo [\) dQqglet
/v\
\J
A\ JaQgs/dt
Imult
()
N
deuIt/dt
loss Qe /dt lpss 1\ dQep/dt
e
T
C

<=Chapter

237

Analog devices Z

Capture parts

The following table lists the set of IGBT breakout parts designed for customizing model
parameters for simulation. These are useful for setting up Monte Carlo and worst-case
analyses with device and/or lot tolerances specified for individual model parameters.

Part name Model type Property Property description

ZBREAKN IGBT AGD gate-drain overlap area
AREA area of the device
KP MOS transconductance
TAU ambipolar recombination lifetime
WB Metallurgical base width
MODEL NIGBT model name

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by
defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL.
Additionally, model parameters can be assigned unique measurement temperatures using the
T_MEASURED model parameter. For more information,|S#T model parameters

238

Analog devices

IGBT device parameters

The general form of the IGBT syntax allows for the specification of five device parameters.

These device parameters and their associated default values are defined in previous table. The
IGBT model parameters and their associated default values are defined in the table that
follows. Model parameters can be extracted from data sheet information by using the OrCAD
Model Editor. Also, a library of model parameters for commercially available IGBTs is
supplied with the software.

The parametersGD, AREA, KP, TAU, andwB are specified as both device and model
parameters, and they cannot be used in a Monte Carlo analysis.

When specified as device parameters, the assigned values take precedence over those which
are specified as model parameters. Also, as device parameters (but not as model parameters),
they can be assigned a parameter value and used in conjunction with a .DC or .STEP analysis.

E));r\gcrfeters Description Units Default
AGD gate-drain overlap area ’m 5.0E-6
AREA area of the device m 1.0E-5
KP MOS transconductance AN 0.38

TAU ambipolar recombination lifetime sec 7.1E-6
WB metallurgical base width m 9.0E-5

239

Analog devices Z
IGBT model parameters

'p\)/lzfrgrer:eters * Description Units Default
AGD gate-drain overlap area ’m 5.0E-6
AREA area of the device fn 1.0E-5
BVF avalanche uniformity factor none 1.0
BVN avalanche multiplication exponent none 4.0
CGS gate-source capacitance per unit area E/cm 1.24E-8
COXD gate-drain oxide capacitance per unit area Fl/cm 3.5E-8
JSNE emitter saturation current density Algm 6.5E-13
KF triode region factor none 1.0

KP MOS transconductance ARV 0.38

MUN electron mobility cri/(V-s) 1.5E3
MUP hole mobility cnfi(V-s) 4 5E2
NB base doping 1/cf 2.E14
TAU ambipolar recombination lifetime sec 7.1E-6
THETA transverse field factor v 0.02
VT threshold voltage \% 4.7

VTD gate-drain overlap depletion threshold \% 1.E-3
WB metallurgical base width m 9.0E-5

*See.MODEL (model definition) statement.

240

Analog devices

IGBT equations

In the following equations:

Imos = MOSFET channel current

I+ =anode current

l.ss = sSteady-state (bipolar) collector current
lpss = Steady-state base current

Imut = avalanche multiplication current

R, =conductivity modulated base resistance

b = ambipolar mobility ratio
D, = diffusion coefficient for holes
W = quasi-neutral base width

Qep =instantaneous excess carrier base charge

Qp, =background mobile carrier charge

n; =intrinsic carrier concentration

M =avalanche multiplication factor

lgen = (bipolar)collector-base thermally generated current
g =dielectric permittivity of silicon

q = electron charge

Wy =base (bipolar) to collector depletion width

241

Analog devices

IGBT equations for DC current

MOSFET channel current

0o For Vge<VT
O 2
O O KF OV 4o O
[KF KP [V = VT) IV - O
I = B J 2 For Vg4s< (Vgs— VT)/KF
Mos = O T+ TRETA [V ;o VT) or Vys< (Vgs = VT)
u 2
E KP V= VT)
0 2H1+THETA V4 —VT)) For Vys> (Vgs VT)/KF
anode current: current through the resistor R~
I - VCe
T Rb
steady-state collector current
B 0 For Vep< 0
less 0O 1 O 0b I:JEDEAEDED
O+ 0T O b0 w2 EEer For Vgp> 0
O w
steady-state base current
B 0 For Vgp< 0
O
= 0 20
lbss= 0 Qen , et £ INB O{JSNE [AREA) For Vgp> 0
oAV 0QgD O p2 O

avalanche multiplication current

Imult =(M-1) |:(Imos"' Icss) +M |:Igen

242

Analog devices

IGBT equations for capacitance

gate source

Cgs=CGS Qgs = CGS IV g
drain source
(AREA —AGD) [k _
4o = si Qgs = G {AREA —AGD) [NB DW
Wisi

2 (kg {(Vgq+ 0.6)

where stj = J

q[NB
gate drain
FOr V<V —VTD
Cgg = COXD Qgg = COXD IV 4
FOr Vg2V —VTD
Cyqi COXD

cC, =S99
d
9 Cygj+ COXD

2
q[NB [By; (AGD” [£OXD DWqg; g3 + SO0 Wag COXD Wiy

= — XD D
Qug coxd U ¢ (AGD e.acp L COXPH
where = s Jz g [(Vgq * VTD)
Wigj dgj qCNB
Ccer
Qep T, _ g, [AREA
Ccer: - = Cij B W, ..
3 bcj
Cmult
CmuIt = (M _1) |:(:t;er muIt (M 1) Echr
emitter base
- der
eb dvph

243

Analog devices

References

For more information on the IGBT model, refer to:

[1] G.T. Oziemkiewicz, “Implementation and Development of the NIST IGBT Model in a
SPICE-based Commercial Circuit Simulator,” Engineer’s Thesis, University of Florida,
December 1995.

[2] A.R.Hefner, Jr., “INSTANT - IGBT Network Simulation and Transient Analysis Tool,”
National Institute of Standards and Technology Special Publication SP 400-88, June 1992.

[3] A.R.Hefner, Jr., “An Investigation of the Drive Circuit Requirements for the Power
Insulated Gate Bipolar Transistor (IGBT),” IEEE Transactions on Power Electrvioics,
No. 2, April 1991, pp. 208-219.

[4] A.R.Hefner, Jr., “Modeling Buffer Layer IGBTSs for Circuit Simulation,” IEEE
Transactions on Power Electroni®®l. 10, No. 2, March 1995, pp. 111-123

Section

244

e ey T
Digital devices

Behavioral primitives Multi-bit A/D and D/A converter
Bidirectional transfer gates Programmable logic array

Delay line Pullup and pulldown

Diqgital input (N device) Random access read-write memory
Digital output (O device) Read only memory

File stimulus Standard gates

Flip-flops and latches Stimulus generator

Input/output model Tristate gates

DEVEQ Index Glossary 4

Commands Analog devices Device equations

Digital devices Digital device summary

Digital device summary

Device class Type Description
primitives U low-level digital devices (e.g., gates and flip-flops)
stimuli U digital stimulus generators
file-based stimulus
interface N digital input device
O digital output device

Primitives are primarily used in subcircuits to model complete devices.

Stimulus devices are used in the circuit to provide input for other digital devices during the
simulation.

Interface devices are mainly used inside subcircuits that model analog/digital and
digital/analog interfaces.

The digital devices are part of the digital simulation feature of PSpice A/D. For more
information on digital simulation and creating models, refer to your PSpice user’'s
guide.

246

Digital devices Digital primitive summary

Digital primitive summary

Digital primitives are low-level devices whose main use is modeling off-the-shelf parts, often
in combination with each other.

Digital primitives should not be confused with the subcircuits in the libraries that use them.
For instance, the 74LS00 subcircuitinis. 11b uses a NAND digital primitive to model the
74LS00 part, but it also includes timing and interface information that makes the model
adapted for use in a circuit simulation. For more information, refer to your PSpice user’s
guide.

This section provides a reference for each of the digital primitives supported by the simulator,
to help you create digital parts that are not in the model library.

Primitive class Type Description

Standard gates BUF buffer
INV inverter
AND AND gate
NAND NAND gate
OR OR gate
NOR NOR gate
XOR exclusive OR gate
NXOR exclusive NOR gate
BUFA buffer array
INVA inverter array
ANDA AND gate array
NANDA NAND gate array
ORA OR gate array
NORA NOR gate array
XORA exclusive OR gate array
NXORA exclusive NOR gate array
AO AND-OR compound gate
OA OR-AND compound gate
AOI AND-NOR compound gate
OAl OR-NAND compound gate

247

Digital devices

Digital primitive summary

Primitive class Type Description
Tristate gates BUF3 buffer
INV3 inverter
AND3 AND gate
NAND3 NAND gate
OR3 OR gate
NOR3 NOR gate
XOR3 exclusive OR gate
NXOR3 exclusive NOR gate
BUF3A buffer array
INV3A inverter array
AND3A AND gate array
NAND3A NAND gate array
ORS3A OR gate array
NOR3A NOR gate array
XOR3A exclusive OR gate array
NXORS3A exclusive NOR gate array
Bidirectional transfer gates NBTG N-channel transfer gate
PBTG P-channel transfer gate
Flip-flops and latches JKFF J-K, negative-edge triggered
DFF D-type, positive-edge triggered
SRFF S-R gated latch
DLTCH D gated latch
Pullup and pulldown PULLUP pullup resistor array
PULLDN pulldown resistor array
Delay line DLYLINE delay line
Programmable logic array PLAND AND array
PLOR OR array
PLXOR exclusive OR array
PLNAND NAND array
PLNOR NOR array
PLNXOR exclusive NOR array
PLANDC AND array, true and complement
PLORC OR array, true and complement
PLXORC exclusive OR array, true and
PLNANDC complement
PLNORC NAND array, true and complement
PLNXORC NOR array, true and complement

exclusive NOR array, true and
complement

248

Digital devices

Digital primitive summary

Primitive class Type Description
Read only memory ROM read-only memory
Random access read-write RAM random access read-write memory
memory
Multi-bit A/D and D/A ADC multi-bit A/D converter
converter DAC multi-bit D/A converter
Behavioral primitives LOGICEXP logic expression
PINDLY pin-to-pin delay
CONSTRAIN constraint checking
T

The format for specifying a digital primitive follows the general format described in the next
section. Primitive-specific formats are also described which includes parameters and nodes
that are specific to the primitive type.

Also listed is the specific timing model format for each primitive, along with the appropriate
timing model parameters.

For example, the 74393 part provided in the model library is defined as a subcircuit composed
of U devices as shown below.

subckt 74393 A CLR QA QB QC QD

+ optional: DPWR=$G_DPWR DGND=$G_DGND

+ params: MNTYMXDLY=0 IO_LEVEL=0

UINV inv DPWR DGND

+ CLR CLRBAR

+ DO_GATE I0_STD IO_LEVEL={IO_LEVEL}

Ul jkff(l) DPWR DGND

+ $D_HI CLRBAR A $D_HI $D_HI QA_BUF $D_NC

+ D_393_1 T0_STD MNTYMXDLY={MNTYMXDLY }=

+ [0_LEVEL={TIO_LEVEL}

U2 jkff(l) DPWR DGND

+ $D_HI CLRBAR QA_BUF $D_HI $D_HI QB_BUF $D_NC
+ D_393_2 I0_STD MNTYMXDLY={MNTYMXDLY }

U3 Jkff(l) DPWR DGND

+ $D_HI CLRBAR QB_BUF $D_HI $D_HI QC_BUF $D_NC
+ D_393_2 T0_STD MNTYMXDLY={MNTYMXDLY }

U4 jkff(l) DPWR DGND

+ $D_HI CLRBAR QC_BUF $D_HI $D_HI QD_BUF $D_NC
+ D_393_3 I0_STD MNTYMXDLY={MNTYMXDLY }

UBUFF bufa(4) DPWR DGND

+ QA_BUF QB_BUF QC_BUF QD_BUF QA QB QC Qb

+ D_393_4 T0_STD MNTYMXDLY={MNTYMXDLY}IO_LEVEL={IO_LEVEL}
.ends

When adding digital parts to a part library, you can create corresponding digital device models
by connecting U devices in a subcircuit definition similar to the one shown above. OrCAD
recommends that these be saved in a custom model file. The model files can then be
configured into the model library or specified for use in a given design.

249

Digital devices Digital primitive summary

General digital primitive format

The format of digital primitives is similar to that of analog devices. One difference is that most
digital primitives use two models instead of one. One of the models is the timing model, which
specifies propagation delays and timing constraints, such as setup and hold times. The other
model is the 1/0 model, which specifies information specific to the device’s input/output
characteristics. The reason for having two models is that, while timing information is specific
to a device, the input/output characteristics apply to a whole device family. Thus, many
devices in the same family reference the same 1/O model, but each device has its own timing
model. If wanted, the timing models can be selected among primitives of the same class.

The general digital primitive format is shown below. Each statement can span one or more
lines by using the (line continuation) character in the first column position. Comments can
be added to each line by using thi&-line comment). For specific information on each
primitive type, see the sections that follow.

General form U<name> <primitive type> [(<parameter value>*)]
<digital power node> <digital ground node>
<node>*

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

+

+ + + +

Model form .MODEL <model name> UIO (<model parameters>*)
Seelnput/output model parameters for a list of the UIO model parameters.

Timing model format
.MODEL <model name> <model type> (<model parameters>*)

Examples Ul NAND(2) $G_DPWR $G_DGND 1 2 10 DO_GATE I0_DFT
U2 JKFF(1) $G_DPWR $G_DGND 3 5 200 3 3 10 2 D_293ASTD 10_STD
U3 INV $G_DPWR $G_DGND IN OUT D_INV IO_INV MNTYMXDLY=3 I0_LEVEL=2

Arguments and options

<primitive type> [(<parameter value>*)]
The type of digital device, such as NAND, JKFF, or INV. It is followed by zero or more
parameters specific to the primitive type, such as number of inputs. The number and
meaning of the parameters depends on the primitive type. See the sections that follow for
a complete description of each primitive type and its parameters.

<digital power node> <digital ground node>
These nodes are used by the interface subcircuits which connect analog nodes to digital
nodes or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more input and output nodes. The number of hodes depends on the primitive type
and its parameters. Analog devices, digital devices, or both can be connected to a node. If
a node has both analog and digital connections, then the simulator automatically inserts
an interface subcircuit to translate between logic levels and voltages. Refer to your PSpice
user’s guide for more information.

250

Digital devices

Digital primitive summary

<timing model name>
The name of a timing model that describes the device’s timing characteristics, such as
propagation delay and setup and hold times. Each timing parameter has a minimum,
typical, or maximum value which can be selected using the opNmNTAMXDLY device
parameter (described below) or thheMNTYMX option (see
.OPTIONS (analysis options). The type of the timing model and its parameters are
specific to each primitive type and are discussed in the following sections. (Note that the
PULLUP, PULLDN, and PINDLY primitives do not have timing models.)

<I/O model name>
The name of an 1/0 model, which describes the device’s loading and driving
characteristics. /0O models also contain the names of up to four DtoA and AtoD interface
subcircuits, which are automatically called by the simulator to handle interface nodes.
Refer to your PSpice user’s guide for a more detailed description of I/O models.

<model type>
Is specific to the primitive type. See the specific primitive for the correct <model type>
and associated <model parameters>. General timing model issues are discussed in the next
section.

MNTYMXDLY
An optional device parameter that selects either the minimum, typical, or maximum delay
values from the device’s timing model. A fourth option operates the primitive in Digital
Worst-Case (min/max) mode. If not specified, MNTYMXDLY defaults to 0. Valid values
are:

0 = Current value of .OPTIONS DIGMNTYMX (default=2)
1 = Minimum

2 = Typical

3 = Maximum

4 = Worst-case (min/max) timing

IO_LEVEL
An optional device parameter that selects one of the four AtoD or DtoA interface
subcircuits from the device’s I/O model. The simulator calls the selected subcircuit
automatically in the event a node connecting to the primitive also connects to an analog
device. If not specified, IO_LEVEL defaults to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)
1 = AtoD1/DtoAl
2 = AtoD2/DtoA2
3 = AtoD3/DtoA3
4 = AtoD4/DtoA4

Refer to your PSpice user’s guide for more information.

251

Digital devices Digital primitive summary

Timing models

With the exception of the PULLUP, PULLDN, and PINDLY devices, all digital primitives
have a timing model that provides timing parameters to the simulator. Within a timing model,
there can be one or more types of parameters

+ propagation delays (TP)
e setup times (TSU)

e hold times (TH)

* pulse widths (TW)

« switching times (TSW)

Each parameter is further divided into three values: minimum (MN), typical (TY), and
maximum (MX). For example, the typical low-to-high propagation delay on a gate is
specified agPLHTY. The minimum data-to-clock setup time on a flip-flop is specified as
TSUDCLKMN.

One or more parameters can be missing from the timing model definition. Data books do not
always provide all three (minimum, typical, and maximum) timing specifications. The way
the simulator handles missing parameters depends on the type of parameter.

Treatment of unspecified propagation delays

®

This discussion applies only to propagation delay parameters (TP). All other timing
parameters, such as setup/hold times and pulse widths, are handled differently and
are described in Treatment of unspecified timing constraints

Often, only the typical and maximum delays are specified in data books. If, in this case, the
simulator were to assume that the unspecified minimum delay just defaults to zero, the logic
in certain circuits could break down.

For this reason, the simulator provides two configurable optiG§INTYSCALE and
DIGTYMXSCALE (set using theOPTIONS (analysis options)command), which are used to
extrapolate unspecified propagation delays in the timing models.

DIGMNTYSCALE

ThIS option computes the minimum delay when a typical delay is known, using the formula
TPXXMN =DIGMNTYSCALE - TPxXTY

DIGMNTYSCALE has a default value of 0.4, or 40% of the typical delay. Its value must be
between 0.0 and 1.0.

DIGTYMXSCALE

This option computes the maximum delay from a typical delay, using the formula
TPXXMX =DIGTYMXSCALE - TPXXTY

DIGTYMXSCALE has a default value of 1.6. Its value must be greater than 1.0.

252

Digital devices Digital primitive summary

When a typical delay is unspecified, its value is derived from the minimum and/or maximum
delays, in one of the following ways. If both the minimum and maximum delays are known,
the typical delay is the average of these two values. If only the minimum delay is known, the
typical delay is derived using the value of theMNTYSCALE option. Likewise, if only the
maximum delay is specified, the typical delay is derived uBi@QYMXSCALE. Obviously,

if no values are specified, all three delays have a default value of zero.

<=Chapter

Treatment of unspecified timing constraints

The remaining timing constraint parameters are handled differently from the propagation
delays. Often, data books state pulse widths, setup times, and hold times as a minimum value.
These parameters do not lend themselves to the extrapolation method used for propagation
delays.

Instead, when one or more timing constraints are omitted, the simulator uses the following
steps to fill in the missing values:

« |If the minimum value is omitted, the default value is zero.

« If the maximum value is omitted, it takes on the typical value if one was specified,
otherwise it takes on the minimum value.

» If the typical value is omitted, it is computed as the average of the minimum and
maximum values.

253

Digital devices Digital primitive summary

Gates

Logic gates come in two types: standard and tristate. Standard gates always have their outputs
enabled, whereas tristate gates have an enable control. When the enable control is 0, the
output’s strength is Z and its level is X.

Logic gates also come in two forms: simple gates and gate arrays. Simple gates have one or
more inputs and only one output. Gate arrays contain one or more simple gates in one
component. Gate arrays allow one to work directly using parts that have several gates in one

package.

The usual Boolean equations apply to these gates having the addition of the X level. The rule
for X is: if an input is X, and if changing that input between one and zero would cause the
output to change, then the output is also X. In other words, X is only propagated to the output
when necessary. For example: 1 AND X =X; 0 AND X=0; 00OR X=X;10R X=1.

<=Chapter

254

Digital devices

Digital primitive summary

Standard gates

Device format

U<name> <gate type> (<parameter value>*)
<digital power node> <digital ground node>
<input node>* <output node>*

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

+ o+ o+ + o+

The standard gate types and their parameters are liskdridard Gate Types

Timing model format

Examples

<timing model name> UGATE [model parameters]

U5 AND(2) $G_DPWR $G_DGND INO IN1 OUT ; two-input AND gate
+ T_AND2 10_STD

U2z INV $G_DPWR $G_DGND 3 5 ; simple INVerter
+ T_INV I0_STD
Ul3 NANDA(Z2,4) $G_DPWR $G_DGND ; four two-input NAND gates

+ INAO INA1 INBO INB1 INCO INCI
+ INDO IND1 OUTA OUTB OUTC OUTD
+ T_NANDA I0_STD

U9 A0(3,3) $G_DPWR $G_DGND ;three-input AND-OR gate
+ INAO INA1 INA2 INBO INB1 INB2 INCO INC1 INC2

+ OUT T_AO I0_STD

+ MNTYMXDLY=1 IO0_LEVEL=1

.MODEL T_AND2 UGATE ; AND2 Timing Model
+ TPLHMN=15ns TPLHTY=20ns TPLHMX=25ns

+ TPHLMN=10ns TPHLTY=15ns TPHLMX=20ns

+)

Arguments and options

<no. of inputs><no. of gates>
The <no. of inputs> is the number of inputs per gate and <no. of gates> is the number of
gates. in* and out* mean one or more nodes, whereas in and out refer to only one node.

In gate arrays the order of the nodes is: all inputs for the first gate, all inputs for the second
gate, ..., output for the first gate, output for the second gate, ... In other words, all of the
input nodes come first, then all of the output nodes. The total number of input nodes is
<no. of inputs>-<no. of gates>; the number of output nodes is <no. of gates>.

A compound gate is a set of <no. of gates> first-level gates which each have <no. of
inputs> inputs. Their outputs are connected to a single second-level gate. For example, the
AO component has <no. of gates> AND gates whose outputs go into one OR gate. The
OR gate’s output is the AO device’s output. The order of the nodes is: all inputs for the
first, first-level gate; all inputs for the second, first-level gate; ...; the output of the
second-level gate. In other words, all of the input nodes followed by the one output node.

Section

255

Digital devices

INAO
INA1

INBO
INB1

INCO
INC1

INDO
IND1

Standard gates

Digital

primitive summary

_} ouTA INAO _}
INAL 1

_} OUTB
] INBO —

IAND gate array INB1 _D% ouT
:} ouTC NGO

INC1 _}
_} ouTD AND-OR compound gate
Type Parameters Nodes Description
AND (<no. of inputs>) in*, out AND gate
ANDA (<no. of inputs>,<no. of gates>) in* out* AND gate array
AO (<no. of inputs>,<no. of gates>) in* out AND-OR compound gate
AOI (<no. of inputs>,<no. of gates>) in* out AND-NOR compound
gate
BUF not applicable in, out buffer
BUFA (<no. of gates>) in*, out* buffer array
INV not applicable in, out inverter
INVA (<no. of gates>) in*, out* inverter array
NAND (<no. of inputs>) in*, out NAND gate
NANDA (<no. of inputs>,<no. of gates>) in* out* NAND gate array
NOR (<no. of inputs>) in*, out NOR gate
NORA (<no. of inputs>,<no. of gates>) in* out* NOR gate array
NXOR not applicable inl, in2, exclusive NOR gate
out
NXORA (<no. of gates>) in*, out* exclusive NOR gate array
OA (<no. of inputs>,<no. of gates>) in* out OR-AND compound gate
OAl (<no. of inputs>,<no. of gates>) in* out OR-NAND compound
gate
OR (<no. of inputs>) in*, out OR gate
ORA (<no. of inputs>,<no. of gates>) in* out* OR gate array
XOR not applicable inl, in2, exclusive OR gate
out

XORA (<no. of gates>) in*, out* exclusive OR gate array

256

Digital devices Digital primitive summary

Standard gate timing model parameters

Model parameters ~ Description Units Default
TPLHMN delay: low to high, min sec 0
TPLHTY delay: low to high, typ sec 0
TPLHMX delay: low to high, max sec 0
TPHLMN delay: high to low, min sec 0
TPHLTY delay: high to low, typ sec 0
TPHLMX delay: high to low, max sec 0

*See. MODEL (model definition)

257

Digital devices Digital primitive summary

Tristate gates

Device format U<name> <tristate gate type> [(<parameter value>*)]
<digital power node> <digital ground node>

<input node>* <enable node> <output node>*

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

+

+ + + +

Timing model format
.MODEL <timing model name> UTGATE [model parameters]

Examples U5 AND3(2) $G_DPWR $G_DGND INO IN1 ENABLE OUT two-input AND
+ T_TRIAND2 10_STD
U2z INV3 $G_DPWR $G_DGND 3 100 5 ; INVerter
+ T_TRIINV I0_STD
Ul3 NAND3A(2,4) $G_DPWR $G_DGND ; four two-input NAND

+ INAO INA1 INBO INB1 INCO INCI INDO IND1
+ ENABLE OUTA OUTB QUTC 0OUTD
+ T_TRINAND IO_STD

.MODEL T_TRIANDZ UTGATE ; TRI-ANDZ Timing Model
+ TPLHMN=15ns TPLHTY=20ns TPLHMX=25ns ...

+ TPZHMN=10ns TPZHTY=1bns TPZHMX=20ns

+)

Arguments and options

<no. of inputs>
The number of inputs per gate.

<no. of gates>
The number of gates in model.

Comments In gate arrays the order of the nodes is: all inputs for the first gate, all inputs for the second
gate, ..., enable, output for the first gate, output for the second gate, ... In other words, all of
the input nodes come first, then the enable, then all of the output nodes. The total number of
input nodes is <no. of inputs>-<no. of gates>+1; the number of output nodes is <no. of gates>.
If a tristate gate is connected to a net that has at least one device input uging/dahmodel,
or a device output using awTLD I/O model where both parameters are greater than zero, then
that net is simulated as a charge storage net.

Section

258

Digital devices

Tristate gate types

Digital primitive summary

Type Parameters Nodes Description

AND3 (<no. of inputs>) in*, en, out AND gate

AND3A (<no. of inputs>,<no. of gates>) in*, en, out* AND gate array
BUF3 in, en, out Buffer

BUF3A (<no. of gates>) in*, en, out* Buffer array

INV3 in, en, out Inverter

INV3A (<no. of gates>) in*, en, out* Inverter array
NAND3 (<no. of inputs>) in*, en, out NAND gate

NAND3A (<no. of inputs>,<no. of gates>) in*, en, out* NAND gate array
NOR3 (<no. of inputs>) in*, en, out NOR gate

NOR3A (<no. of inputs>,<no. of gates>) in*, en, out* NOR gate array
NXOR3 inl, in2, en, out Exclusive NOR gate
NXOR3A (<no. of gates>) in*, en, out* Excl. NOR gate array
OR3 (<no. of inputs>) in*, en, out OR gate

OR3A (<no. of inputs>,<no. of gates>) in*, en, out* OR gate array
XOR3 inl, in2, en, out Exclusive OR gate
XOR3A (<no. of gates>) in*, en, out* Excl. OR gate array

* in* and out*—Mean one or more nodes present.
in and out—Refer to only one node.
en—Refers to the output enable node.

259

Digital devices Digital primitive summary

Tristate gate timing model parameters

Model parameters ~ Description Units Default
TPLHMN Delay: low to high, min sec 0
TPLHTY Delay: low to high, typ sec 0
TPLHMX Delay: low to high, max sec 0
TPHLMN Delay: high to low, min sec 0
TPHLTY Delay: high to low, typ sec 0
TPHLMX Delay: high to low, max sec 0
TPHZMN Delay: high to Z, min sec 0
TPHZTY Delay: high to Z, typ sec 0
TPHZMX Delay: high to Z, max sec 0
TPLZMN Delay: low to Z, min sec 0
TPLZTY Delay: low to Z, typ sec 0
TPLZMX Delay: low to Z, max sec 0
TPZLMN Delay: Z to low, min sec 0
TPZLTY Delay: Z to low, typ sec 0
TPZLMX Delay: Z to low, max sec 0
TPZHMN Delay: Z to high, min sec 0
TPZHTY Delay: Z to high, typ sec 0
TPZHMX Delay: Z to high, max sec 0

* See .MODEL statement.

260

Digital devices Digital primitive summary

Bidirectional transfer gates

The bidirectional transfer gate is a passive device that connects or disconnects two nodes.
Bidirectional transfer gates have no parameters.

The state of the gate input controls whether the gate connects the two digital nets. The device
type NBTG connects the nodes if the gate is one, and disconnects the nodes if the gate is zero.
Device type PBTG connects the nodes if the gate is zero and disconnects the nodes if the gate
is one.

The 1/0 ModelbRvH andDRVL parameters are used as a ceiling on the strength of a one or
zero, which is passed through a bidirectional transfer gate. If a bidirectional transfer gate is
connected to a net which has at least one device input usingbaliO model parameter
greater than zero, or a device output using@rLbd I/O model parameter greater than zero,
then that net is simulated as a charge storage net.

Device format U<name> NBTG

<digital power node> <digital ground node>
<{gate node> <channel node 1> <channel node 2>
<timing model name> <I/0 model name>
[MNTYMXDLY = <delay select value>]

[IO_LEVEL = <interface subckt select value>]

+

+ + + +

U<name> PBTG

<digital power node> <digital ground node>
<gate node> <channel node 1> <channel node 2>
<timing model name> <I/0 model name>
[MNTYMXDLY = <delay select value>]

[IO_LEVEL = <interface subckt select value>]

Examples U4 NBTG $G_DPWR $G_DGND GATE SD1 SD2
+ BTGl IO_BTG
.MODEL BTGl UBTG

Model form .MODEL <timing model name> UBTG

+ + + +

+

Special behavior when the NBTG or PBTG
Is connected to an analog device

If a channel node of one of these bidirectional transfer gates is connected to an analog device,
then the bidirectional transfer gate is removed during simulation and is replaced with the
digital-to-analog subcircuit specified by the bidirectional transfer gate’s I/O model. Because
the bidirectional transfer gate is passive and bidirectional, this digital-to-analog subcircuit
must model the behavior of the whole bidirectional transfer gate, not just convert its digital
levels to analog signals. Use this format to define the digital-to-analog subcircuit:

.SUBCKT <DtoA subckt name> <gate node> <channel node 1> <channel node 2>

+ <digital power node> <digital ground node>
+ params: DRVL=0 DRVH=0 OutlLD=0 InlLD=0

The contents of the subcircuit must model the behavior of the transfer gate in the analog
domain, at least for the channel. If the subcircuit’'s gate node is connected to analog devices,
then PSpice will simulate the gate node as an analog net. If this behavior is not desired (e.g.,
the gate will be connected to a clock signal, which will slow simulation if it is an analog
signal), then the subcircuit should not have any analog devices connected to the gate node.

261

Digital devices Digital primitive summary

®

The gate node has the same behavior if it is connected to an analog net as other
digital device pins: the analog-to-digital subcircuit specified by the 1/0 model and
IO_LEVEL is connected between the analog net and the gate pin of the device.

Examples

The first example is a subcircuit that models the switch with an analog gate connection. In
some circuit topologies, this may cause large parts of a circuit to convert to analog if a single
net is connected to an analog part. To avoid this, usebthersion of the digital-to-analog
converter by settingo_LEVEL to 3 or 4.

.model io_nbtg uio (drvh=200 drv1=200 inld=10pf outld=15pf
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoAl="DtoA_NBTG"DtoA2="DtoA_NBTG"
+DtoA3="DtoA_NBTG_D"DtoA4="DtoA_NBTG_D"
.model io_pbtg uio (drvh=200 drv1=200 inld=10pf outld=15pf
+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoAl="DtoA_PBTG"DtoA2="DtoA_PBTG"
+DtoA3="DtoA_PBTG_D"DtoA4="DtoA_PBTG_D"
.model io_nbtgs uio (drvh=200 drv1=200

+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoAl="DtoA_NBTG"DtoA2="DtoA_NBTG"
+DtoA3="DtoA_NBTG_D"DtoA4="DtoA_NBTG_D"
.model io_pbtgs uio (drvh=200 drv1=200

+ digpower="DIGIFPWR"TstoreMN=10us
+ inR=10MEGdrvZ =5MEG
+AtoD1="AtoD_HC"AtoD2="AtoD_HC"
+AtoD3="AtoD_HC"AtoD4="AtoD_HC"
+DtoAl="DtoA_PBTG"DtoA2="DtoA_PBTG"
+DtoA3="DtoA_PBTG_D"DtoA4="DtoA_PBTG_D"
.model btgl ubtg

The next two examples are switch models with digital gate inputs. The digital-to-analog
conversion of the gate inputs uses an I/O madein(this example) that is defined here, not
the I/O model of the device driving the gate.

Use these examples in cases where an using analog input would create too many analog
switches. Do not use these when the gate is analog, since this would make an
analog-to-digital-to-analog conversion, which may cause invalid simulation results. (This is
because the analog gate is squared up before being converted to analog again and applied to
the “gate” of the switch.)

262

Digital devices

Digital primitive summary

.subckt DtoA_NBTG gate sdl sd2 pwr gnd

+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=.9 VSAT=1.2
S1 sdl sd2 gate gnd nbtg_smod

Cl sdl gnd {.Ipf+outld}

C2 sdZ2 gnd {.Ipf+outld}

C3 gate gnd {.lpf+inld}

.model nbtg_smod vswitch

+ (ron={(drvi+drvh)/2} roff=Imeg von={VSAT} voff={VTH})
.ends

.subckt DtoA_PBTG gate sdl sd2 pwr gnd

+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=-0.9 VSAT=-1.2
S1 sdl sd2 gate pwr pbtg_smod

Cl sdl pwr {.lpf+outld}

C2 sd2 pwr {.lpf+outld}

C3 gate gnd {.lpf+inld}

.model pbtg_smod vswitch

+ (ron={(drvi+drvh)/2} roff=Imeg von={VSAT} voff={VTH})
.ends

.subckt DtoA_NBTG_D gate sdl sd2 pwr gnd

+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=.9 VSAT=1.2
X1 gate gate_a pwr gnd DtoA_HC

+ params: DRVL={DRVL} DRVH={DRVH} CAPACITANCE={INLD}

S1 sdl sd2 gate_a gnd nbtg_smod

Cl sdl gnd {.1lpf+outld}

C2 sd2 gnd {.Ipf+outld}

.model nbtg_smod vswitch

+ (ron={(drvi+drvh)/2} roff=Imeg von={VSAT} voff={VTH})
.ends

.subckt DtoA_PBTG_D gate sdl sd2 pwr gnd

+params: DRVL=0 DRVH=0 INLD=0 OUTLD=0 VTH=-.9 VSAT=-1.2
X1 gate gate_a pwr gnd DtoA_HC

+ params: DRVL={DRVL} DRVH={DRVH} CAPACITANCE={INLD}

S1 sdl sd2 gate_a pwr pbtg_smod

Cl sdl gnd {.1lpf+outld}

C2 sd2 gnd {.1lpf+outld}

.model pbtg_smod vswitch

+ (ron={(drvi+drvh)/2} roff=Imeg von={VSAT} voff={VTH})
.ends

Section

263

Digital devices Digital primitive summary

Flip-flops and latches

The simulator supports both edge-triggered and gated flip-flops. Edge-triggered flip-flops
change state when the clock changes: on the falling edge for JKFFs, on the rising edge for
DFFs. Gated flip-flops are often referred to as latches. The state of gated flip-flops follows the
input as long as the clock (gate) is high. The state is frozen when the clock (gate) falls.
Multiple flip-flops can be specified in each device. This allows direct modeling of parts which
contain more than one flip-flop in a package.

Initialization

By default, at the beginning of each simulation, all flip-flops and latches are initialized to the
unknown state (that is, they output an X). Each device remains in the unknown state until
explicitly set or cleared by an active-low pulse on either the preset or clear pins, or until a
known state is clocked in.

You can override the X start-up state by setting TIONS (analysis optionsPIGINITSTATE

to either zero or one. If setto zero, all flip-flops and latches in the circuit are cleared. Likewise,
if set to one, all such devices are preset. Any other values produce the default (X) start-up
state. TheIGINITSTATE option is useful in situations where the initial state of the flip-flop is
unimportant to the function of the circuit, such as a toggle flip-flop in a frequency divider.

It is important to note that if the initial state is set to zero or one, the device still outputs an X
at the beginning of the simulation if the inputs would normally produce an X on the output.
For example, if the initial state is set to one, but the clock is an X at time zero, Q and QBar
both go to X when the simulation begins.

X-level handling

The truth-table for each type of flip-flop and latch is given in the sections that follow.
However, how the flip-flops treat X levels on the inputs is not depicted in the truth tables
because it can depend on the state of the device.

The rule is as follows: if an input is X, and if changing that input between one and zero would
cause the output to change, then the output is set to X. In other words, X is only propagated
to the output when necessary. For example: if Q = 0 and PresetBar = X, thef) Qut if Q

=1 and PresetBar = X, then Q 1.

Timing violations

The flip-flop and latch primitives have model parameters which specify timing constraints
such as setup/hold times and minimum pulse-widths. If these model parameter values are
greater than zero, the simulator compares measured times on the inputs against the specified
value. Seétandard gate timing model parametersandTristate gate timing model

parameters.

The simulator reports flip-flop timing violations as digital simulation warning messages in the
.out file. These messages can also be viewed using the Windows version of Probe.

<“Chapter

264

Digital devices Digital primitive summary

Edge-triggered flip-flops
The simulator supports four types of edge-triggered flip-flops:
« D-type flip-flop (DFF), which is positive-edge triggered
« J-K flip-flop (JKFF), which is negative-edge triggered

« Dual-edge D flip-flop (DFFDE), which is selectively positive and/or negative edge
triggered

» Dual-edge J-K flip-flop (JKFFDE), which is selectively positive and/or negative edge
triggered

Device format U<name> DFF (<no. of flip-flops>)
<digital power node> <digital ground node>
<presetbar node> <clearbar node> <clock node>

<d node 1> ... <d node n>
<q output 1> ... <q output n>
<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

<name> JKFF (<no. of flip-flops>)
<digital power node> <digital ground node>
<presetbar node> <clearbar node> <clockbar node>

<j node 1> ... <j node n>

<k node 1> ... <k node n>

<q output 1> ... <g output n>

<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[I0O_LEVEL=<interface subckt select value>]

<name> DFFDE(<no. of flip-flops>)

<digital power node> <digital ground node>

<presetbar node> <clrbar node> <clock node>
<positive-edge enable node> <negative-edge enable node>

<d node 1> ... <d node n>
<q output 1> ... <g output n>
<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY = <delay select value>]
[IO_LEVEL = <interface subckt select value>]

<name> JKFFDE(<no. of flip-flops>)

<digital power node> <digital ground node>

<presetbar node> <clrbar node> <clock node>
<positive-edge enable node> <negative-edge enable node>

<j node 1> ... <Jj node n>

<k node 1> ... <k node n>

<q output 1> ... <q output n>

<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY = <delay select value>]
[IO_LEVEL = <interface subckt select value>]

f+ 4+ + A+ FH A A A A A A A A o+

Timing model format
.MODEL <timing model name> UEFF [model parameters]

265

Digital devices Digital primitive summary

Examples U5 JKFF(1) $G_DPWR $G_DGND PREBAR CLRBAR CLKBAR
* one JK flip-flop
+ J K Q QBAR
+ T_JKFF T0_STD
U2 DFF(2) $G_DPWR $G_DGND PREBAR CLRBAR CLK
* two DFF flip-flops
+ DO D1 QO Q1 QBARO QBARI
+ T_DFF I10_STD

.MODEL T_JKFF UEFF(...) ; JK Timing Model

Comments Use <no. of flip-flops> to specify the number of flip-flops in the device. The three nodes,
<presetbar node>, <clearbar node> and <clock(bar) node>, are common to all flip-flops in the
device.

The <positive-edge enable node> and <negative-edge enable node> are common to all
flip-flops in the dual-edge flip-flops.

266

Digital devices Digital primitive summary

Edge-triggered flip-flop timing model parameters

Model parameters ~ Description Units Default

THDCLKMN Hold: j/k/d after clk/clkb edge, min sec 0
THDCLKTY Hold: j/k/d after clk/clkb edge, typ sec 0
THDCLKMX Hold: j/k/d after clk/clkb edge, max sec 0
TPCLKQLHMN Delay: clk/clkb edge to g/gb low to hi, min sec 0
TPCLKQLHTY Delay: clk/clkb edge to g/gb low to hi, typ sec 0
TPCLKQLHMX Delay: clk/clkb edge to g/gb low to hi, max sec 0
TPCLKQHLMN Delay: clk/clkb edge to g/gb hi to low, min sec 0
TPCLKQHLTY Delay: clk/clkb edge to g/gb hi to low, typ sec 0
TPCLKQHLMX Delay: clk/clkb edge to g/gb hi to low, max sec 0
TPPCQLHMN Delay: preb/clrb to g/gb low to hi, min sec 0
TPPCQLHTY Delay: preb/clrb to g/gb low to hi, typ sec 0
TPPCQLHMX Delay: preb/clrb to g/gb low to hi, max sec 0
TPPCQHLMN Delay: preb/clrb to g/gb hi to low, min sec 0
TPPCQHLTY Delay: preb/clrb to g/gb hi to low, typ sec 0
TPPCQHLMX Delay: preb/clrb to g/gb hi to low, max sec 0
TSUDCLKMN Setup: j/k/d to clk/clkb edge, min sec 0
TSUDCLKTY Setup: j/k/d to clk/clkb edge, typ sec 0
TSUDCLKMX Setup: j/k/d to clk/clkb edge, max sec 0
TSUPCCLKHMN Setup: preb/clrb hi to clk/clkb edge, min sec 0
TSUPCCLKHTY Setup: preb/clrb hi to clk/clkb edge, typ sec 0
TSUPCCLKHMX Setup: preb/clrb hi to clk/clkb edge, max sec 0
TWPCLMN Min preb/clrb width low, min sec 0
TWPCLTY Min preb/clrb width low, typ sec 0
TWPCLMX Min preb/clrb width low, max sec 0
TWCLKLMN Min clk/clkb width low, min sec 0
TWCLKLTY Min clk/clkb width low, typ sec 0
TWCLKLMX Min clk/clkb width low, max sec 0
TWCLKHMN Min clk/clkb width hi, min sec 0
TWCLKHTY Min clk/clkb width hi, typ sec 0
TWCLKHMX Min clk/clkb width hi, max sec 0
TSUCECLKMN Setup: clock enable to clk edge, min sec
TSUCECLKTY Setup: clock enable to clk edge, typ sec
TSUCECLKMX Setup: clock enable to clk edge, max sec 0

267

Digital devices Digital primitive summary

Model parameters * Description Units Default
THCECLKMN Hold: clock enable after clk edge, min sec 0
THCECLKTY Hold: clock enable after clk edge, typ sec 0
THCECLKMX Hold: clock enable after clk edge, max sec 0

*See, MODEL (model definition) .

Edge-triggered flip-flop truth tables DFF and JKFF
D-type flip-flop (DFF) truth table

Inputs Outputs
D CLK PRE CLR Q Q
X X 1 0 0 1
X X 0 1 1 0
X X 0 0 1" 1
X 0 1 1 Q Q
X 1 1 1 Q Q
0 1 1 1 0 1
1 1 1 1 1 0
* Shows an unstable condition.
J-K flip-flop (JKFF) truth table
Inputs Outputs
J K CLK PRE CLR Q Q
X X X 1 0 0 1
X X X 0 1 1 0
X X X 0 0 1" 1"
X X 0 1 1 Q Q
X X 1 1 1 Q Q
0 0 Z 1 1 Q Q
0 1 @ 1 1 0 1
1 0 ¢ 1 1 1 0
1 1 ¢ 1 1 Q Q
* Shows an unstable condition.

268

Digital devices

Digital primitive summary

Edge-triggered flip-flop truth tables DFFDE and JKFFDE

Dual-edge D flip-flop (DFFDE) truth table

Inputs Outputs
D CLK PENA NENA PRE CLR Q Q
X X X X 1 0 0 1
X X X X 0 1 1 0
X X X X 0 0 1" 1
X 0 X X 1 1 Q Q'
X 1 X X 1 1 Q Q
X X 0 0 1 1 Q Q
0 1 1 X 1 1 0 1
1 1 1 X 1 1 1 0
0 ¢ X 1 1 1 0 1
1 ¢ X 1 1 1 1 0
* Shows an unstable condition.
Dual-edge J-K flip-flop (JKFFDE) truth table
Inputs Outputs
J K CLK PENA NENA PRE | CLR Q Q
X X X X X 1 0 0 1
X X X X X 0 1 1 0
X X X X X 0 0 1" 1
X X 0 X X 1 1 Q Q'
X X 1 X X 1 1 Q' Q'
X X X 0 0 1 1 Q Q
0 0 1 1 X 1 1 Q' Q
0 1 1 1 X 1 1 0 1
1 0 1 1 X 1 1 1 0
1 1 1 1 X 1 1 Q Q'
0 0 } X 1 1 1 Q' 0
0 1 ¢ X 1 1 1 0 1
1 0 ¢ X 1 1 1 1 0
1 1 ! X 1 1 1 [o] Q'

* Shows an unstable condition.

269

Section

Digital devices

Gated latch

Device format

Model form
Examples

Comments

Digital primitive summary

The simulator supports two types of gated latches: the S-R flip-flop (SRFF) and the D-type
latch (DLTCH).

U<name> SRFF (<no. of flip-flops>)

<digital power node> <digital ground node>
<{presetbar node> <clearbar node> <gate node>
<s node 1> ... <s node n>

<r node 1> ... <r node n>

<q output 1> ... <q output n>

<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

<name> DLTCH (<no. of Tatches>)

<digital power node> <digital ground node>
<presetbar node> <clearbar node> <gate node>
<d node 1> ... <d node n>

<q output 1> ... <g output n>

<gbar output 1> ... <gbar output n>

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[I0_LEVEL=<interface subckt select value>]

T+ ++F A A+

.MODEL <timing model name> UGFF [model parameters]

U5 SRFF(4)$G_DPWR $G_DGND PRESET CLEAR GATE
* four S-R Tlatches

+ S0 S1 S2 S3 RO R1I R2 RS3

+ Q0 Q1 Q2 Q3 QBO QB1 QB2 QB3

+ T_SRFF I0_STD

U2 DLTCH(8) $G_DPWR $G_DGND PRESET CLEAR GATE
eight D Tatches

DO D1 D2 D3 D4 D5 D6 D7

Q0 Q1 Q2 Q3 Q4 05 a6 Q7

QBO QB1 QB2 (OB3 0B4 QB5 QB6 QB7

T_DLTCH I0_STD

+ o+ o+ o+ o*

.MODEL T_SRFF UGFFC(...) ; SRFF Timing Model

Use <no. of flip-flops> to specify the number of flip-flops in the device. The three nodes,
<presetbar node>, <clearbar node>, and <gate node>, are common to all of the flip-flops in
the device.

Gated latch timing model parameters

;I\)Ae;g?r:eters * Description Units Default
THDGMN Hold: s/r/d after gate edge, min sec
THDGTY Hold: s/r/d after gate edge, typ sec 0
THDGMX Hold: s/r/d after gate edge, max sec 0
TPDQLHMN Delay: s/r/d to g/gb low to hi, min sec
TPDQLHTY Delay: s/r/d to g/gb low to hi, typ sec
TPDQLHMX Delay: s/r/d to g/gb low to hi, max sec 0

270

Digital devices

Digital primitive summary

;I\)Azﬁg?r:eters * Description Units Default
TPDQHLMN Delay: s/r/d to g/gb hi to low, min sec 0
TPDQHLTY Delay: s/r/d to g/gb hi to low, typ sec 0
TPDQHLMX Delay: s/r/d to g/gb hi to low, max sec 0
TPGQLHMN Delay: gate to g/gb low to hi, min sec 0
TPGQLHTY Delay: gate to g/gb low to hi, typ sec 0
TPGQLHMX Delay: gate to g/gb low to hi, max sec 0
TPGQHLMN Delay: gate to g/gb hi to low, min sec 0
TPGQHLTY Delay: gate to g/gb hi to low, typ sec 0
TPGQHLMX Delay: gate to g/gb hi to low, max sec 0
TPPCQLHMN Delay: preb/clrb to g/gb low to hi, min sec 0
TPPCQLHTY Delay: preb/clrb to g/gb low to hi, typ sec 0
TPPCQLHMX Delay: preb/clrb to g/gb low to hi, max sec 0
TPPCQHLMN Delay: preb/clrb to g/gb hi to low, min sec 0
TPPCQHLTY Delay: preb/clrb to g/gb hi to low, typ sec 0
TPPCQHLMX Delay: preb/clrb to g/gb hi to low, max sec 0
TSUDGMN Setup: s/r/d to gate edge, min sec 0
TSUDGTY Setup: s/r/d to gate edge, typ sec 0
TSUDGMX Setup: s/r/d to gate edge, max sec 0
TSUPCGHMN Setup: preb/clrb hi to gate edge, min sec 0
TSUPCGHTY Setup: preb/clrb hi to gate edge, typ sec 0
TSUPCGHMX Setup: preb/clrb hi to gate edge, max sec 0
TWPCLMN Min preb/clrb width low, min sec 0
TWPCLTY Min preb/clrb width low, typ sec 0
TWPCLMX Min preb/clrb width low, max sec 0
TWGHMN Min gate width hi, min sec 0
TWGHTY Min gate width hi, typ sec 0
TWGHMX Min gate width hi, max sec 0

* See. MODEL (model definition) .

271

Section

Digital devices

Gated latch truth tables

The function tables for the SRFF and DLTCH primitives are given below.
S-R flip-flop (SRFF) truth table

Digital primitive summary

Inputs Outputs

S R GATE PRE CLR Q Q

X X X 1 0 0 1

X X X 0 1 1 0

X X X 0 0 1" 1

X X 0 1 1 Q Q

0 0 1 1 1 Q Q

0 1 1 1 1 0 1

1 0 1 1 1 1 0

1 1 1 1 1 1* 1*

* Shows an unstable condition.
D-type latch (DLTCH) truth table
Inputs Outputs

D GATE PRE CLR Q Q
X 1 0 0 1

X X 0 1 1 0

X X 0 0 1 1

X 0 1 1 Q Q

0 1 1 1 0 1

1 1 1 1 1 0

* Shows an unstable condition.

272

Digital devices

Digital primitive summary

Pullup and pulldown

Device format

Examples

The PULLUP and PULLDN primitives function as digital pullup/pulldown resistors. They
have no inputs (other than the digital power and ground nodes). Their output is a one level
(pullup) or a zero level (pulldown), having a strength determined by the I/O model.

U<name> <resistor type> (<number of resistors>)
+ <digital power node> <digital ground node>

+ <output node>*

+ <I/0 model name>

+ [IO_LEVEL=<interface subckt select value>]

U5 PULLUP(4) $G_DPWR $G_DGND ; four pullup resistors
+ BUSO BUS1 BUS2 BUS3 RIK

U2 PULLDN(1) $G_DPWR $G_DGND ; one pulldown resistor
+ 15 R500

Arguments and options

Comments

<=Chapter

<resistor type>
One of the following:

PULLUP pullup resistor array
PULLDN pulldown resistor array

<number of resistors>
Specifies the number of resistors in the array.

Notice that PULLUP and PULLDN do not have Timing Models, just I/O
models.

273

Digital devices

Delay line

Device format

Examples

Digital primitive summary

The output of a delay line follows the input after the delay specified in the Timing Model. Any
width pulse can propagate through a delay line. This behavior is different from gates, which
don’t propagate a pulse when its width is less than the propagation delay.

The delay line device has no parameters, and only one input and one output node.

U<name> DLYLINE

<digital power node> <digital ground node>
<input node> <output node>

<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

U5 DLYLINE $G_DPWR $G_DGND IN OUT; delay Tline
+ DLY20ONS I0_STD

+ + + +

—+

.MODEL DLY20ONS UDLY(; delay line Timing Model
+ DLYMN=20ns DLYTY=20ns DLYMX=20ns
+)

Timing model format

.MODEL <timing model name> UDLY [model parameters]

Delay line timing model parameters

Model parameters " Description Units Default
DLYMN Delay: min sec 0
DLYTY Delay: typical sec 0
DLYMX Delay: max sec 0

*See, MODEL (model definition) .

<=Chapter

274

Digital devices Digital primitive summary

Programmable logic array

The programmable logic array is made up of a variable number of inputs, which form
columns, and a variable number of outputs, which form rows. Each output (row) is driven by
one logic gate. The “program” for the device determines which of the inputs (columns) are
connected to each gate. All of the gates in the array are the same type (e.g., AND, OR, NAND,
and NOR). Commercially available ICs (PALs, GALs, PEELs, and such) can have buffers,
registers, more than one array of gates, and so on, all on the same part. These would normally
be combined in a library subcircuit to make the part easier to use.

There are two ways to provide the program data for Programmable Logic Arrays. The normal
way is to give the name of a JEDEC format file which contains the program data. This file
would normally be produced by a PLD design package, or by using MicroSim PLSyn, which
translates logic design information into a program for a specific programmable logic part. The
other way to program the logic array is by including the program data, in order, on the device
line (using the DATA=... construct).

If one of the PAL or GAL devices are being used in the model library, you will not need to
use the Programmable Logic Array primitive directly, nor any of the model information
below, since the library contains all of the appropriate modeling information. Using a PLD
from the library is just like using any other logic device from the library, except that the
simulator needs to know the name of the JEDEC file which contains the program for that part.
A TEXT parameter name JEDEC_FILE is used to specify the file name, as shown in the
following example:

X1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN1O IN11 IN12

+ IN13 IN14

+ OUT1 OUT2 OUT3 OUT4

+ PAL14H4
TEXT: JEDEC_FILE = "myprog.jed"

This example creates a 14H4 PAL which is programmed by the JEDE@fileg. jed.

+

Device format U<name> <pld type> (<no. of inputs>, <no. of outputs>)
<digital power node> <digital ground node>
<input_node>* <output_node>*

<timing model name> <I/0 model name>

[FILE=<(file name) text value>]

[DATA=<radix flag>$<program data>$]
[MNTYMXDLY=<delay select value>]
[I0_LEVEL=<interface subckt select value>]

+ + 4+ + + + o+

Timing model format
.MODEL <timing model name> UPLD [model parameters]

<=Chapter

275

Digital devices Digital primitive summary

Examples UDECODE PLANDC(3, 8) ; 3 inputs, 8 outputs
+ $G_DPWR $G_DGND ; digital power supply and ground
+ INI1 IN2 IN3 ; the inputs
+ 0UTO OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 ; the outputs
+ PLD_MDL ; the timing model name
+ I10_STD ; the 1/0 model name
+ DATA=B$; the programming data
* IN1 IN2 IN3
* TF TF TF
+ 01 01 01 ; 0UTO
+ 01 01 10 ; OUT1
+ 01 10 01 ; 0UTZ
+ 01 10 10 ; OUT3
+ 10 01 01 ; 0UT4
+ 10 01 10 ; 0UTS
+ 10 10 01 ; 0UT6
+ 10 10 10 % ; OUT7

.MODEL PLD_MDL UPLD(...)
Arguments and options

; PLD timing model definition

<pld type>
One of the following:
PLD type Description
PLAND AND array
PLANDC AND array using true and complement columns
for each input
PLNAND NAND array
PLNANDC NAND array using true and complement columns
for each input
PLNOR NOR array
PLNORC NOR array using true and complement columns
for each input
PLNXOR Exclusive NOR array
PLNXORC Exclusive NOR array using true and complement
columns for each input
PLOR OR array
PLORC OR array using true and complement columns for
each input
PLXOR Exclusive OR array
PLXORC Exclusive OR array using true and complement

columns for each input

276

Digital devices

Comments

Digital primitive summary

<file name text value>
The name of a JEDEC format file which specifies the programming data for
the array. The file name can be specified as a text constant (enclosed in
double quotes “ "), or as a text expression (enclosed in vertical bars “|"). If
a FILE is specified, any programming data specified by a DATA section is
ignored. The mapping of addresses in the JEDEC file to locations in the
array is controlled by model parameters specified in the timing model.

<radix flag>
One of the following:

B binary data follows

O octal data follows (most significant bit has
the lowest address)

X hexadecimal data follows (most significant bit

has lowest address)

<program data>
A string of data values used to program the logic array. The values start at
address zero, which programs the array for the connection of the first input
pin to the gate which drives the first output. A 0 (zero) specifies that the
input is not connected to the gate, and a 1 specifies that the input is
connected to the gate. (Initially, all inputs are not connected to any gates.)
The next value programs the array for the connection of the complement of
the first input to the gate which drives the first output (if this is a
programmable gate having true and complement inputs) or, the second
input connection to the gate which drives the first output. Each additional
1 or 0 programs the connection of the next input or its complement to the
gate which drives the first output, until the connection of all inputs (and
their complements) to that gate have been programmed. Data values after
that, program the connection of inputs to the gate driving the second output,
and so on.

The data values must be enclosed in dollar signs ($), but can be separated
by spaces or continuation lines.

The example defines a 3-to-8 line decoder. The inputs are IN1 (MSB), IN2, and
IN3 (LSB). If the inputs are all low, OUTO is true. If IN1 and IN2 are low and
IN3 is high, then OUT1 is true, and so on. The programming data has been
typed in as an array, so that it is easier to read. The comments above the
columns identify the true and false (complement) inputs, and the comments at
the end of the line identify the output pin which is controlled by that gate. (Note,
the simulator does not process any of these comments—they just help make the
programming data readable.)

277

Digital devices

Digital primitive summary

Programmable logic array timing model parameters

Model « Description Units Default
parameters
COMPOFFSET JEDEC file mapping: address of 1
complement of first input and first gate
program
INSCALE JEDEC file mapping: amount the std 1
JEDEC file address changes for each truelcmp 2
new input pin
OFFSET JEDEC file mapping: address of first 0
input and first gate program
OUTSCALE JEDEC file mapping: amount the std <no. of inputs>
JEDEC file address changes for each true/cmp 2*<no. of inputs>
new output pin (gate)
TPHLMN delay: in to out, hi to low, min sec 0
TPHLTY delay: in to out, hi to low, typ sec 0
TPHLMX delay: in to out, hi to low, max sec 0
TPLHMN delay: in to out, low to hi, min sec 0
TPLHTY delay: in to out, low to hi, typ sec 0
TPLHMX delay: in to out, low to hi, max sec 0

* See. MODEL (model definition) .

Section

278

Digital devices Digital primitive summary

Read only memory

There are two ways to provide the program data for ROMs. The normal way is to provide the
name of an Intel Hex Format file. This file is read before the simulation starts, and the ROM
is programmed to contain the data in the file. The other way to program the ROM is to include
the program data on the device line (with the DATA=... construct).

The example below defines a 4-bit by 4-bit to 8-bit multiplier ROM.

Device format U<name> ROM(<no. of address pins>, <no. of output pins>)
<digital power node> <digital ground node>

<enable_node> <address node msb> ... <address node 1sb>
<output node msb> ... <output node 1sb>

<timing model name> <I/0 model name>

[FILE=<file name text value>]

[DATA=<radix flag>$<program data>$]

[MNTYMXDLY=<delay select value>]

[I0_LEVEL=<interface subckt select value>]

+++ + A+t

Timing model format
.MODEL <timing model name> UROM (<model parameters>*)

=Chapter

279

Digital devices

Examples

Digital primitive summary

UMULTIPLY ROM(8, 8) ; 8 address bits, 8 outputs
+ $G_DPWR $G_DGND;digital power supply and ground
+ ENABLE ; enable node
+ AIN3 AIN2 AIN1 AINO ; the first 4 bits of
address
+ BIN3 BIN2 BIN1 BINO ; the second 4 bits of
address
+ 0UT7 OUT6 OUT5 0OUT4 OUT3 0OUT2 QUT1 OUTO ; the outputs
+ ROM_MDL ; the Timing Model name
+ I0_STD ; the I/0 MODEL name
+ DATA=X$; the programming data
* B input value:
* 0 1 2 3 4 5 6 7 8 9 AB
C D E F
+ 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 s A=0
+ 00 01 02 03 04 05 06 07 08 09 0A
0B 0C 0D OE OF s A=1
+ 00 02 04 06 08 0A 0C OE 10 12 14
16 18 1A 1C 1E s A=2

00 03 06 09 0C OF 12 15 18 1B 1E
21 24 27 2A 2D ; A=3
+ 00 04 08 0C 10 14 18 1C 20 24 28
2C 30 34 38 3C ; A =4
+ 00 05 0A OF 14 19 1E 23 28 2D 32
37 3C 41 46 4B ; A=5
+ 00 06 0C 12 18 1E 24 2A 30 36 3C
42 48 4E 54 5A s A=6
+ 00 07 OE 15 1C 23 2A 31 38 3F 46
4D 54 58 62 69 s A=17
+ 00 08 10 18 20 28 30 38 40 48 50
58 60 68 70 78 ; A =8
+ 00 08 12 1B 24 2D 36 3F 48 51 5A
63 6C 75 7E 87 s A=9
+ 00 0A 14 1E 28 32 3C 46 50 5A 64
6E 78 82 8C 96 ; A=A
+ 00 0B 16 21 2C 37 42 4D 58 63 6E
79 84 8F 9A A5 ; A=8B
+ 00 0C 18 24 30 3C 48 54 60 6C 78
84 90 9C A8 B4 s A=2C
+ 00 0D 1A 27 34 41 4E 5B 68 75 82
8F 9C A9 B6 C3 ; A=0D
+ 00 OE 1C 2A 38 46 54 62 70 7E 8C
9A A8 B6 C4 D2 i A=E
+ 00 OF 1E 2D 3C 4B 5A 69 78 87 96
A5 B4 C3 D1 E1$; A=F

.MODEL ROM_MDL UROM(...); ROM Timing Model definition

280

Digital devices Digital primitive summary

Arguments and options

<file name text value>
The name of an Intel Hex format file which specifies the programming data for the ROM.
The file name can be specified as a text constant (enclosed in double quotes “ "), or as a
text expression (enclosed in vertical bars “|"). If a FILE is specified, any programming
data specified by a DATA section is ignored.

<radix flag>
One of the following:

B binary data follows

O octal data follows (most significant bit has lowest
address)

X hexadecimal data follows (most significant bit has

lowest address)

<program data>
The program data is a string of data values used to program the ROM. The values start at
address zero, first output bit. The next bit specifies the next output bit, and so on until all
of the output bits for that address have been specified. Then the output values for the next
address are given, and so on.

The data values must be enclosed in dollar signs ($ $), but can be separated by spaces or
continuation lines.

281

Digital devices

Digital primitive summary

Read only memory timing model parameters

Model . . Defau
parameters * Description Units It
TPADHMN delay: address to data, low to hi, min sec 0
TPADHTY delay: address to data, low to hi-Z, typ sec 0
TPADHMX delay: address to data, low to hi, max sec 0
TPADLMN delay: address to data, hi to low, min sec 0
TPADLTY delay: address to data, hi to low, typ sec 0
TPADLMX delay: address to data, hi to low, max sec 0
TPEDHMN delay: enable to data, hi-Z to hi, min sec 0
TPEDHTY delay: enable to data, hi-Z to hi, typ sec 0
TPEDHMX delay: enable to data, hi-Z to hi, max sec 0
TPEDLMN Delay: enable to data, hi-Z to low, min sec 0
TPEDLTY delay: enable to data, hi-Z to low, typ sec 0
TPEDLMX delay: enable to data, hi-Z to low, max sec 0
TPEDHZMN delay: enable to data, hi to hi-Z, min sec 0
TPEDHZTY delay: enable to data, hi to hi-Z, typ sec 0
TPEDHZMX delay: enable to data, hi to hi-Z, max sec 0
TPEDLZMN delay: enable to data, low to hi-Z, min sec 0
TPEDLZTY delay: enable to data, low to hi-Z, typ sec 0
TPEDLZMX delay: enable to data, low to hi-Z, max sec 0

* See. MODEL (model definition) .

282

Section

Digital devices

Digital primitive summary

Random access read-write memory

The RAM is normally initialized using unknown data at all addresses. There are two ways to
provide other initialization data for RAMs. The normal way is to give the name of an Intel
Hex Format file. This file is read before the simulation starts, and the RAM is initialized to
match the data in the file. The other way to initialize the RAM is to include the initialization
data on the device line (using the DATA=... construct).

Device format U<name> RAM(<no. of address bits>, <no. of output bits>)

+ 4+ + o+t

<digital power node> <digital ground node>
<read enable node> <write enable node>
<address msb node>...<address 1sb node>
<write-data msb node>...<write-data 1sb node>
{read-data msb node>...<read-data 1sb node>
<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]
[FILE=<file name text value>]

[DATA=<radix flag>$<initialization data>$]

Timing model format

.MODEL <timing model name> URAM (<model parameters>*)

Arguments and options

<file name text value>

The name of an Intel Hex format file which specifies the initialization data for the RAM.
The file name can be specified as a text constant (enclosed in double quotes “ "), or as a
text expression (enclosed in vertical bars | |). If a FILE is specified, any initialization data
specified by a DATA section is ignored.

<radix flag>

One of the following:

B binary data follows
O octal data follows (most significant bit
has the lowest address)
X hexadecimal data follows (most significant bit

has the lowest address)

<initialization data>

<=Chapter

A string of data values used to initialize the RAM. The values start at address zero, first
output bit. The next bit specifies the next output bit, and so on until all of the output bits
for that address have been specified. Then the output values for the next address are given,
and so on.

The data values must be enclosed in dollar signs ($ $), but can be separated by spaces or
continuation lines.

The initialization of a RAM using the DATA=... construct is the same as the programming
of a ROM. Se&ead only memoryon the ROM primitive for an example.

283

Digital devices

Comments

Digital primitive summary

The RAM has separate read and write sections, using separate data and enable pins, and shared
address pins. To write to the RAM, the address and write data signals must be stable for the
appropriate setup times, then write enable is raised. It must stay high for at least the minimum
time, then fall. Address and data must remain stable while write enable is high, and for the
hold time after it falls. Write enable must remain low for at least the minimum time before
changing.

To read from the RAM, raise read enable, and the outputs change from Z (high impedance) to
the appropriate value after a delay. The address can change while read enable is high, and if
it does, the new data is available at the outputs after the delay.

Nothing prevents both the read and write enable from being true at the same time, although
most real devices would not allow this. The new value from the write is sent to the read data
outputs on the falling edge of write enable.

Random access memory timing model parameters

Model

parameters « Description Units Default
TPADHMN delay: address to read data, low to hi, min sec 0
TPADHTY delay: address to read data, low to hi, typ sec 0
TPADHMX delay: address to read data, low to hi, max sec 0
TPADLMN delay: address to read data, hi to low, min sec 0
TPADLTY delay: address to read data, hi to low, typ sec 0
TPADLMX delay: address to read data, hi to low, max sec 0
TPERDHMN delay: read enable to read data, hi-Z to hi, min sec 0
TPERDHTY delay: read enable to read data, hi-Z to hi, typ sec 0
TPERDHMX delay: read enable to read data, hi-Z to hi, max sec 0
TPERDLMN delay: read enable to read data, hi-Z to low, min sec 0
TPERDLTY delay: read enable to read data, hi-Z to low, typ sec 0
TPERDLMX delay: read enable to read data, hi-Z to low, max sec 0
TPERDHZMN delay: read enable to read data, hi to hi-Z, min sec 0
TPERDHZTY delay: read enable to read data, hi to hi-Z, typ sec 0
TPERDHZMX delay: read enable to read data, hi to hi-Z, max sec 0
THAEWTY min hold time:write enable fall to address changesec 0

typ
THAEWMX min hold time:write enable fall to address changesec 0

max
THDEWMN min hold time:write enable fall to data change, min sec
THDEWTY min hold time:write enable fall to data change, typ sec 0
THDEWMX min hold time:write enable fall to data change, max sec 0
THAEWMN min hold time:write enable fall to address changesec 0

min

284

Digital devices

Digital primitive summary

rl\)ﬂzﬁgfr:eters « Description Units Default
TPERDLZMN delay: read enable to read data, low to hi-Z, min sec 0
TPERDLZTY delay: read enable to read data, low to hi-Z, typ sec 0
TPERDLZMX delay: read enable to read data, low to hi-Z, max sec 0
TSUDEWMN min setup time: data to write enable rise, min sec 0
TSUDEWTY min setup time: data to write enable rise, typ sec 0
TSUDEWMX min setup time: data to write enable rise, max sec 0
TSUAEWMN min setup time: address to write enable rise, min sec 0
TSUAEWTY min setup time: address to write enable rise, typ sec 0
TSUAEWMX min setup time: address to write enable rise, max sec 0
TWEWHMN min width: enable write hi, min sec 0
TWEWHTY min width: enable write hi, typ sec 0
TWEWHMX min width: enable write hi, max sec 0
TWEWLMN min width: enable write low, min sec 0
TWEWLTY min width: enable write low, typ sec 0
TWEWLMX min width: enable write low, max sec 0

* See. MODEL (model definition) .

Section

285

Digital devices Digital primitive summary

Multi-bit A/D and D/A converter

The simulator provides two primitives to model analog-to-digital converters and
digital-to-analog converters: the ADC and the DAC. These two primitives simplify the
modeling of these complex mixed-signal devices.

<=Chapter

286

Digital devices Digital primitive summary

Multi-bit analog-to-digital converter

Device format U<name> ADC(<number of bits>)

<digital power node> <digital ground node>
<in node> <ref node> <gnd node> <convert node>
{status node> <over-range node>

<output msb node> ... <output 1sb node>
<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

+ + + + + + o+

Timing model format

.MODEL <timing model name> UADC [model parameters]
Examples U5 ADC(4) $G_DPWR $G_DGND ; 4-bit ADC

+ Sig Ref 0 Conv Stat OvrRng Out3 Out2 Outl OutO

+ ADCModel I0_STD

.MODEL ADCModel UADCC(...) ; Timing Model

Multi-bit A/D converter timing model parameters

Model + Description Units Default

parameters

TPCSMN propagation delay: rising edge of convert to rising sec 0
edge of status, min

TPCSTY propagation delay: rising edge of convert to rising sec 0
edge of status, typ

TPCSMX propagation delay: rising edge of convert to rising sec 0
edge of status, max

TPDSMN propagation delay: data valid to falling edge of stats&c 0
min

TPDSTY propagation delay: data valid to falling edge of stats&c 0
typ

TPDSMX propagation delay: data valid to falling edge of statssc 0
max

TPSDMN propagation delay: rising edge of status to data valeg 0
min

TPSDTY propagation delay: rising edge of status to data vakéc 0
typ

TPSDMX propagation delay: rising edge of status to data vakegc 0
max

* See. MODEL (model definition) .

287

Digital devices

Digital primitive summary

ADC primitive device timing

Convert [1]

Status ___ | L

DATA Old Valid >< Unknown ><New Valid
—»‘tpcsLi tpsd 44 tpds }4—

DATA refers to both the data and over-range signals. The Convert pulse can be any width,
including zero. If the propagation delay between the rising edge of the Convert signal and the
Status signal (tpsd) is zero, the data and over-range do not go to unknown but directly to the
new value. There is a resistive load from <ref node> to <gnd node>, and from <in node> to
<gnd node>, of 1/GMIN.

The voltage at <in node> and <ref node> with respect to <gnd node> is sampled starting at
the rising edge of the Convert signal, and ending when the Status signal becomes high. This
gives a sample aperture time of tpcs plus any rising time for Convert. If, during the sample
aperture, the output calculated having the minimum <ref node> voltage and maximum <in
node> voltage is different from the output calculated having the maximum <ref node> voltage
and minimum <in node> voltage, the appropriate output bits are set to the unknown state and
a warning message is printed in the output file.

The output is the binary value of the nearest integer to

V(in,gnd) pnpits
V (ref, gnd)

If this value is greater thamr®-1, then all data bits are 1, and over-range is 1. If this value is
less than zero, then all data bits are zero, and over-range is 1.

Section

288

Digital devices Digital primitive summary

Multi-bit digital-to-analog converter

Device format U<name> DAC(<number of bits>)

<digital power node> <digital ground node>
<out node> <ref node> <gnd node>

<input msb node> ... <input 1sb node>
<timing model name> <I/0 model name>
[MNTYMXDLY=<delay select value>]
[IO_LEVEL=<interface subckt select value>]

+ 4+ + + ++

Timing model format

.MODEL <timing model name> UDAC [model parameters]
Examples U7 DAC(4) $G_DPWR $G_DGND ; 4-bit DAC

+ Sig Ref 0 In3 In2 Inl InO
+ DACModel I0_STD

.MODEL DACModel UDACC(...) ; Timing model

Multi-bit D/A converter timing model parameters
Model

* Description Units Default

parameters

TSWMN Switching time: change in data to analog outsec 10ns
stable, min

TSWTY Switching time: change in data to analog outsec 10ns
stable, typ

TSWMX Switching time: change in data to analog outsec 10ns
stable, max

* See. MODEL (model definition) .

DAC primitive device timing

The DAC is a zero impedance voltage source from <out node> to <gnd node>. The voltage is

binary value of inputy
V (ref, gnd) E(onbits

There is a resistance of 1/GMIN between <ref node> and <gnd node>.

289

Digital devices Digital primitive summary

If any inputs are unknown (X), the output voltage is halfway between the output voltage if all
the X bits were 1 and the output voltage if all the X bits were 0. When an input bit changes,
the output voltage changes linearly to the new value during the switching time.

Old Data >< New Data

V(out,gnd)

ke

Section

290

Digital devices Digital primitive summary

Behavioral primitives

The simulator offers three primitives to aid in the modeling of complex digital devices: the
Logic Expression, Pin-to-Pin Delay, and Constraint Checker primitives. These devices are
distinct from other primitives in that they allow data-sheet descriptions to be specified more
directly, allowing a one-to-one correspondence using the function diagrams and timing
specifications.

The Logic Expression primitive, LOGICEXP, uses free-format logic expressions to describe
the functional behavior device.

The Pin-To-Pin Delay primitive, PINDLY, describes propagation delays using sets of rules
based on the activity on the device inputs.

The Constraint Checker primitive, CONSTRAINT allows a listing of timing rules such as
setup/hold times, and minimum pulse widths. When a violation occurs, the simulator issues a
message indicating the time of the violation and its cause.

¢=Chapter

201

Digital devices Digital primitive summary

Logic expression

The LOGICEXP primitive allows combinational logic to be expressed in an equation-like
style, using standard logic operators, node names, and temporary variables.

Device format U<name> LOGICEXP (<no. of inputs>, <no. of outputs>)
<digital power node> <digital ground node>
<input node 1> ... <input node n>
<output node 1> ... <output node n>
<timing model name>
<I/0 model name>
[TO_LEVEL = <value>]
[MNTYMXDLY = <value>]
LOGIC:
<logic assignment>*

+ 4+ + A+ + o+

Timing model format
.MODEL <timing model name> UGATE [model parameters]

Arguments and options

LOGIC:
Marks the beginning of a sequence of one or more <logic assignments>. A <logic
assignment> can have one of the two following forms:

<output node> = { <logic expression >}
<temporary value> = { <logic expression> }

<output node>
One of the output node names as it appears in the interface list. Assignments to an
<output node> causes the result of the <logic expression> to be scheduled on that output
pin. Each <output node> must have exactly one assignment.

<temporary value>
Any target of an assignment which is not specified as one of the nodes attached to the
device defines a temporary variable. Once assigned, <temporary values> can be used
inside subsequent <logic expressions>. They are provided to reduce the complexity and
improve the readability of the model. The rules for node names apply to
<temporary value> names

<logic expression>
A C-like, infix-notation expression that returns one of the five digital logic levels. Like all
other expressions, <logic expressions> must be surrounded by curly braces { }. They can
span one or more lines using the + continuation character in the first column position.

The logic operators are listed below from highest-to-lowest precedence.

292

Digital devices

Comments

Digital primitive summary

Logic Expression Operators

unary not
and
exclusive or
| or

The allowed operands are:
* <input nodes>
* Previously assigned <temporary values>
* Previously assigned <output nodes>
» <logic constants>: 0, 1, X, R, F

As in other expressions, parentheses () can be used to group subexpressions. Note that these
logic operators can also be used in Probe trace definitions.

>0 1

The LOGICEXP primitive uses the same timing model as the standard gate primitives,
UGATE.

SeeStandard gate timing model parameterdor the list of UGATE model parameters.

Section

293

Digital devices Digital primitive summary

Simulation behavior

When a LOGICEXP primitive is evaluated during a transient analysis, the assignment
statements using in it are evaluated in the order they were specified in the netlist. The logic
expressions are evaluated using no delay. When the result is assigned to an output node, it is
scheduled on that output pin using the appropriate delay specified in the timing model.

Internal feedback loops are not allowed in expressions. That is, an expression cannot
reference a value which has yet to be defined. However, external feedback is allowed if the
output node also appears on the list of input nodes.

This example models the functionality of the 74181 Arithmetic/Logic Unit. The logic for the
entire part is contained in just one primitive. Timing would be handled by the PINDLY and
CONSTRAINT primitives. Refer to any major device manufacturer’s data book for a detailed
description of the operation of the 74181.

U74181 LOGICEXP(14, 8) DPWR DGND

+ AOBAR A1BAR A2BAR A3BAR BOBAR B1BAR B2BAR B3BAR SO S1 S2 S3 M CN

LFOBAR LF1BAR LF2BAR LF3BAR LAEQUALB LPBAR LGBAR LCN+4
DO_GATE T0_STD

LOGIC:
Intermediate terms:

I31 = { ~((B3BAR & S3 & A3BAR) | (A3BAR & S2 & ~B3BAR)) |
132 = { ~((~B3BAR & S1) | (SO & B3BAR) | A3BAR) }

121 = { ~((B2BAR & S3 & A2BAR) | (A2BAR & S2 & ~B2BAR)) |
[22 = { ~((~B2BAR & S1) | (SO & B2BAR) | AZ2BAR) |}

I11 = { ~((B1BAR & S3 & AIBAR) | (AIBAR & S2 & ~BIBAR)) |
112 = { ~((~BIBAR & S1) | (SO & BIBAR) | A1BAR) }

101 = { ~((BOBAR & S3 & AOBAR) | (AOBAR & S2 & ~BOBAR)) |
102 = { ~((~BOBAR & S1) | (SO & BOBAR) | AOBAR) }

MBAR = { ~M }
P={ I31 & I21 & I11 & IO1 }

Output Assignments

LF3BAR = {(I31 & ~I32) *
~((I21 & I11 & I01 & Cn & MBAR) | (I21 & I11 & I02 & MBAR)
(I21 & 112 & MBAR) | (I22 & MBAR))}

LFZBAR = {(I21 & ~I22) *
~((I11 & 101 & Cn & MBAR) | (I11 & 102 & MBAR)
(I12 & MBAR)) }

LFIBAR = {(I11 & ~I12) ~ ~((Cn & I01 & MBAR) |
(I02 & MBAR)) }

LFOBAR = { (I01 & ~I02) ~ ~(MBAR & Cn) }

LGBAR = { ~(I32 | (I31 & I22) | (I31 & I21 & I12) |
(I31 & I22 & I11 & 102)) }

LCN+4 = { ~LGBAR | (P & Cn) }
LPBAR = { ~P }
LAEQUALB = { LF3BAR & LF2BAR & LFIBAR & LFOBAR]

T T T S S e I T T T T T T T T S T S e e e T T I T T e

294

Digital devices Digital primitive summary

Pin-to-pin delay

The pin-to-pin (PINDLY) primitive is a general mechanism that allows the modeling of
complex device timing. It can be thought of as a set of delay-lines (paths) and rules describing
how to associate specific amounts of delay using each path.

A PINDLY primitive is used in the output path of a device model, typically at the output pins
of a subcircuit definition. A single PINDLY primitive can model the timing and output
characteristics of an entire part, including tristate behavior.

PINDLY primitives are expressed and evaluated in a manner similar to the LOGICEXP
primitive, except in this case a delay expression is assigned to each output. Whenever an
output path undergoes a transition, its delay expression is evaluated to determine the
propagation delay which is to be applied to that change.

A delay expression can contain one or more rules that determine which activity on the part's
inputs is responsible for the output change, for example, “is the output changing because the
clock changed or the data changed?” This allows device models to be derived directly from
data sheets, which typically specify propagation delays based on which inputis changing. The
PINDLY primitive uses its reference inputs to determine the logic state and recent transitions
on nodes which are not in the output path.

Pin-to-pin delay modeling is much simpler compared to earlier methods, in which
input-to-output delays had to be distributed among the low-level primitives used to model the
device. The latter method can require a great deal of trial and error because manufacturer’s
data sheets do not provide a one-to-one association between the logic diagram and the timing
specifications.

PINDLY primitives can also contain constraints such as setup/hold, width, and frequency
specifications, like those supported by the CONSTRAINT primitive. When used in the
PINDLY primitive, these constraints allow the simulator to propagate hazard conditions and
report violations in subsequent logic.

REF1

REF2

REF3
N1 ——{ Delay Rules | —{ — OUT1
IN2 ouT2

~_ Delay Rules

IN3 OuT3
IN4 ——(— Delay Rulesj—— ouT4

295

Digital devices

Device format

Examples

Digital primitive summary

U<name> PINDLY (<no. of paths>, <no. of enables>, <no. of
refs>)
+ <digital-power-node> <digital-ground-node>
<input node 1> ... <input node n>
[<enable node 1> ... <enable node n>]
[<reference node 1> ... <reference node n>]
<output node 1> ... <output node n>
<I/0 model name>
[MNTYMXDLY = <delay select value>]
[IO_LEVEL = <interface subckt select value>]
[BOOLEAN:

<boolean assignment>* 1]
PINDLY:

<delay assignment>*
[TRISTATE:

ENABLE LO | HI <enable node>

{delay assignment>*]
[SETUP_HOLD: <setup-hold-specification>]
[WIDTH: <width-specification> 1]
[FREQ: <frequency-specification>]
[GENERAL: <general-specification>]

1 PINDLY(4,0,3) $G_DPWR $G_DGND
IN1 IN2 IN3 IN4

REF1 REFZ REF3

0UT1 0OUT2 OUuT3 0UT4

I0_MODEL DO_GATE

PINDLY:

++++H+S A+ F A+ F A+ F

+

Arguments and options

Comments

<no. of paths>
Specifies the number of input-to-output paths represented by the device;
the number of inputs must be equal to the number of outputs. A path is
defined as an input-to-output association, having the appropriate delay
rules started according to the described conditions.

<no. of enables>
Specifies the number of tristate enable nodes used by the primitive. Enable
nodes are used in TRISTATE sections. <no. of enables> can be zero.

<no. of refs>
Specifies the number of reference nodes used by the primitive. Reference
nodes are used within delay expressions to get state information about
signals which are not in the input-to-output paths. <no. of refs> can be zero.

The example depicts the relationship and purpose of the different pins on the
PINDLY primitive.

The PINDLY primitive can be viewed as four buffers, IN1 to OUT1 through

IN4 to OUT4, and three reference nodes which are used by the output delay
rules. The figure shows how the reference nodes can be used in one or more
set of delay rules. In this case, REF1 and REF2 are used by the delay rules for
OUT2, and REF3 is used by the delay rules for OUT1 and OUT4. The figure
also shows that OUT2 and OUT3 can share the same delay rules. The
remainder of the format description describes how to create delay rules.

296

Digital devices

Digital primitive summary

BOOLEAN: Marks the beginning of a section of one or more <boolean assignments>,
which define temporary variables that can be used in subsequent <delay expressions>.
BOOLEAN sections can appear in any order within the PINDLY primitive. A <boolean
assignment> has the following form:

<boolean variable> = { <boolean-expression> }
<boolean variable> can be any name which follows the node name rules.

<boolean expression> is a C-like, infix-notation expression which returns the boolean value
TRUE or FALSE. Like all other expressions, <boolean expressions> must be surrounded by
curly braces {...}. They can span one or more lines by using the + continuation character in
the first column position. The boolean operators are listed below from highest-to-lowest
precedence:

~ unary not
== equality

I= inequality

& and

n exclusive or
| or

All boolean operators take the following boolean values as operands:
* Previously assigned <boolean variables>

» Reference functions (defined below)

e Transition functions (defined below)

* <boolean constants>: TRUE, FALSE

In addition, the == and != operators take logic values, such as <input nodes> and
<logic constants>. This allows for a check of the values on nodes; for example, CLEAR ==
returns TRUE if the current level on the node CLEAR is a logic one and FALSE otherwise.

297

Digital devices

Digital primitive summary

Reference functions

Reference functions are used to detect changes (transitions) on <reference nodes> or <input
nodes>. All reference functions return boolean values, and therefore can be used within any
<boolean expression>. Following is the list of available reference functions and their
arguments:

CHANGED <node>, <delta time>)

CHANGED_LH <node>, <delta time>)
CHANGED_HL <node>, <delta time>)

The CHANGED function returns TRUE if the specified <node> has undergone any state
transition within the past <delta time>, prior to the current simulation time; otherwise it
returns FALSE.

Similarly, CHANGED_LH returns TRUE if <node> has specifically undergone a low-to-high
transition within the past <delta time>; FALSE otherwise. Note that CHANGED_LH only
looks at the most recent (or current) transition. It cannot, for example, determine if 0 /£ 1
occurred two transitions ago.

Finally, CHANGED_HL is similar to CHANGED _LH, but checks for high-to-low
transitions.

If a <delta time> is specified zero, the reference functions return TRUE if the node has
changed at the current simulation time. This allows all of the functionality of a device to be
modeled in zero delay so that the total delay through the device can be described using the
delay expressions.

298

Digital devices

®

Digital primitive summary

Transition functions

Transition functions are used to determine the state change occurring on the changing output,
that is, the <output node> for which the <delay expression> is being evaluated. Like reference
functions, transition functions return boolean values. However, they differ from reference
functions in that transition functions take no arguments, since they implicitly refer to the
changing output at the current time. The transition functions are of the general form:

TRN_pn

where p is the previous state value and n is the new state value. State values are taken from
the set{ L HZ $ }. Where appropriate, the $ can be used to signify don’t care, e.g., a TRN_H$
matches a transition from H to ANY state. Rising states automatically map to High, and
Falling states automatically map to Low.

As a term in any boolean expression, for example, TRN_LH takes on a TRUE value if the
changing output is propagating a change from zero to one.

Following is the complete set of transition functions.

TRN_LH TRN_LZ TRN_L$ TRN_HL TRN_HZ TRN_H$ TRN_ZL TRN_ZH TRN_Z$ TRN_$L TRN
$H TRN$Z

The TRN_pZ and TRN_Zn functions return true only if it is used within a TRISTATE
section, described below. Although open-collector outputs also transition to a
high-impedance Z (instead of H), most data books describe propagation times on
open-collector outputs as TPLH or TPHL. Therefore, open-collector output devices
should use TRN_LH and TRN_HL, and tristate output devices should use TRN_LZ,
TRN_HZ, TRN_ZL, and TRN_ZH.

PINDLY: marks the beginning of a section of one or more <delay assignments>, which
are used to associate propagation delays using the PINDLY primitive’s outputs.
<delay assignments> are of the form:

<output node>* = { <delay expression> }

<output node> is one of the output node names as it appears in the interface list. Each <output
node> must have exactly one assignment. Several outputs can share the same delay rules by
listing them (separated by spaces or commas) on the left-hand side of the <delay expression>.

<delay expression> is an expression which, when evaluated, returns a triplet (min, typ, max)
of delay values. Like all other expressions, <delay expressions> must be surrounded by curly
braces {...}. They can span one or more lines by using the +222222222222 continuation
character in the first column position.

The simplest <delay expression> is a single <delay value>, defined as:
DELAY (<min>, <typ>, <max>)

where <min>, <typ>, and <max> are floating point constants or expressions (involving
parameters), expressed in seconds. To specify unknown values, use -1. For example,
DELAY(20ns,-1,35ns) specifies a minimum time of 20ns, a default (program-computed)
value for typical, and a maximum of 35ns. Seeatment of unspecified propagation
delaysfor more information on default delays.

299

Digital devices

Digital primitive summary

The delay assignment below specifies the propagation delays through output Y to be:
min=2ns, typ=5ns, and max=9ns.

+ PINDLY:
+ Y = { DELAY(2ns, 5ns, 9ns) }

To define more complex, rule-based <delay expressions>, use the CASE function, which has
the form:

CASE(
<boolean expression>, <delay expression>,; Rule 1
<boolean expression>, <delay expression>,; Rule 2

<delay expression> ; Default delay
)

The arguments to the CASE function are pairs of <boolean expressions> and

<delay expressions>, followed by a final default <delay expression>. <boolean expressions>
(described above) can contain <boolean values>, reference functions, and transition
functions.

When the CASE function is evaluated, each <boolean expression> is evaluated in order of
appearance until one produces a TRUE result. When this occurs, the <delay expression> it is
paired with the result of the CASE function, and the evaluation of the CASE is ended. If none
of the <boolean expressions> return a TRUE result, the value of the final <delay expression>
is used. Because it is possible for all <boolean expressions> to evaluate FALSE, the default
delay value must be supplied. Note that each argument to the CASE function must be
separated by commas.

"BOOLEAN:

+

+ CLOCK = { CHANGED_LH(C CLK, 0) }

+ PINDLY:

+ QA QB QC QD = {

+ CASE (

+ CLOCK & TRN_LH, DELAY(-1,13ns,24ns),

+ CLOCK & TRN_HL, DELAY(-1,18ns,27ns),

+ CHANGED_HL(CLRBAR,0), DELAY(-1,20ns,28ns),
+ DELAY(-1,20ns,28ns) ; Default

+)

+ }

This example describes the delays through a four-bit counter. It shows how rules can be
defined to precisely isolate the cause of the output change. In this example, the boolean
variable CLOCK is being defined. It is TRUE whenever the reference input CLK changes
from low-to-high at the current simulation time. This is only true if the device functionality is
modeled in zero delay.

The four outputs QA through QD all share the same delay expression. The CASE is used to
specify different delays when the device is counting or clearing. The first two rules define
delays when the device is counting (CLK changing low-to-high); the first when the output
(QA through QD) is going from low-to-high, the second from high-to-low.

The third rule simply uses the CHANGED _HL function directly to determine whether
CLRBAR is changing, and in this case the specification applies to any change (low-to-high
or high-to-low) on the output. The default delay applies to all other output transitions which
are not covered by the first three rules.

300

Digital devices Digital primitive summary

TRISTATE: marks the beginning of a sequence of one or more <delay assignments>. The
TRISTATE section differs from the PINDLY section in that the outputs are controlled by the
specified enable node.

Immediately following the TRISTATE keyword, an enable node must be specified using its
polarity and the ENABLE keyword:
ENABLE HI <enable node>; Specifies active HI enable

ENABLE LO <enable node>; Specifies active LO enable

The specified <enable node> applies to all <output node> assignments in the current section.

Note that <delay expressions> within a TRISTATE section can contain the transition
functions pertaining to the Z state, for example TRN_ZL and TRN_HZ.

The following example demonstrates how an enable node can be used to control more than
one output. It also shows that some device outputs can use the standard output (PINDLY)
while others use the tristate output. (Delay values have been omitted.)

ENA
] [
REF1
REF2
IN1 —&t: DeIayRuIes)—— OuUT1
IN2 r—» DeIayRuIesl—— ouT2
—
IN3 — DelayRules — OUT3

301

Digital devices

Digital primitive summary

Ul PINDLY(3,1,2) $G_DPWR $G_DGND

+ IN1 IN2 IN3

+ ENA

+ REF1 REF2

+ 0UT1 0UT2 0OUT3

+ T0_MODEL

+ TRISTATE:

+ENABLE LO = ENA

+0UT1 = {

+ CASE(

+ CHANGED(REF1, 0) & TRN_LH, DELAY(...),
+ CHANGED(REF2, 0), DELAY(...),
+ TRN_ZL, DELAY(...),
+ e

+)

+

+0UT3 = {

+ CASE(

+ TRN_LZ,DELAY(...),

+ TRN_HZ,DELAY(...),

+ e

+)

+

+ PINDLY:

+0UT2 = {

+ CASE(

+ CHANGED(REF1,0),DELAY(...),

+ e

+)

+

1 Each CONSTRAINT clause operates independently of all others within a device.
2 By default, for violations involving <input node>, the message tag propagates to the

<output node> having positional correspondence.

By default, for violations involving <reference node>, the message tag propagates to ALL
<output node>s.

The default behavior can be overridden by use of one of the following statements, which
can appear anywhere within any constraint clause proper:

AFFECTS (#OUTPUTS) = <output node> { ... }

AFFECTS_ALL

AFFECTS_NONE is always the default for the GENERAL constraint.
SETUP-HOLD: Marks the beginning of a constraint specification. These

WIDTH: constructs have the same syntax as those used in the
FREQ: CONSTRAINT primitive (see pa@309.

GENERAL:When a PINDLY primitive is used, the constraint specifications allow the
simulator to not only report timing violations, but also to track the effects of the violations in
downstream logic. This allows more serious persistent hazards to be reported. This behavior
differs from the CONSTRAINT primitive, which only reports timing violations.

302

Digital devices

Digital primitive summary

PINDLY primitive simulation behavior

A PINDLY primitive is evaluated whenever any of its <input nodes> or <enable nodes>
change. The <input node> is positionally associated using its corresponding <output node>.
The BOOLEAN statements up to the output assignment are evaluated first, then the
appropriate PINDLY or TRISTATE <delay expression> which has been assigned to the
changing <output node> is evaluated. The changing input’s state is then applied to the output,
using its delay value.

The following PINDLY primitive models the timing behavior of a 74LS160A counter. This
example is derived directly from the device model in the model library.

ULSI60ADLY PINDLY(5,0,4) DPWR DGND

+ RCO QA QB QC QD ; Inputs

+ CLK LOADBAR ENT CLRBAR; Reference nodes

+ RCO_0 QA_O QB_0 QC_0O QD_0; Outputs

+ I0_LS MNTYMXDLY={MNTYMXDLY} IO_LEVEL={IO_LEVEL}

+
+ BOOLEAN:
CLOCK = { CHANGED_LH(CLK,0) 1}
CNTENT = { CHANGED(ENT,0) }
PINDLY:
QA_O0 QB_0 QC_0 Qb_0 = {
CASE(

CLOCK & TRN_LH, DELAY(-1,13NS,24NS),
CLOCK & TRN_HL, DELAY(-1,18NS,27NS),
CHANGED_HL(CLRBAR,0), DELAY(-1,20NS,28NS),
DELAY(-1,20NS,28NS); Default
)

}

RCO = {
CASE(
CNTENT, DELAY(-1,9NS,14NS),
CLOCK & TRN_LH, DELAY(-1,18NS,35NS),
CLOCK & TRN_HL, DELAY(-1,18NS,35NS),
DELAY(-1,20NS,35NS); Default
)

Ik i T T S S S S S S S S S T S

Section

303

Digital devices

Digital primitive summary

Constraint checker

Device format

The CONSTRAINT primitive provides a general constraint checking mechanism to the
digital device modeler. It performs setup and hold time checks, pulse width checks, frequency
checks, and includes a general mechanism to allow user-defined conditions to be reported.

The CONSTRAINT primitive only reports timing violations. It does not affect propagated or
stored logic state or propagation delays.

Timing specifications are usually given at the device (i.e., package pin) level. Thus, the inputs
to the constraint description typically are those of the subcircuit description of the device,
after any necessary buffering. CONSTRAINT devices can be used in conjunction with any
combination of digital primitives, including gates, logic expressions, and pin-to-pin delay
primitives.

U<name> CONSTRAINT (<no. of inputs>)

<digital power node> <digital ground node>
<input node 1> ... <input node n>

<I/0 model name>

[IO_LEVEL = <interface subckt select value> 1]
BOOLEAN: <boolean assignment>*] ...
SETUP_HOLD: <setup_hold specification>]
WIDTH: <width specification> 1 ...

FREQ: <frequency specification>] ...
GENERAL: <general specification> 1 ...

+ 4+ + o+t

(o e e B e W |

BOOLEAN: marks the beginning of a section containing one or more <boolean
assignments>, of the form:

<boolean variable> = { <boolean expression> }
BOOLEAN sections can appear in any order within the CONSTRAINT primitive.

The syntax of the <boolean expression> is the same as that defined in the PINDLY primitive
reference, having the exception that transition functions have no meaning within the
CONSTRAINT primitive.

SETUP_HOLD:

Marks the beginning of a setup/hold constraint specification, which has the following format:

+ SETUP_HOLD:
+ CLOCK <assertion edge> = <input node>
DATA (<no. of data inputs>) = <input node j> ... <input node k>
[SETUPTIME = <time value>]
HOLDTIME = <time value>]
RELEASETIME = <time value>]
WHEN {<boolean expression>}]
MESSAGE = “<additional message text>"]
ERRORLIMIT = <value>]
AFFECTS_ALL | AFFECTS_NONE
AFFECTS (#0UTPUTS) = <output-node-Tist>]

[I e B s B s el |

+ 4+ o+ o+ o+

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in PINDLY primitives.

CLOCK defines the node to be used as the reference for setup/hold/release specification.
<assertion edge> is one of LH or HL, and specifies which edge of the CLOCK node the
setup/hold time is measured against. The CLOCK node must be specified.

304

Digital devices

Digital primitive summary

DATA defines one or more nodes to be the nodes whose setup/hold time is being measured.
At least one DATA node must be specified.

SETUPTIME defines the minimum time that all DATA nodes must be stable prior to the
<assertion edge> of the clock. The <time value> must be a nonnegative constant or
expression, expressed in seconds. Some devices have different setup time requirements which
depend on whether the data is a low or a high at the time of the clock change. In this case, one
or both of the following can be used:

SETUPTIME_LO = <time value>
SETUPTIME_HI <time value>

instead of SETUPTIME, which defines both low- and high-level specifications. If one or both
SETUPTIME_xx specifications is zero, the simulator does not perform a setup check for that
data level.

HOLDTIME defines the minimum time that all DATA nodes must be stable after the
<assertion edge> of the clock. The <time value> must be a nonnegative constant or
expression, expressed in seconds. Some devices have different hold time requirements which
depend on whether the data is a low or a high at the time of the clock change. In this case, one
or both of the following can be used:

HOLDTIME_LO = <time value>
HOLDTIME_HI = <time value>

instead of HOLDTIME, which defines both low- and high-level specifications. If one or both
HOLDTIME_xx specifications is zero, the simulator does not perform a hold check for that
data level.

RELEASETIME specifications cause the simulator to perform a special-purpose setup check.
In a data sheet, release time (also called recovery time) specifications refer to the minimum
time a signal (such as CLEAR) can go inactive before the active CLOCK edge. In other
words, release times refer to the position of a specific data edge in relation to the clock edge.
For this reason, one or both of the following can be used:

RELEASETIME_LH = <time value>
RELEASETIME_HL = <time value>

instead of RELEASETIME, which defines both LH- and HL-edge specifications. The
<time value> must be a nonnegative constant or expression, expressed in seconds.

The difference between the release-time checker and the setup-time checker is that
simultaneous CLOCK/DATA changes are never allowed in the release-time check. That is, a
nonzero hold time is assumed, even though the HOLDTIME is not specified. This feature
allows the data sheet values to be specified for release-times directly in a model. For this
reason, release times are usually given alone, and not in conjunction with SETUPTIME or
HOLDTIME specifications.

305

Digital devices

Digital primitive summary

Simulation behavior: CLOCK

The sequence of setup/hold/release checks begins when the CLOCK node undergoes the
specified LH or HL transition. At that time, the WHEN expression is evaluated. If the result
is TRUE, all checks using nonzero specifications are performed for during this clock cycle. If
the result is FALSE, then no setup, hold, or release checks are performed. The WHEN
expression is used in device models to block the reporting of violations when the device is not
listening to the DATA inputs, such as during a clearing function.

The simulator performs setup-time checks when the CLOCK node undergoes an
<assertion edge>. If the HOLDTIME specification is zero, simultaneous CLOCK/DATA
transitions are allowed, however the previous value of DATA is still checked for setup-time.
If the HOLDTIME is not zero, simultaneous CLOCK/DATA transitions are reported as a
HOLDTIME violation.

The simulator performs hold-time checks on any DATA node that changes after the
<assertion edge> on the CLOCK node. If the SETUPTIME is zero, simultaneous
CLOCK/DATA changes are allowed, and the next transition on DATA which occurs before
the non-asserting clock edge is checked for a hold-time violation.

The simulator performs release-time checks when the CLOCK node undergoes an
<assertion edge>. Simultaneous CLOCK/DATA transitions are not allowed, and is flagged as
a violation.

If either the CLOCK or DATA node is unknown (X) at the time of a check, no violation is
reported for that node. This reduces the number of unnecessary warning messages: an X being
clocked into a device is usually a symptom of another problem which has already been
reported.

The sequence ends when the CLOCK node undergoes the other (non-asserting) edge. At this
time, any violations which occurred during that clock cycle are reported. (This makes it
possible for violations to appear out of time-order in the file.)

WIDTH:Marks the beginning of a minimum pulse-width constraint specification, which has
the following format:

+ WIDTH:
+ NODE = <input node>
[MIN_HI = <time value>]
MIN_LO = <time value>]
WHEN {<boolean expression>}]
MESSAGE = "<additional message text>"]
ERRORLIMIT = <value>]
AFFECTS_ALL | AFFECTS_NONE |
AFFECTS (#0UTPUTS) = <output-node-Tist>]

+ 4+ + + + + +
o

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive.

NODE defines the input node whose pulse width is to be checked.

MIN_HI specifies the minimum time that the <input node> can remain at a high (1) logic
level. The <time value> must be a nonnegative constant or expression, expressed in seconds.
If not specified, MIN_HI defaults to 0, meaning that any width HI pulse is allowed.

MIN_LO likewise specifies the minimum time that the <input node> can remain at a low (0)
logic level. The <time value> must be a nonnegative constant or expression, expressed in
seconds. If not specified, MIN_LO defaults to 0, meaning that any width LO pulse is allowed.

306

Digital devices

Digital primitive summary

At least one instance of MIN_HI or MIN_LO must appear within a WIDTH specification.

FREQ: marks the beginning of a frequency constraint specification, which has the following
format:

+ FREQ:
+ NODE = <input node>
[MINFREQ = <frequency value>]
MAXFREQ = <frequency value>]
WHEN { <boolean expression> }]
MESSAGE "<additional message text>"]
ERRORLIMIT = <value>]
AFFECTS_ALL | AFFECTS_NONE
AFFECTS (#0UTPUTS) = <output-node-Tist>]

+ 4+ + + + + +
o

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive.

NODE defines the input node whose frequency is to be checked.

MINFREQ specifies the minimum frequency allowed on <input node>. The
<frequency value> must be a nonnegative floating point constant or expression, expressed in
hertz.

MAXFREQ specifies the maximum frequency allowed on <input node>. The
<frequency value> must be a nonnegative floating point constant or expression, expressed in
hertz.

At least one of MINFREQ or MAXFREQ must be specified within a FREQ specification.

Simulation Behavior: FREQ

When performing a MINFREQ check, the simulator reports a violation whenever the duration
of a period on the <input node> is greater than 1/<frequency value>. Likewise, when
performing a MAXFREQ check, it reports a violation whenever any period is less than
1/<frequency value>. To avoid large numbers of violations, the simulator does not report
subsequent violations until after a valid cycle occurs.

Note that the use of maximum FREQ specifications provides a slightly different functionality
from that achieved by use of minimum pulse-width checks: in the FREQ specification case,
the duty-cycle characteristic of the signal is not measured or constrained in any way, whereas
the pulse-width check effectively defines the allowable duty-cycle.

Some clocked state-storage device specifications include information about maximum clock
frequency, but omit duty-cycle information.

GENERAL:Marks the beginning of a general condition test. GENERAL constraints have the
following form:

+ GENERAL:
+ WHEN { <boolean expression> }
MESSAGE = "<message text>"
[ERRORLIMIT = <value>]
[AFFECTS_ALL | AFFECTS_NONE
AFFECTS (#0UTPUTS) = <output-node-Tist> 1]

+ + + +

307

Digital devices Digital primitive summary

®

One or more sections can be specified in any order. Note that AFFECTS clauses are
only allowed in the PINDLY primitive. The default for the GENERAL constraint is
AFFECTS_NONE.

WHEN is used to define a boolean expression, which can describe arbitrary signal
relationships that represent the error or condition of interest.

MESSAGE defines the message to be reported by the simulation whenever the WHEN
expression evaluates TRUE. The <message text> must be a text constant (enclosed by double
guotes “ ") or a text expression.

The <boolean expression> is evaluated whenever the CONSTRAINT primitive is
evaluated, that is, whenever any of its inputs undergo a transition. If the result is
TRUE, the simulator produces a header containing the time of the occurrence,
followed by the <message text>.

General notes

Any or all of the constraint specifications (SETUP_HOLD, WIDTH, FREQ, GENERAL) can
appear, in any order, within a CONSTRAINT primitive. Further, more than one constraints
of the same type can appear (such as two WIDTH specifications). Each of the constraint
specifications is evaluated whenever any inputs to the CONSTRAINT primitive instance
change.

All constraint specifications can optionally include a WHEN statement, which is interpreted
as “only perform the check when result of <boolean expression> == TRUE.” The WHEN
statement is required in the GENERAL constraint.

Each constraint type (SETUP_HOLD, WIDTH, FREQ, and GENERAL) has an associated
built-in message. In addition, each instance can include a MESSAGE specification, which
takes a text constant (enclosed in double quotes “) or text expression. The

<additional message text> is appended to the end of the internally-generated, type-specific
message which is output whenever a violation occurs. The MESSAGE clause is required for
the GENERAL constraint device.

All of the constraint specifications can accept an optional ERRORLIMIT specification. The
<value> must be a honnegative constant or expression. The default <value> is obtained from
the value of th®IGERRDEFAULT (set using the .OPTIONS command), which defaults to 20.

A value of zero is interpreted as infinity, i.e., no limit. When more than <value> violations of
the associated constraint have occurred, no further message output is generated for that
constraint checker; other checkers within the CONSTRAINT primitive that have not
exceeded their own ERRORLIMITs continue to operate.

During simulation, if the total number of digital violations reported exceeds the value given
by DIGERRLIMIT (set using theDPTIONS (analysis options)command), then the simulation
is halted DIGERRLIMIT defaults to infinity.

308

Digital devices Digital primitive summary

This CONSTRAINT primitive example below was derived from the 74LS160A device in the
model library. It demonstrates how all of the timing checks can be performed by a single
primitive.

ULS160ACON CONSTRAINT(10) DPWR DGND

+ CLK ENP ENT CLRBAR LOADBAR A B C D EN

+ I0_LS
+ FREQ:
NODE = CLK
MAXFREQ = 25MEG
WIDTH:
NODE = CLK
MIN_LO = 25NS
MIN_HI = 25NS
WIDTH:
NODE = CLRBAR
MIN_LO = 20NS
SETUP_HOLD:

DATA(1) = LOADBAR

CLOCK LH = CLK

SETUPTIME = 20NS

HOLDTIME = 3NS

WHEN = { CLRBAR!="0 }
SETUP_HOLD:

DATA(2) = ENP ENT

CLOCK LH = CLK

SETUPTIME = 20NS

HOLDTIME = 3NS

WHEN = { CLRBAR!="0 & (LOADBAR!='0 ~ CHANGED(LOADBAR,0))
& CHANGED(EN,20NS) }
SETUP_HOLD:

DATA(4) = ABCD

CLOCK LH = CLK

SETUPTIME = 20NS

HOLDTIME = 3NS

WHEN = { CLRBAR!="0 & (LOADBAR!="1 ~ CHANGED(LOADBAR,0)) !}
SETUP_HOLD:

DATA(1) = CLRBAR

CLOCK LH = CLK

RELEASETIME_LH = 25NS

e T S S s T T T i i T S i S S S S S S S S S N

Section

309

Digital devices Stimulus devices

Stimulus devices

Stimulus devices apply digital waveforms to a node. Their purpose is to provide the input to
a digital circuit or a digital portion of a mixed circuit. They play the same role in the digital
simulator that the independent voltage and current sources (V and | devices) do in the analog
simulator.

There are two types of stimulus devices: the stimulus generator (STIM), which uses a simple
command to generate a wide variety of waveforms; and the file stimulus (FSTIM), which
obtains the waveforms from an external file.

Unlike digital primitives, stimulus devices do not have a Timing Model. This is similar to the
analog V and | devices: the timing characteristics are described by the device itself, not in a
separate model.

<=Chapter

310

Digital devices Stimulus devices

Stimulus generator

Device format U<name> STIM(Kwidth>, <format array>)
<digital power node> <digital ground node>
<node>*

<I/0 model name>

[STIMULUS=<stimulus name>]
[IO_LEVEL=<interface subckt select value>]
[TIMESTEP=<stepsize>]

+ <command>*

+ + + + + +

Arguments and options

<width>
Specifies the number of signals (nodes) output by the stimulus generator.

<format array>
Specifies the format of <value>s used in defining the stimulus. <format array> is a
sequence of digits which specifies the number of signals (nodes) that the corresponding
digit in a <value> represents. Each digit of <value> is assumed to be in<basdare
<m> is the corresponding digit in <format array>. Each <value> must have the same
number of digits as <format array>. The sum of the digits in <format array> must be
<width>, and each digit must be either a 1, 3, or 4 (that is, binary, octal, or hexadecimal).

<digital power node> <digital ground node>
These nodes are used by the interface devices which connect analog nodes to digital nodes
or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more node names which are output by the stimulus generator. The number of
nodes specified must be the same as <width>.

<I/O model name>
The name of an I/O model, which describes the driving characteristics of the stimulus
generator. I/O models also contain the names of up to four DtoA interface subcircuits,
which are automatically called by the simulator to handle interface nodes. In most cases,
the 1/0 model named I0_STM can be used from the “dig_io.lib” library file. Refer to your
PSpice user’s guide for a more detailed description of I/O models.

STIMULUS
An optional parameter for referencing a stimulus definition.

IO_LEVELAnN optional device parameter which selects one of the four DtoA interface
subcircuits from the I/O model. The simulator calls the selected subcircuit automatically
in the event a <node> connects to an analog device. If not specified, IO_LEVEL defaults
to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)

1 = DtoAl
2 = DtoA2
3 = DtoA3
4 = DtoA4

Refer to your PSpice user’s guide for more information.

311

Digital devices

Time units

Stimulus devices

TIMESTEP
Number of seconds per clock cycle, or step. Transition times that are specified in clock
cycles (using the C suffix) are multiplied by this amount to determine the actual time of
the transition. (See <time> below.) If TIMESTEP is not specified, the default is zero
seconds. TIMESTEP has no effect on <time> values which are specified in seconds (using
the S suffix).

<command>*
A description of the stimuli to be generated, using one or more of the following.

<time> <value>

LABEL=<Tabel name>

<time> GOTO <label name> <n> TIMES

<time> GOTO <Tabel name> UNTIL GT <value>
<time> GOTO <Tabel name> UNTIL GE <value>
<time> GOTO <Tabel name> UNTIL LT <value>
<time> GOTO <Tabel name> UNTIL LE <value>
<time> INCR BY <value>

<time> DECR BY <value>

REPEAT FOREVER

REPEAT <n> TIMES

ENDREPEAT

FILE=<file name>

<time>
Specifies the time for the new <value>, GOTO, or INCR/DECR command to occur.

Time values can be stated in seconds or in clock cycles (see TIMESTEP above). To specify a
time value in clock cycles, use the C suffix. Otherwise, the units default to seconds.

Absolute/relative times

Times can be absolute, such as 45ns or 10c, or relative to the previous time. To specify a
relative time, prefix the time using a “+” such as +5ns or +2c.

<value> is the value for each node (0, 1, R, F, X, or Z). <value> is interpreted using the
<format array>.

<label name> is the name used in GOTO statements. GOTO <label nhame> jumps to the next
non-label statement after the <LABEL = <label name>> statement.

<n> is the number of times to repeat a GOTO loop. Use a -1 to specify forever.
Keep the following in mind when using the stimulus command:

Transitions using absolute times within a GOTO loop are converted to relative times based on
the time of the previous command and the current step size.

* GOTO <label name> must specify a label that has been defined in a previous
LABEL=<label name> statement.

« Times must be in strictly ascending order, except that the transition after a GOTO can be
at the same time as the GOTO.

312

Digital devices

Stimulus devices

A simpler syntax for constructing counted loops in digital stimulus is to use the
REPEAT/ENDREPEAT construct. Specify the count value, for example:
REPEAT 3 TIMES
+ 5ns 0

+ 5ns 1
ENDREPEAT

For an infinite loop, use REPEAT FOREVER (equivalent to REPEAT -1 TIMES). All times
within REPEAT loops are interpreted as relative to the start of the loop.

Transition (i.e., time-value pairs) information can be placed in a FILE and accessed one or
more times from the STIM device by using the FILE= statement. The syntax for the file
contents is identical to what can appear directly in the body of the STIM device <command>
section.

Stimulus generator examples

One The first example creates a simple reset signal, which could be used to set or clear a
flip-flop at the beginning of a simulation. The node, named Reset, is set to a level zero at time
zero nanoseconds, and to a Z (high impedance) at 20 ns.

UReset STIM(1,1) $G_DPWR $G_DGND
+ Reset

+ JO_STM
+ 0s 0

+ 20ns /Z

Reset

T T T T
s 20ns L4ans 60ns 80ns 188ns
Time

This is useful when the Reset node is being driven by another device which does not reset the
flip-flop at time zero. By using the library 1/O model named IO_STM, the stimulus generator
drives with a high strength, and thus overpowers the other output. By outputting a Z for the
duration of the simulation, the stimulus generator cannot affect the node.

TWO The second example is a simple example of a clock stimulus which pulses every 5
nanoseconds. It has one output node, OUT1, and the format is represented in binary notation.
This example specifies the time as relative to the previous step. I0_STM is an I/O model for
stimulus devices and is available in the_io.11ib library file which comes with the digital
simulation feature.

UEx2 STIM(C 1, 1) $G_DPWR $G_DGND Outl TI0_STM
+ 0s 0; At time=0 initialize Outl ; to zero.

+ REPEAT FOREVER;repeats loop indefinitely
+ +5ns 1 ;5ns later Outl is set to 1
+ +5ns 0 ;ons later Outl is set to O
+ ENDREPEAT
ouT1 I L e
s 1éns 2dn5 Séns 4Bns

Time

313

Digital devices

Stimulus devices

Three The third example illustrates the use of the timestep; a cycle is equal to one
nanosecond:

UEx3 STIMC 2, 11) $G_DPWR $G_DGND 1 2
+ I0_STM TIMESTEP=Ins

+ 0c 00 ;At time=0ns, both nodes are set to O.
+ REPEAT 4 TIMES ;What’s in the Toop is repeated
;4 times
+ +1c 01 ;Ins later node 1 is set to O
;and node 2 is set to 1.
+ +2¢ 11 ;2ns later both nodes set to 1.
+ ENDREPEAT
1 ____________4——————1 I 1 I 1 —
2 L T
as 265 hﬁs 665 865 18ns

Time

Four The fourth example has four output nodes. The values of the nodes at each transition
are in hexadecimal notation. This is because the <format array> is set to 4, meaning <value>
is one digit representing the value of four nodes. Both the absolute and relative timing
methods are used, but, at the start of execution, the simulation converts all absolute values to
relative values based on the time of the command and the current step size. The timestep is
equal to one nanosecond, setting the cycle to one nanosecond:

UEx4 STIMC 4, 4) $G_DPWR $G_DGND IN1 INZ IN3 IN4
+ I0_STM TIMESTEP=Ins

+ 0s 0 ; At time=0 seconds, all nodes are set to 0.

+ LABEL=STARTLOOP

+ 10C 1 ; At time=10NS, IN1, IN2, & IN3 are set to 0 and IN4
;is set to 1.

+ +5NS 0 ; BNS Tater, all nodes are set to 0.

+ Z20NS A ; At time=20NS, nodes IN1 & IN3 are set to 1 and
;nodes IN2 &

IN4 are to O.
+ +5NS 0 ; 5NS Tater, all nodes are set to 0.

+

30C GOTO STARTLOOP 1 TIMES ; At time=30NS, execute the
;first statement of the Toop without
;a further delay.“l TIMES” causes the logic to loop
; 1 time, actually executing the loop twice.
+ +10C 1 ; After the logic falls through the Toop
;the second
; time and then waiting 10 additional cycles
(or 10 nanoseconds),
;INT, IN2, & IN3 are set to 0 and IN4 is set to 1.

314

Digital devices

Stimulus devices

Example four produces the following transitions. Note how all of the time values are
calculated relative to the previous step:

TIME VALUE

0.00E+00 = 0000

1.00E-08 = 0001 ; STARTLOOP

1.50E-08 = 0000

2.00E-08 = 1010 ; 1010 in hex=A

2.50E-08 = 0000

3.00E-08 = 0001 ; The GOTO STARTLOOP 1 TIMES causes the
;first statement
; after the STARTLOOP Tabel to be executed
;immediately.

3.50E-08 = 0000

4.00E-08 = 1010

4 .50E-08 = 0000 ; At time 5.00E-08 we checked the

;GOTO STARTLOOP
1 TIMES statement, but did not execute it
; since it was already completed one time.
6.00E-08 = 0001 ;At 10C=1ns * 10=10ns later we
;execute the
;last statement.

In a 1 a A a 1 d A a ; 1

IN1 I — —

INZ i _

IN3 I 1

INY 1 _ | — _ |
s 20ns 4Ons 60ns 7Ons

Five The fifth example illustrates the use of the INCR BY command used to increment
the value of the 16 bit bus:

UEx5 STIM (16, 4444) $G_DPWR $G_DGND
+ 16 15 14 13 12 11 10 98 76 543 21

+ I0_STM TIMESTEP = 10ns
+ 0s 0000 ; At time=0 seconds, all nodes are set to 0.
+ LABEL=STARTLOOP
+ 10c INCR BY 0001 ; At 100ns, increment bus by 1.
+ 20c GOTO STARTLOOP UNTIL GE OOOA ; If the bus value
;is Tess
; than 10, branch back to STARTLOOP and
; execute the Tine following the
label without a further delay.
Bus 1] 1 % 2 3 Wb 5 W& 7 W8 9 1]
s B.Izus l].Jl-lus B.Iﬁus B.Ilius 1 .;jus 1.2us
Time

315

Digital devices

Stimulus devices

SIX The sixth example has seven output nodes: 1, 2, 3, 4, 5, 6, and 7. The <format array>
specifies the notation (1=binary, 3=octal, or 4=hex) used to define the output of those seven
nodes. The first two output signals are defined in binary, the next four are in hexadecimal, and
the last one is in binary.

In this example, at time equal to one nanosecond, the value of 0070 creates the bit pattern
0001110 on the output nodes. The first two zeros correspond to outputs one and two, the 0111
(7 in hex) corresponds to output signals 3 through 6, and the last zero

is the value of output signal 7.

UEx6 STIMC 7, 1141) $G_DPWR $G_DGND 1 2 3 4 5 6 7 I0_STM

+ Ons 0000 ; At time=0ns, all nodes are set to 0.
+ REPEAT 4 TIMES ; Repeats what’s in Toop 4 times.
+ +1ns 0070 ; At time=Ins, nodes 1, 2, & 3 are set to 0,

; nodes 4, 5, & 6 are set to 1,
; and node 7 is set to 0.

+ +2ns 11F1; At time=2ns, all nodes are set to 1.
+ ENDREPEAT
1 1] 1 I N
2 I E—] 1 I I
3_to_6 1] 7 F 7 F 7 W F 7 F
Fi L [L I I—li
A= 2;5 hés 655 865 18ns

Time

Section

316

Digital devices Stimulus devices

File stimulus

The file stimulus device, FSTIM, allows the digital stimuli to be obtained from a file. This is
often useful if the number of stimuli is very large, or if the inputs to one simulation come from
the output of another simulation (or even from another simulator). To make the discussion of
the FSTIM device more meaningful, the stimulus file format is discussed first.

Stimulus file format

The stimulus file has a simple format which allows outputs from other simulators, or the
simulation output file, to be used with little modification. The file consists of two sections: the
header, which contains a list of signal names, and the transitions, which is one or more lines
containing the transition time and columns of values. The header and transitions must be
separated by at least one blank line. Below is a simple example of the stimulus file format.

* Header, containing signal names (standard comments are

* allowed)
Clock, Reset, Inl, In2; four signal names

* Beginning of the transitions - note the blank Tine

0 0000 ; values are in binary
10ns 1100

20ns 0101

30ns 1110

40ns 0111

Header format

[TIMESCALE=<value>]

{signame 1>...<signame n>...
0CT(<signame bit 3> ... <signame 1sb>)
HEX(<signame bit 4> ... <signame 1sb>)

The header consists of the list of signal names and an optional TIMESCALE value. The signal
names can be separated by commas, spaces, or tabs. The list can span several lines, but must
not include the + continuation character. The signal names listed correspond to the columns

of values in the order that they are listed. Up to 255 signals can be listed in the header,
however a maximum of 300 characters are allowed per line.

The OCT and HEX radix functions allows three or four signals to be grouped, respectively,
into a single octal or hexadecimal digit in the columns of values. Note that exactly three
signals must be included inside the parentheses in the OCT function, and that exactly four
signals must be included in the HEX function. Signal names listed without the radix functions
default to binary values.

The following example shows the use of the HEX radix function.

Clock Reset Inl In2
HEX(Addr7 Addr6 Addr5 Addr4) HEX(Addr3 Addr2 Addrl Addr0)
ReadWrite

0 0000 00 O ; spaces can be used to group values
10n 1100 4E O
20n 0101 4E 1
30n 1110 4E 1
40n 0111 FF O

317

Digital devices

Stimulus devices

In this example, there are four binary signals, followed by two occurrences of the HEX radix
function, followed by a single binary signal. In the list of transitions following the header,
there are seven values which correspond, in order, to the list of signals.

The optional TIMESCALE assignment is used to scale the time values in the transitions. The
TIMESCALE assignment must be on a separate line. If unspecified, TIMESCALE defaults
to 1.0. See <time> below for more information on the use of TIMESCALE.

Transition format

<time> <value>* Following the first blank line after the header, the simulator looks
for one or more lines containing transitions. Transitions consist of a time value, followed by
one or more values corresponding to the signal names in the header. The <time> and list of
<values> must be separated by at least one space or tab.

<time> Transition times are always stated in seconds. Times can be absolute, such as
45ns, 1.2e-8, or 10; or relative to the previous time. To specify relative time, prefix the time
using a +, such as +5ns or +1e-9.

Time values are always scaled by the value of TIMESCALE. This is useful if the time values
in the file are expressed as whole numbers, but the actual units are, for example, 10ns. An
example showing the use of TIMESCALE is given below.

<value>* Each value corresponds to a single binary signal (the default) or the entire
group of signals inside the OCT or HEX radix functions. The number of values listed must
equal the total number of binary signals and radix functions which are specified in the header.
Valid <values> are:

Binary OCT HEX
Logic/Numeric 0,1 0-7 0-F
Unknown X X X
Hi-impedance z z z
Rising R R
Falling F F

318

Digital devices

Stimulus devices

When the <value> in a HEX or OCT column is a number, the simulator converts the number
to binary and assigns the appropriate logic value of each bit (either zero or one) to the signals
inside the radix function. The bits are assigned msb to Isb. When the <value>is X, Z, R, or F,
all signals in the radix function take on that value. Note that there can be no falling value in a
HEX column because F is used as a numeric value.

The following example shows the use of TIMESCALE and relative <time> values.

TIMESCALE=10ns ; must appear on separate Tine
Clock, Reset, Inl, In2

HEX(Addr7 Addr6 Addr5 Addr4) HEX(Addr3 Addr2 Addrl Addr0)
ReadWrite

0000 00 O
110R 4E 0O ; transition occurs at 10ns
0101 4E 1
3 1111 4 1 ; transition occurs at 50ns
011F C3 O ; transition occurs at 70ns
11X0 C3 1

O~ + - O

File stimulus device

Device format

Examples

The file stimulus device, FSTIM, is used to access one or more signals inside a stimulus file.
More than one FSTIM device can access the same file. An FSTIM device can even refer to
the same signal as another FSTIM device. Any number of stimulus files can be used during a
simulation.

U<name> FSTIM(<# outputs>)

<digital power node> <digital ground node>
<node>*

<I/0 model name>

FILE=<stimulus file name>
[IO_LEVEL=<interface subckt select value>]
+ [SIGNAMES=<stimulus file signal name>*]

Ul FSTIM(1) $G_DPWR $G_DGND
+ IN1 IO_STM FILE=DIGL.STM

U2 FSTIM(4) $G_DPWR $G_DGND
+ ADDR3 ADDR2 ADDR1 ADDRO

+ I0_STM

+ FILE = DIG_2.STM

SIGNAMES = AD3 AD2 AD1 ADO

U3 FSTIM(4) $G_DPWR $G_DGND

+ + + + +

+

+ CLK PRE J K

+ I0_STM

+ FILE = FLIPFLOP.STM

+ SIGNAMES = CLOCK PRESET

319

Digital devices Stimulus devices

Arguments and options

<# outputs>Specifies the number of nodes driven by this device.

<digital power node> <digital ground node>
These nodes are used by the interface devices which connect analog nodes to digital nodes
or vice versa. Refer to your PSpice user’s guide for more information.

<node>*
One or more node names which are output by the file stimulus. The number of nodes
specified must be the same as <# outputs>.

<I/O model name>
The name of an I/O model, which describes the driving characteristics of the stimulus
device. I/O models also contain the names of up to four DtoA interface subcircuits, which
are automatically called by the simulator to handle interface nodes. In most cases, the 1/0
model named I0_STM can be used from the libraty_io.1ib. Refer to your PSpice
user’s guide for a more detailed description of /O models.

FILE
The name of the stimulus file to be accessed by this device. The <stimulus file name> can
be specified as a quoted string or as a text expressiolSE€ (text parameter). Note
that the FILE device parameter is not optional.

IO_LEVEL
An optional device parameter which selects one of the four AtoD or DtoA interface
subcircuits from the device’s I/O model. The simulator calls the selected subcircuit
automatically in the event a node connecting to the primitive also connects to an analog
device. If not specified, I0_LEVEL defaults to 0. Valid values are:

0 = the current value of .OPTIONS DIGIOLVL (default=1)
1 = AtoD1/DtoAl
2 = AtoD2/DtoA2
3 = AtoD3/DtoA3
4 = AtoD4/DtoA4

Refer to your PSpice user’s guide for more information.

SIGNAMES
Used to specify the names of the signals inside the stimulus file which are to be referenced
by the FSTIM device. The signal names correspond, in order, to the <nodes> connected
to the device. If any or all SIGNAMES are unspecified, The simulator looks in the
stimulus file for the names of the <nodes> given. Because the number of signal names can
vary, the SIGNAMES parameter must be specified last. SIGNAMES can be a list of
names or text expressions (see .TEXT), or a mixture of the two.

320

Digital devices

Comments

Stimulus devices

The first example references a file namedi . stm. This file must have a signal named IN1.

The second example referenaesg? . stm. This file would have to have signals named AD3
through ADO. These are mapped, in order, to the nodes ADDR3 through ADDRO, which are
driven by this device.

In the third example, the FSTIM device references the fil@fiop.stm.
The contents of 1ipflop.stm are shown below:
J K PRESET CLEAR CLOCK

0 0 0 010
10ns 0 0 111

In this example, the first two nodes, CLK and PRE, reference the signals named CLOCK and
PRESET in the stimulus file. The last two nodes, J and K, directly reference the signals
named J and K in the file, and therefore do not need to be listed in SIGNAMES. Note that the
order of the SIGNAMES on the FSTIM device does not need to match the order of the names
listed in the header of the stimulus file. It is not required that every signal in the file be
referenced by an FSTIM device. In the example above, the signal named CLEAR is not
referenced. One, several, or all signals in a stimulus file can be referenced by one or more
FSTIM devices.

Section

321

Digital devices Input/output model

Input/output model

Each digital device in the circuit must reference an I/O model. The 1/0O model describes the
device’s loading and driving characteristics. It also contains the names of up to four AtoD and
DtoA subcircuits that the simulator calls to handle interface nodes.

I/0 models are common to device families. For example, of the digital devices in the model
library, there are only four I/O Models for the entire 74LS family: 10_LS, for standard inputs
and outputs; IO_LS_OC, for standard inputs and open-collector outputs; IO_LS_ST, for
schmitt trigger inputs and standard outputs; and IO_LS_OC_ST, for schmitt trigger inputs and
open-collector outputs. This is in contrast to timing models, which are unique to each device
in the library.

Model form .MODEL <I/0 model name> UIO [model parameters]

Input/output model parameters

I\P/I;)rier!r!eter Description Units Default

AtoD1 Name of level 1 AtoD interface subcircuit AtoDDefault

AtoD2 Name of level 2 AtoD interface subcircuit AtoDDefault

AtoD3 Name of level 3 AtoD interface subcircuit AtoDDefault

AtoD4 Name of level 4 AtoD interface subcircuit AtoDDefault

DIGPOWER Name of power supply subcircuit DIGIFPWR

DRVH Output high level resistance ohm 50

DRVL Output low level resistance ohm 50

DRVZ Output Z-state leakage resistance ohm 250 Kohm

DtoAl Name of level 1 DtoA interface subcircuit DtoADefault

DtoA2 Name of level 2 DtoA interface subcircuit DtoADefault

DtoA3 Name of level 3 DtoA interface subcircuit DtoADefault

DtoA4 Name of level 4 DtoA interface subcircuit DtoADefault

INLD Input load capacitance farad 0

INR Input leakage resistance ohm 30 Kohm

OuTLD Output load capacitance farad 0

TPWRT Pulse width rejection threshold sec same as
propagation
delay

TSTOREMN Minimum storage time for net to be sec 1.0 msec

simulated as a charge
TSWHL1 Switching time high to low for DtoAl sec
TSWHL2 Switching time high to low for DtoA2 sec

GhaptEf TSWHL3

Switching time high to low for DtoA3 sec

322

Digital devices Input/output model

Input/output model parameters (continued)

'I\Dﬂgriizeter Description Units Default
TSWHL4 Switching time high to low for DtoA4 sec 0
TSWLH1 Switching time low to high for DtoAl sec 0
TSWLH2 Switching time low to high for DtoA2 sec 0
TSWLH3 Switching time low to high for DtoA3 sec 0
TSWLH4 Switching time low to high for DtoA4 sec 0

INLD andouTLD are used in the calculation of loading capacitance, which factors into the
propagation delay. Refer to your PSpice user’s guide for more information.

DRVH andDRVL are used to determine the strength of the output. Refer to your PSpice user’s
guide for more information.

DRVZ, INR, andTSTOREMN are used to determine which nets should be simulated as charge
storage nets.

AtoD1 throughatoD4 andbtoA1 throughbtoA4 are used to hold the names of interface
subcircuits. Note thalLD andatoD1 throughatoD4 do not apply to stimulus generators
because they have no input nodes. Refer to your PSpice user’s guide for more information.

The switching timesTSwLHN andTsSwHLN) are subtracted from a device’s propagation delay

on the outputs which connect to interface nodes. This compensates for the time it takes the
DtoA device to change its output voltage from its current level to that of the switching
threshold. By subtracting the switching time from the propagation delay, the analog signal
reaches the switching threshold at the correct time (that is, at the exact time of the digital
transition). The values for these model parameters should be obtained by measuring the time
it takes the analog output of the DtoA (using a nominal analog load attached) to change to the
switching threshold after its digital input changes. If the switching time is larger than the
propagation delay for an output, no warning is issued, and a delay of zero is used. Note that
the switching time parameters are not used when the output drives a digital node.

DIGPOWER specifies the name of the power supply subcircuit the simulator calls for when an
AtoD or DtoA interface is created. The default valuei@FPWR, which is the power supply
subcircuit used by the TTL and CMOS device libraries.

For more information on how to change the default power supplies, refer to your PSpice user’s
guide.

323

Digital devices Digital/analog interface devices

Digital/analog interface devices

The simulator provides two devices for converting digital logic levels to analog voltages or
vice versa. These devices are at the heart of the interface subcircuits faumdi 11 b.

These devices also provide the Digital Files interface for interfacing using external logic
simulators.

Digital input (N device)

The digital input device is used to translate logic levels (typically 1s, 0s, Xs, Zs, Rs, and Fs)
into representative voltage levels using series resistances. These voltages and resistances
model the output stage of a logic device (like a 74LS04) and hence form a digital input to the
analog circuit. The logic level information can come from two places: the digital simulator or
a file. (The file can be created by hand, or can be an output file from an external logic
simulator.)

The general form for a digital input device, and some of the model parameters, are different
for devices driven from a file and for those driven by the digital simulation feature. The digital
simulation inserts digital input devices automatically when a digital device’s output is
connected to an analog component. The automatic insertion of digital input devices is
discussed in your PSpice user’s guide. Examples of the devices that are inserted can be found
inthedig_io.1ib library file.

General form for digital simulation

N<name> <interface node> <low level node> <high level node>
+ <model name>

+ DGTLNET = <digital net name>

+ <digital I/0 model name>

+ [IS = initial state]

for digital files

N<name> <interface node> <low level node> <high level node>
+ <model name>

+ [SIGNAME = <digital signal name>]
+ [IS = initial state]

Examples N1 ANALOG DIGITAL_GND DIGITAL_PWR DIN74
+ DGTLNET=DIGITAL_NODE IO0_STD
NRESET 7 15 16 FROM_TTL
N12 18 0 100 FROM_CMOS SIGNAME=VCO_GATE 1S=0

Model form .MODEL <model name> DINPUT [model parameters]

¢=Chapter

324

Digital devices Digital/analog interface devices

Digital input model parameters

Model

parameters * Description Units Default
CHI capacitance to high level node farad 0
CLO capacitance to low level node farad 0
FILE digital input file name (digital files only)

FORMAT digital input file format (digital files only) 1
SONAME state O character abbreviation

S0TSW state 0 switching time sec

SORLO state O resistance to low level node ohm

SORHI state O resistance to high level node ohm
SINAME state 1 character abbreviation

SITSW state 1 switching time sec

S1RLO state 1 resistance to low level node ohm

S1RHI state 1 resistance to high level node ohm
S2NAME state 2 character abbreviation

S2TSW state 2 switching time sec

S2RLO state 2 resistance to low level node ohm

S2RHI state 2 resistance to high level node ohm
S19NAME state 19 character abbreviation

S19TSW state 19 switching time sec

S19RLO state 19 resistance to low level node ohm

S19RHI state 19 resistance to high level node ohm
TIMESTEP digital input file step-size (digital files only) sec 1E-91

*See, MODEL (model definition) .

®

For more information on using the digital input device to simulate mixed analog/digital
systems refer to your PSpice user’s guide.

325

Digital devices

Digital/analog interface devices

As shown below, the digital input device is modeled as a time varying resistor from

<low level node> to <interface node>, and another time varying resistor from

<high level node> to <interface node>. Each of these resistors has an optional fixed value
capacitor in parallel: CLO and CHI. When the state of the digital signal changes, the values
of the resistors change (exponentially) from their present values to the values specified for the
new state over the switching time specified by the new state. Normally the low and high level
nodes would be attached to voltage sources which would correspond to the highest and lowest
logic levels. (Using two resistors and two voltage levels, any voltage between the two levels
can be created at any impedance.

Digital Input Model
High—Level node
i

FHI

CHI

o
CLo Inferface node
I

Lew—Level node

° il

RLC

For a digital simulation driven digital input, the parameters
DGTLNET = <digital net name> <digital I/0 model name>

must be specified. Refer to your PSpice user’s guide for more information on digital I/O
models. The digital net must not be connected to any analog devices, otherwise the automatic
analog/digital interface process disconnects the digital input device from the digital net.

Digital simulation can send states named 0, 1, X, R, F, and Z to a digital input device. The
simulation stops if the digital simulation sends a state which is not modeled (does not have
SnNAME, SnTSW, SnRLO, and SnRHI specified) to a digital input device.

The initial state of a digital simulation driven digital input is controlled by the bias point
solution of the analog/digital system. It is sometimes necessary to override this solution (for
example, an oscillator which contains both analog and digital parts). The optional parameter

IS = <initial state name>

can be used to do this. The digital input remains in the initial state until the digital simulation
value changes from its TIME=0 value.

The model parameters FILE, FORMAT, and TIMESTEP are not used by digital simulation
driven digital input devices, and only the FILE parameter is used for VIEWsim A/D driven
digital inputs. For file driven digital inputs the FILE parameter defines the name of the file to
be read, and the FORMAT parameter defines the format of the data in that file. The
TIMESTEP parameter defines the conversion between the digital simulation’s integer timing
tick numbers and the simulation’s floating-point time values:

tick number - TIMESTEP = seconds

Tick number must be an integer.

326

Digital devices

Digital/analog interface devices

For a file driven or VIEWSsim A/D driven digital input, the DGTLNET parameter must not be
specified, but the optional parameter

SIGNAME = <digital signal name>

is used to specify the name of the digital signal in the file (or the digital net name in VIEWsim
A/D). If no SIGNAME is given, then the portion of the device name after the leading N
identifies the name of the digital signal.

The parameter

[S=<initial state name>
can be used as described above to override the initial (TIME=0) values from the file.

The file namedGTLPSPC is used with VIEWsim A/D to tell the simulator to get digital state
values from the VIEWsim A/D interface, rather than a file.

Any number of digital input models can be specified, and both file driven and digital
simulation driven digital inputs can be used in the same circuit. Different digital input models
can reference the same file, or different files. If the models reference the same file, the file
must be specified in the same way, or unpredictable results occur. For example, if the default
drive is C:, then one model should not have FILE=C:TEST.DAT if another has
FILE=TEST.DAT.

For diagnostic purposes, the state of the digital input can be viewed in Probe by specifying
B(Nxxx). The value of B(Nxxx) is 0.0 if the current state is SONAME, 1.0 if the current state
is SINAME, and so on through 19.0. B(Nxxx) cannot be specified on a .PRINT, .PLOT, or
.PROBE line. (For digital simulation, the digital window of Probe provides a better way to
look at the state of the digital net connected to the digital input.)

Section

327

Digital devices Digital/analog interface devices

Digital output (O Device)

The digital output device is used to translate analog voltages into digital logic levels (typically
1,0, X, R, or F). The conversion of a voltage into a logic level, models the input stage of a
logic device (like a 74LS04) and hence forms a digital output from the analog circuit. The
logic level information can go to two places: the digital simulation, or a file. (The file can
simply be inspected manually, or can be used as a stimulus file for an external logic
simulator.)

General form for digital simulation

O<name> <interface node> <reference node> <model name>
+ DGTLNET = <digital net name> <digital I/0 model name>

for digital files

O<name> <interface node> <reference node> <model name>
+ [SIGNAME = <digital signal name>]

Model form .MODEL <model name> DOUTPUT [model parameters]

Exeunpﬂes 012 ANALOG_NODE DIGITAL_GND D074 DGTLNET=DIGITAL_NODE IO_STD
ovco 17 0 TO_TTL
05 22 100 TO_CMOS SIGNAME=VCO_OUT

Digital output model parameters

g/lzfrg?r:eters + Description Units Default

CHGONLY 0: write each timestep, 1: write upon 0
change

CLOAD output capacitor farad O

FILE digital input file name (digital files only)

FORMAT digital input file format (digital files only) 1

RLOAD output resistor ohm 1/GMIN

SONAME state O character abbreviation

SOVLO state 0 low level voltage volt

SOVHI state 0 high level voltage volt

SINAME state 1 character abbreviation

S1VLO state 1 low level voltage volt

S1VHI state 1 high level voltage volt

S2NAME state 2 character abbreviation

S2vLo state 2 low level voltage volt

S2VvHI state 2 high level voltage volt

S19NAME state 19 character abbreviation

S19VLO state 19 low level voltage volt

S19VHI state 19 high level voltage volt

328

Digital devices Digital/analog interface devices

Digital output model parameters (continued)

Model « Description Units Default

parameters

SXNAME state applied when the interface node “
voltage falls outside all ranges

TIMESTEP digital input file step-size sec 1E-9

TIMESCALE scale factor for timestep (digital files only) 1

* See. MODEL (model definition) .

The general form for a digital output device, and some of the model parameters, are different
for devices that drive a file (or VIEWsim A/D) and those that drive the digital simulation
feature. The digital simulation inserts digital output devices automatically when a digital
device’s input is connected to an analog component. The automatic insertion of digital output
devices is discussed in your PSpice user’s guide, and examples of the devices which are
inserted can be found in tieg_io.1ib library file.

For more information on using the digital output device to simulate mixed
analog/digital systems, refer to your PSpice user’s guide.

As shown in Figure , the digital output device is modeled as a resistor and capacitor, of the
values specified in the model statement, connected between <interface node> and
<reference node>. At times which are integer multiples of TIMESTEP, the state of the device
node is determined and written to the specified file.

Digital output model

Infetface node
t+)

o
| |
Lol — RLOAD vellage used {o delerrine
T - the cuipul slole
0 =) !

Feference Laokel node

The process of converting the input node voltage to a logic state begins by first obtaining the
difference in voltage between the <interface node> and the <reference node>. The
DOUTPUT model defines a voltage range, form SxVLO to SxVHI, for each state. If the input
voltage is within the range defined for the current state, no state change occurs. Otherwise,
the simulator searches forward through the model, starting at the current state, to find the next
state whose voltage range contains the input voltage. This state then becomes the new state.
When the end of the list (S19) is reached, the simulator wraps around to SO and continues.

329

Digital devices

Digital/analog interface devices

If the entire model has been searched and no valid voltage range has been found, the simulator
generates a simulation warning message. Further if the O device is interfacing at the digital
simulator, and the SXNAME parameter has not been specified in the model, the simulator
uses the state whose voltage range is closed to the input voltage. Otherwise it uses SXNAME
as the new state.

This circular state searching mechanism allows hysteresis to be modeled directly. The
following model statement models the input thresholds of a 7400 series TTL Schmitt-trigger
input. Notice that the 0.8 volt overlap between the O state voltage range and the 1 state voltage
range.

.model DO074_STd output (

+s0name="0" sOvlo=1.5 sOvhi=1.7
+slname="1" slvlo=0.9 slvhi-7.0
+)

Starting from the 0 state, a positive-going voltage must cross 1.7 volts to get out of the O
state’s voltage range. The next state which contains that voltage is 1. Once there, a
negative-going voltage must go below 0.9 volts to leave the 1 state’s range. Since no further
states are defined, the simulator wraps around back to state 0, which contains the new voltage

For a digital output driving digital simulation, the parameters
DGTLNET = <digital net name> <digital I/0 model name>

must be specified. Refer to your PSpice user’s guide for more information on digital I/O
models. The digital net must not be connected to any analog devices, otherwise the automatic
analog/digital interface process disconnects the digital output device from the analog net.

For interfacing using digital simulation, the state names mustbe 0, 1, X, R, F,or Z (Zis
usually not used however, since high impedance is not a voltage level). Other state names
cause the simulator to stop if they occur; this includes the state ? that occurs if the voltage is
outside all the ranges specified.

The model parameters TIMESCALE, FILE, CHGONLY, and FORMAT are not used for
digital outputs which drive digital simulation, but the TIMESTEP is used. The TIMESTEP
value controls how accurately the analog simulator tries to determine the exact time at which
the node voltage crosses a threshold.

To be sure that the transition time is accurately determined, the analog simulator has to
evaluate the analog circuit at intervals no larger than TIMESTEP when a transition is about
to occur. The default value for TIMESTEP is 1ns, or 1/DIGFREQ (a

.OPTIONS (analysis options)option) if it is larger. In many circuits, this is a much greater
timing resolution than is required, and some analog simulation time can be saved by
increasing the TIMESTEP value.

For digital outputs which write files, or drive VIEWsim A/D, the parameter
SIGNAME = <digital signal name>
can be used to specify the name written to the file of the digital signal (or for VIEWsim A/D,

the name of the VIEWSsim net). If SIGNAME is not specified, then the portion of the device
name after the leading O identifies the name of the digital signal.

For digital outputs which write files, the FILE parameter defines the name of the file to be
written, and the FORMAT parameter defines the format of the data written to that file.

The file namePSPCDGTL is used with VIEWsim A/D to tell the simulator to send the digital
state values to the VIEWsim A/D interface, rather than a file. For VIEWsim A/D, the
parameters FORMAT and CHGONLY are ignored.

330

Digital devices

Digital/analog interface devices

The state of each device is written to the output file at times which are integer multiples of
TIMESTEP. The time that is written is the integer:

time = TIMESCALE-TIME/TIMESTEP

TIMESCALE defaults to 1, but if digital simulation is using a very small timestep compared

to the analog simulation timestep, it can speed up the simulation to increase the value of both
TIMESTEP and TIMESCALE. This is because the simulator must take timesteps no greater
than the digital TIMESTEP size when a digital output is about to change, in order to
accurately determine the exact time that the state changes. The value of TIMESTEP should
therefore be the time resolution required at the analog-digital interface. The value of
TIMESCALE is then used to adjust the output time to be in the same units as digital
simulation uses.

For example, if a digital simulation using a timestep of 100 ps is being run, but the circuit has
a clock rate of 1us, setting TIMESTEP to 0.1us should provide enough resolution. Setting
TIMESCALE to 1000 scales the output time to be in 100 ps units.

If CHGONLY =1, only those timesteps in which a digital output state changes are written to
the file.

Any number of digital output models can be specified, and both file writing and digital
simulation driving digital outputs can be used in the same circuit. Different digital output
models can reference the same file, or different files. If the models reference the same file, the
file must be specified in the same way, or unpredictable results occur. For example, if the
default drive is C:, then one model should not have FILE=C:TEST.DAT if another has
FILE=TEST.DAT.

For diagnostic purposes, the state of the digital output can be viewed in Probe by specifying
B(Oxxx). The value of B(Oxxx) is 0.0 if the current state is SONAME, 1.0 if the current state
is SINAME, and so on through 19.0. B(Oxxx) cannot be specified on a .PRINT, .PLOT, or
.PROBE line. (For digital simulation, the digital window of Probe provides a better way to
look at the state of the digital net connected to the digital output.)

Section

331

Digital devices Digital model libraries

Digital model libraries

File Contents

7400.L1B 7400-series TTL

74AC.LIB Advanced CMOS

74ACT.LIB TTL-compatible, Advanced CMOS

75ALS.LIB Advanced Low-Power Schottky TTL

74AS.L1B Advanced Schottky TTL

74F.LIB FAST

74H.LIB High-Speed TTL

74HCT.LIB TTL-compatible, High-Speed CMOS

74HC.LIB High-Speed CMOS

741L.L1B Low-Power TTL

741S.L1B Low-Power Schottky TTL

74S.L1B Schottky TTL

CD4000.LIB CD4000 devices

DIG_ECL.LIB 10 K and 100K ECL devices

DIG_GAL.LIB GAL devices

DIG_IO0.LIB I/O models, AtoD and DtoA interface subcircuits,
digital power supply subcircuits

DIG_MISC.LIB pull-up/down resistors, delay line

DIG_PAL.LIB PAL devices

DIG_PRIM.LIB Digital primitives

NOM.LIB master library: which referencesy_pIG.L18," which

references each of the above libraries.

*Depending upon the platform being worked 86M. LI B references the appropriate list of libraries. For “digital
only” platforms,NOM. L IB reference$lOM_DIG. LIB.

¢=Chapter

332

Digital devices Digital model libraries

7400-series TTL and CMQOS library files

The online Library Reference List shows, by part type and technology, each item in the library
and gives the order of the pins for that function. This information is needed if a netlist is
created manually. Netlists normally are generated automatically by the schematic capture
package.

4000-series CMOS library

The online Library Reference List shows, by part type and technology, each item in the library
and gives the order of the pins for that function. This information is needed if a netlist is
created manually. Netlists normally are generated automatically by the schematic capture
package.

If power supply nodes on CD4000 devices are not specified in the circuit, they can use the
default power supply nodes $G_CD4000_VDD and $G_CD4000_VSS, which default to 5
volts. A new power supply can be created, and new power supply nodes can be specified to
the devices in the circuit. Refer to your PSpice user’s guide for more information on
specifying your own power supplies. Output drives and input thresholds are correctly
modeled for power supplies between 3 and 18 volts. Currently, propagation delays do not vary
using supply voltages. For correct propagation delays at supply voltages other than 5 volts,
the timing models ird4000.11b have to be modified.

Section

333

Digital devices Digital model libraries

Programmable array logic devices

Using a PLD from the library is just like using any other logic device from the library, except
that the simulator has to be told the name of the JEDEC file which contains the program for
the part. A TEXT parameter name JEDEC_FILE is used to specify the file name, as shown in
the following example:

X1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 INIO INI1 IN12

+ IN13 IN14

+ OUT1 OUT2 0UT3 0UT4

+ PAL14H4
+ TEXT: JEDEC_FILE = *myprog.jed”

This example creates a 14H4 PAL which is programmed by the JEDEGileg. jed.

<=Chapter

334

e e R
Customizin g device

eguations

Introduction to device Specifying new internal device
equations structure

Recompiling and linking the device
equations option

Making device model changes

Changing the device New! Simulating with the device
equations equations option

Adding a new device

= Incex Glossary Y

Commands Analog devices Digital devices

Customizing device equations Introduction to Device Equations

Introduction to Device Equations

The purpose of the Device Equations option is to change the built-in model equations for one
or more of the semiconductor devic€aAsFET, Diode, Junction FET, MOSEET, and

Bipolar transistor). This means you can extend PSpice to support user-defined or proprietary
native device models.

This option is not an addition to PSpice: it is a different packaging of the program that includes
the source code for the device model subroutines. You need a Device Equations license to
modify and extend PSpice code, but you do not need a Device Equations license to use the
modified code.

There are several kinds of changes that can be made using the Device Equations option. These
include, in ascending order of complexity:

» Changing a parameter name

* Giving a parameter an alias

 Adding a parameter

e Chanaqing the device equations
e Adding a new device

« Specifying new internal device structure

You need a supported C++ compiler to compile Device Equations extensions; for
Windows 95/98 and NT, you need Microsoft Visual C++ 32-bit Compiler 4.2 or later.

Device Equations extensions are implemented using a dynamic-link library, which means you
can share your models with other users by distributing just a DLL.

If you want to run PSpice on Windows 95 or NT with a Device Equations DLL developed by
someone else, then you do not need a compiler or a Device Equations license. Just copy the
DLL into the directory with your PSpice program file. For more informationSseelating

with the Device Equations option

336

Customizing device equations Making device model changes

Making device model changes

To get started, look at the filesH andMos. ¢, which implement the MOSFET equations. The
other devices have similar structures.

M.H contains two important data structure definitions:
» the structure for the MOS transistet uct m_)
» the structure for the MOS modelfuct M_)

During read-in, the simulator creates a copy of the transistor structure for every MOSFET in
the circuit and a copy of the model structure for every .MODEL statement of type NMOS or
PMOS. The transistor structure is set up using information particular to that transistor, such
as the nodes to which it is connected, its length and width, and the locations of its entries in
the circuit’'s conductance matrix. All parameters of the model structure are set up using the
values from theMODEL statement, if one exists; otherwise, the default values are used.

The transistor structure corresponds to the LOC, LOCV, and LX tables in U.C. Berkeley
SPICE2. The model structure corresponds to the LOC and LOCM tables in SPICE.

Do not change the transistor structure (struct_m), except when changing the internal
device topology. It is included only to allow compiling of MOS.C.

The simulator needs to associate each entry in the model structure with a model parameter
name (and default value) in theoDEL statement. You can accomplish this by using the
ASSOCIATE macro. Just below the model structure i there is a list of all the parameters,
each in amSSOCIATE macro. The occurrence &§S0CIATE binds together the structure entry,

the parameter name, and the default value. The read-in section of the simulator uses this
information to parse thevODEL statement.

337

Customizing device equations Making device model changes

Changing a parameter name

This is the easiest change. Find the parameter in the list of ASSOCIATE macros. Change the
parameter’'s name (last item on the line) and/or the default value (middle item). The names
and defaults of the model parameters that are supplied can be changed, as well as those
parameters that are added.

When the simulator runs, it prints the parameter values for each .MODEL statement unless
the NOMOD option is used in the .OPTIONS statement. Normally only parameters which
have not been defaulted are listed. A parameter can be forced to be listed, whether or not it
has been defaulted, by preceding its name using an asterisk (*). For example, VTO is listed
that way in M.H.

Giving a parameter an alias

Sometimes a parameter requires an alternate name (an alias). Several bipolar model
parameters, such asr, already have alternate names. The aliasdpis C2. Look inQ.H at
the occurrences of the paramete¥ysandC?2 in theASSOCIATE macros for an example of how
this is accomplished. There is only one entry in the model structure: for the parameter,
but there are twaSSOCIATE entries. This means that either nam&: (or ¢2) on the.MODEL
statement can put a number into the structure @ntrye.

When model parameters are listed, the first name found in the ASSOCIATE list
(searching downward) is the name which is echoed on the output.

Insert the new name first if it is the name to be printed.

Adding a parameter

Adding a parameter is probably the most common case. The parameter must be added to both
the model structure (e.gs;truct M_) and the correspondingSOCIATE list. It is

recommended to follow the OrCAD naming convention (&.gw andM_vto), but it is not
required.

Model parameters are set forth as pairs of elements instead of simple floating point values.
This is to provide the use of expressions for model parameters. Because of this, when adding
a parameter (for example,new), the following line is required:

MXPR(M_new, Mx_new);
instead of

float M_new;

Do not modify the value of the Mx_new structure element.

The read-in mechanism can handle expressions for user-added parameters. By the time the
model code is called, the expressions have been evaluated and their value placed in the
appropriate fields. See the include filen for further examples and comments.

338

Customizing device equations Making device model changes

When the simulator is doing a read-in, model parameters are listed fameaeh statement
(unlessNoMoD has been specified on thePT10NS statement). Normally, only those

parameters that have not been defaulted are listed. A parameter can be forced to be listed, even
if it has been defaulted, by preceding its name using an asterisktlie ASSOCTIATE macro.

For instanceyT0 in M.H is listed in that manner.

The default value)MITTED, is used by the simulator to force the calculation of a parameter’s
value during read-in. For instaneé is calculated from other values if it is not given a value.
These calculations are built into the read-in and are fixed. OrCAD recommends that
parameters that you add be given a normal default value and not be computed by using
OMITTED.

Once the parameter has been added, the model structure becomes one parameter longer, and
the read-in section of PSpice places a value in its entry. The parameter can now be used in the
device code (e.grMos.).

Changing the device equations

The device equations are in the file that has the same name as the type ofbdevice (
BJT.C,JFET.C, MOS.C, GASFET.C). The code in these subroutines use the model parameters
and the device’s terminal voltages to calculate the branch currents and conductances, and,
during transient analysis, the terminal charges and branch capacitances. These equations are
neither simple nor easy. A good understanding of U.C. Berkeley’s SPICE2G is recommended
before making such a change. Two useful references are:

[1] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits
Memorandum No. M520, May 1975.

[2] Ellis Cohen, Program Reference for SPICERmorandum No. M592, June 1976.
which are available from:

Software Distribution Office
EECS/ERL Industrial Liaison Program
205 Cory Hall #1770

University of California

Berkeley, CA 94720-1770

(510) 643-6687

339

Customizing device equations Making device model changes

Functional subsections of the device source file

The code in each of the device source files is arranged into separate functional subsections.
Each subsection occurs at least once, but can occur several times for devices that have more
than one level. The subsections required are outlined below.

Subsection Description

Initialization This consists of locating and binding the device instance and its
model, initializing any local variables, and obtaining appropriate
values for the device branch voltages. The branch voltages (e.qg.,
vds, vgs) are set differently depending upon whether there are
user-specified initial conditions (using= or .1C), and on
whether the present Newton Raphson cycle has finished or not.

Computing new This is needed to monitor progress towards a Newton Raphson
nonlinear branch solution.
voltage:

Test if the solution haslf there is not significant change bypass the rest of the
changed: computation. Otherwise, continue.

Limit any nonlinear This code uses the macdrvJLIM() to insure that the branch
branch voltages: voltages are in the appropriate operating region.

Compute currents and This is the meat of the Device Equations code, and involves
conductances: obtaining all the branch currents (e.ths, ibd) as well as all the
derivatives to be used in the conductance matrix.

Charge calculations: Internal charges are calculated and updated.

Check convergence: Check to see if the nonlinear device branches now have values
that are within a small tolerance range of those obtained in the last
repeat cycle, and set a return flag to signal whether the device

converged.
Load the current vectorThe macro/_MATRIX () is used to obtain handles to the proper
and conductance matrix elements, and the elements are assigned their values based
matrix: on the present evaluation of the device equations and derivatives.

SPICE2G is written in FORTRAN, whereas PSpice is in C. For the device subroutines, as
much correspondence as possible has been maintained between the two. Because of
FORTRAN, SPICE kept integer and real numbers in different tatilest ¢ (indexed by

LoC) andVALUE (indexed byLocv or LOCM). In PSpice, these have been combined into one
structure (e.gstruct m_).

The state vector information is constructed somewhat differently, though the overall pattern
is similar. In SPICE the state vector information is kept in a set of vectosslin. There is

one vector for each time point “remembered” (from 4 to 7, depending on the order of the
integration method). Each device'sC table contains an offsety, to its portion of the
information in each state vector. In PSpice the number of state vectors is fixed, and each
device’s state information is kept in its own device structure (@.guct m_).

For example, for MOSFETS the state vectors are an afrayst msv_def m_sv[MSTVCT]

in struct m_.MSTVCT is the number of state vectors and is definerkini . H to be equal to

4. The definition ofisv_def (also inM. H) lists the various currents, conductances, charges,
and capacitances that are in the state vector. Finally,contains a set of #defines, which
allows accessing of the entries to the state vectors by name. It is these (uppercase) names

340

Customizing device equations Making device model changes

which are then used S . C. This may seem like a roundabout way of constructing the state
vector information, but the actual usageMis . C) is quite straightforward and is similar to
that in SPICE.

Adding a new device

The Device Equations option does not allow the addition of an entirely new device. However,
in many cases the same thing can be achieved by making use of an existing device.

Suppose, for example, that a lightning arrester device is to be added. The lightning arrester
has two terminals, therefore it can be built into the diode equations, because the diode also has
two terminals. This means that in the circuitIR) file the lightning arresters would use the
letterD to start and would refer to @0DE L statement of the type

At first glance it appears that this would preclude using diodes in circuits, since they have been
replaced by lightning arresters. This problem is avoided by keeping all the diode model
parameters, adding the lightning arrester parameters, adding laparameter, and giving

the LEVEL parameter a default of 1. In the diode subroutineI(@ct . c), a large if test would

select all the old diode codelifVEL=1 and all the new lightning arrester code otherwise. The
new LEVEL parameter would switch between diode and lightning arrester.

This approach can be extended to as many devices as wanted. This could be:
e LEVEL=1 as a diode

e LEVEL=2 as a lightning arrester

e LEVEL=3 as a gas discharge tube

And so on. The restriction is that all of the devices added to the diode must have two terminals.
If the device to be added has three terminals, it must be built into a three terminal device, such
as the JFET. The highest number of terminals that can be modeled is four, using the MOSFET.
There is not a good way to add devices, such as pentodes, that have five or more terminals.

341

Customizing device equations Making device model changes

Specifying new internal device structure

You may want to change the topology of a device in order to accommodate a more elaborate
set of parasitic resistances and/or capacitances. To do this requires that positions in the
conductance matrix be assigned to include the terms that the additional equations generate.
This requires five steps:

1 Ensuring that all of the new internal nodes and matrix conductance terms are added to the
device structure in the device header file

Allocating the new matrix elements
Providing handles to access the new matrix elements and to bind the nodes to the branches

Including logic, if needed, to support device model parameter checking and updating

o A WON

Adding the new device equations to the device code

Example

This process can be illustrated by looking at the PSpice JFET and GaAsSFET devices, as
shown below. The topologies of these two devices are nearly identical, except that the
GaAsFET has an additional internal capacitance, CDS, between the source and drain, and an
additional internal resistance, RG, at the gate. This gives the GaAsFET topology one
additional node where RG joins the rest of the structure and two additional internal branches.

GaAsFET Model JFET Model
Drain Drain
Cogd RD Cgd RD
vda i l
N
G t RG - 0—0—' >|—0
ate o—AN\—) Id 4
<> T C DS G ate O——e <@ |d
>, °/
,H’ 0—' >|—1l
Cogs
RS L
Cgs
RS
Source
o
Source

342

Customizing device equations Making device model changes

Procedure

Step one: editing the device header file

These differences are reflected in the device structure definitions andB . H. Each of the
device nodes is given a name and declared to be of typepx.

The JFET device structuré, , lists the two internal nodgsd andj_s, while the GaAsSFET
device structurey_, has three internal nodesd, b_s, and a new one, g. The two additional
branches in the GaAsFET require three new matrix conductance terms.

The conductance terms are declared type 10X and are listed immediately following the
internal nodes.

The JFET has a term GG, which appears on the matrix diagonal for the external gate node.

The GaAsFET has an additional gate node which requires one additional matrix diagonal
conductance termy,_gg, along with two off-diagonal conductance terms;g andb_gG.

These are used by the source code in GASFET.C to designate where the conductance terms
associated witliG go when the matrix is loadeths doesn't need any additional nodes or

matrix terms because the items required are already in place to accommodate the parallel
current source, id.

With the nodes and conductance terms taken care of in the device header file, the first step is
completed.

Step two: setting up memory allocation for the new matrix elements

You can set up memory allocation to properly incorporate the new equations into the
conductance matrix by modifyirigMATPTR. C. In this file are the functiong MatPtr() and
b_MatPtr(). These functions call the functiaaserve () once for each conductance matrix
term that was declared in the header file. For instance, whenb_Gg, andb_gG are added
for the GaAsFET, these require corresponding codedatpPtr() as follows:

flag &= Reserve (ng,ng);

flag &= Reserve (nG,ng);
flag &= Reserve (ng,nG);

The argumentsg andnG are local variables that serve as aliases for the respective device
nodesp_g andb_G, and are assigned at the beginningofiatPtr () as follows:

ng = bloc -> b_g;
nG = bloc -> b_G;

Step three: binding the nodes and branches

The mechanics of step three, binding the nodes and branches, are very similar to the
mechanics of step two. This timeMATLOC.C is modified. The functions of interest are
j_MatLoc() andb_MatLoc(), and they now callindxc1() instead oReserve(). The
GaAsFET again has three more lines of code:

flag &= Indxcl (&(bloc->b_gg),ng,ng);

flag &= Indxcl (&(bloc->b_Gg),nG,ng);
flag &= Indxcl (&(bloc->b_gG),ng,nG);

343

Customizing device equations Making device model changes

Step four: handling model parameters

Step four, handling model parameters, is basically the same as it would be for a case not
involving topology changes, with one significant exception: this requires handling the case
where the parasitics associated with an internal node can be zero. In this case the node must
be generated conditionally. An instance of this is the GaAsFET internal resistance RG. If RG
is zero, the parasitic resistance between the internal madend the external node G can

be removed from the circuit. This is accomplished in the funetiatidInternalNodes() in
DEMODCHK. C, using the following line of code:

INTERNAL_NODE(P->B_rg,b_g,b_G);

INTERNAL_NODE() is a macro that performs the required logic, depending on whether the
model parameted_rg is zero or not. The other two calls to this macro in
b_AddInternalNodes() correspond to the RD and RS resistances that also exist for the JFET.

Step five: implementing the new device equations

The final step does not involve any further topological considerations and is carried out just
as it would be if the device internal topology weren’t being changed.

344

Customizing device equations Recompiling and linking the Device Equations option

Recompiling and linking the
Device Equations option

The object and source files needed to create the Device Equations DLL are installed in a
directory calledEVEQU. The MSVC++ 4.2 project filesieveq.mdp anddeveq.mak, are
included to compile and link the DLL.

For information on obtaining the Microsoft compiler, contact Microsoft Corporation directly.

To create a new deveq.dll

1 Loaddeveq.mdp into the Visual C++ development environment.
2 From the Build menu, select Build Deveg.dIl.
The project supports debug and release versions of the build target.

3 After deveq.d11 is built, copy it to the directory that containsice.exe.

Personalizing your DLL

The functiondLLMain() indeveqdl1.c contains the following line of code:
DEVEQVERSIONINFO(“*“,VERSIONNUM) ;

To personalize your DLL, change the two arguments, as in:
DEVEQVERSIONINFO(“(c)Copyright 1998\nMyCorp”,”7.2.1");

345

Customizing device equations Simulating with the Device Equations option

Simulating with the Device Equations option

After you obtain a working Device Equations DLL, place it in the directory that contains
pspice.exe.

If your PSpice license has the Device Equations option, PSpice will locate and load
deveq.d11 when you start the program. The code in the DLL will be substituted for the device
model code that ships with the plain version of PSpice. The title bar will indicate that PSpice
is using the DLL by showing the program name &s ce/DE. The presence of the DLL is

also noted in the About box and in theut file.

If PSpice doesn't find the DLL, it runs as the normally configured PSpice.

New! Selecting which models to use from a Device
Equations DLL
You can tell PSpice which device models to use from a custom DLL by adding an entry to the

pspice.ini configuration file; for any device type you do not specify, PSpice uses the
normally configured PSpice models.

To specify which models to use from a custom DLL

1 In a standard text editor (such as Notepad), epence. ini, located in the directory
with your PSpice program file.

2 Find the [ORCAD] section and add this line to the section:
USE_DEVEQ_MODELS="<device letters>"

where <device letters> is any or all of the following:

For this device type... Use this device letter...

GaAsFET B
Diode D
Junction FET J
MOSFET M
Bipolar transistor Q

For example, to use all of the possible device models from your custom DLL, type the
following:

USE_DEVEQ_MODELS="BDJMQ"
3 Savepspice.ini.

4 Start PSpice and run a simulation.

¢=Chapter

346

ABM
AKO

alias

annotation
annotation symbol
argument

attributes

block

bus
call

circuit
comment
compiler

component

Glossary

analog behavioral modeling

“A Kind Of” symbol. Symbols must either contain graphics or refer to an
AKO symbol. The AKO defines the symbol in terms of the graphics and pins
of another part. Both must exist in the same Symbol Library file.

An alias relates local schematic names for parts and signals to netlist names
(simulation devices and nodes). An alias is an exact electrical equivalent that
can be used to reference a symbol. A command that sets up equivalences
between pin names or net names and node names. As a command, it is the
setup equivalences between node names and pin names or net names.

Annotation is a means by which parts are labeled when they are placed, either
automatically or manually.

An annotation symbol has no electrical significance, and is used to clarify,
point out, or define items on the schematic.

A value or an expression used with an operator or passed to a subprogram
(subroutine, procedure, or function).

Attributes are special characteristics (a name and an associated value)
contained in a part instance or definition. For example, a MOSFET may
contain specific length and width parameters which are represented as
attributes on the symbol or part. Attributes may be changed through the
Schematic Editor and/or the Symbol Editor.

A block is a user defined rectangle placed on a schematic. It is used to
represent or hold the place for a collection of circuitry. The block is treated as
a black box by Schematics. Schematics is aware of the connections going into
and out of the block, but ignores the contents of the block until the netlist is
generated.

A bus is a collection of homogeneously hamed signals.

To transfer a program execution to some section of code (usually a subroutine
of some sort), while saving the necessary information to allow execution to
resume at the calling point when the call section has completed execution.

A circuit is a configuration of electrically connected components or devices.

A statement written into a program for documentation purposes only and not
for any functionality purposes.

Translates between high-level computer language understood by humans and
machine language that is understood by computers.

A device or part employed in a circuit to obtain some desired action. See
package

Glossary

connector

construct

current source
defined function
declarative statement
device
DIBL
dot command
doping tail
ELSE
flicker noise
Fourier analysis
FSTIM
gate

glitch

global temperature
global parameter
icon

IF

ISAS
included file
instance name

instantiate

A connector is a physical device that is used for external connections to a
circuit board.

A computer program statement that produces a predetermined effect.

A current source can be an ideal current source (no limit on the supply
voltage) or a voltage source with a series resistor.

A computer instruction specifying the operation to be done with
predetermined limits.

A computer source program instruction specifying the size, format, and kind
of data elements and variables in a program for a complier.

A simple or complex discrete electronic component. Sometimes, a subsystem
employed as a unit and, therefore, thought of as a single component. See
package

drain-induced barrier lowering (MOSFET device)

A type of formatting command typed into a document that is preceded by a
period (dot) to distinguish from other syntax text.

A changing amount of impurity in a semiconductor device. It is observed as a
change in the bulk resistance of the semiconductor material.

An operation used in BASIC computer programing. It specifies the operation
to be performed if the conditions given in the same program line didn’t occur.

A repeating low-frequency noise.

A mathematical method of transforming a function in such a way that the data
of the function is retained but the representation of that data is changed. It is
used to simplify the reduction of the data.

digital file stimulus device

A gate is a subset of a package, and corresponds to a part instance. An
electronic switch that follows a rule of Boolean logic.

An unwanted transient that recurs irregularly in the system.
Universally applied temperature (to all elements of a circuit)
Universally applied parameter (to all elements of a circuit)

A small graphics image displayed on the screen to represent an object that can
be manipulated by the user.

An operation used in BASIC computer programing. It specifies an IF-THEN
operation to be performed when a condition has changed from what was
expected in a program line.

independent current source and stimulus

A smaller file that is read into a larger source-code file at a specific spot and
becomes part of a statement within the larger source-code file.

A name of an object in an object oriented programing. It is a unique name for
a part instance.

To create an instance of a class in object oriented programing.

348

invocation
invoke
ionization knee
IS temperature

iteration
Jiles-Atherton model
junction

keyword
labels
LIBPATH
link

lot tolerance
Isb

metafile
mobility
model library

mouse

msb

msim.ini

nesting

NETLIST
NODESET

NOREUSE flag

Glossary

To start a software program by invoking an initial power from a higher power
To call or activate; used in reference to commands and subroutines.
A bend in the response curve where ionization starts.

The temperature of the JFET and other transistor types junction saturation
current or the input leakage current

A repeating series of arithmetic operations to arrive at a solution.
A state equation model rather than an explicit function for an inductor

A junction graphically indicates that wires, buses, and/or pins are electrically
connected.

The significant word in a syntax statement that directs the process of the
operation.

Is a word or symbol used to identify a file or other element defined in a
computer program.

A variable that specifies the directory that the model library is in, and is first
set in the msim.ini file.

A branch instruction, or an address in such an instruction, used to leave a
subroutine to return to some point in the main program.

The tolerance of a group of items taken as one unit.

least significant bit

A file that contains or defines other files.

movement of electrons in semiconductor devices such as MOSFETSs

consists of analog models of off-the-shelf parts that can be used directly in
circuits that are being developed

A common pointing device used in a windows environment. The physical
movement of the mouse will move the pointer (cursor) on the screen.

most significant bit

The MicroSim configuration file that has the default elements that are used to
complete a simulation.

The embedding of one construct (such as a table in a database; a data
structure, a control structure) inside another—for example, a nested procedure
is a procedure declared within a procedure.

The netlist provides the circuit definition and connectivity information in
simulation netlist format.

A nodeset symbol contains one or two pins, permitting you to initialize a node
voltage for simulation.

A piece of information that tells the simulator that the automatic saving and
restoring of bias point information between different temperatures, Monte
Carlo runs, worst-case runs, or parametric analyses is suppressed. It is one of
the options in theOPTIONS (analysis options)command.

349

Glossary

NOSUBCKT

NUMDGT

object
operator

OUTPUT ALL

package

page

parameter
part

part definition

part instance
pin

pin current
POLY
port

run
SCBE
schematic

setpoint

A variable that tells the simulator not to save the node voltages and inductor
currents for subcircuits.

An option that tells the simulator the number of digits that will be printed for
the analog values. It is one of the options in the

.OPTIONS (analysis options)command.

A variable comprising both routines and data that is treated as a discrete
entity, in object-oriented programing.

A symbol (mathematical, as an example) or other character indicating an
operation that acts on one or more elements.

An option that asks for an output from the sensitivity runs, after the nominal
(first) run. The output from any run is governed by.fABINT (print) ,

.PLOT (plot), and.PROBE (Probe)command in the file. If OUTPUT ALL

is omitted, then only the nominal and worst-case runs produce output.
OUTPUT ALL ensures that all sensitivity information is saved for Probe.

A package is an enclosure for an electronic device or subsystem. A physical
device consisting of one or more gates.

A page may contain both parts (represented by symbols), port instances,
connectors, and annotation symbols. A page may or may not have a title. Each
schematic page represents a single page of a circuit design.

A value that is given to a variable for programing.

A part is an electrical component that is represented by a schematic symbol.
The term refers to the logical, rather than the physical, component.

Seesymbol.
A part instance refers to an occurrence of a symbol in a schematic.

Pins are contained in parts, ports, and offpage connectors. Parts can contain
multiple pins. Each part contains specific pin names associated with the part.
Pins may connect to a wire, a bus, or another pin.

The current that flows into or out-of a defined pin.
Specifies the number of dimensions of the polynomial.

A port provides connectivity across schematic pages. A port provides the
anchor for a single pin. Ports are chosen from library files, placed, moved, and
deleted in the same way as are parts. Ports may have multiple connections.
Ports consist of three types: global, interface, and offpage.

The execution of a computer routine or operation.
substrate current induced body effect (MOSFET device)

A schematic consists of the following components: one or more pages, a set of
symbols representing local part definitions or parts in a library file, and/or
text.

A setpoint provides a graphical way of introducing

IC (initial bias point condition) or NODESET (set approximate node
voltage for bias point) commands for each instance of a symbol. These

commands set one or more node voltages for the bias point calculation.

350

SIMLIBPATH

simulation
skipbp
statement

Statz model
subcircuit

symbol

syntax

TEXTINT

tick number

TOM model
VARY BOTH

VARY DEV
VARY LOT
VTO temperature

window

Glossary

A variable that defines the environment that the simulator is working in (path
to the directory that the library is in).

The use of a mathematical model to represent a physical device or process.
(skip bias point)

The smallest executable entity within a programming language. In general,
each line of a program is an individual statement and is considered an
individual instruction. (Examples: command statements, option statements,
control statements, assignment statements, comment statements.)

A GaAsFET model
A small collection of components working together to perform a task.

A symbol consists of the graphical representation of a logical or physical
electronic part on the schematic page, and its definition. Symbols can be
created either for a specific schematic or extracted from a library file, and may
contain schematic pages nested within them.

The grammar of a particular computer language, with rules that govern the
structure and content of the statement.

A function which returns a text string which is the integer value closest to the
value of the <value or expression>; (<value or expression> is a floating-point
value)

The number generated from a regular recurring signal emitted by a clocking
circuit, or from the interrupt generated by this signal.

a GaAsFET device

The default option is VARY BOTH. When VARY BOTH is used, sensitivity
to parameters using both DEV and LOT specifications is checked only with
respect to LOT variations. The parameter is then maximized or minimized
using both DEV and LOT tolerances for the worst-case. All devices
referencing the model have the same parameter values for the worst-case
simulation.

See VARY BOTH
See VARY BOTH

The temperature of the JFET or MOSFET device when there is zero-bias
threshold (pinchoff) voltage.

An area on the screen in a graphical computer interface that contains
instructional documentation or a message.

351

Glossary

352

Index

AlBlc D EF G I J KL MIMoPQRSIHUVWXY

* (comment) 99 resistors216
; (in-line comment)100 semiconductor partd32, 177
analog-to-digital convertebl
. analyses
Numer_lcs | AC, 32
4000-ser!es CMOS I|bran@_ _ bias point 58
7400-series TTL and CMOS librariez33 DC. 34
74181 mode_;l2_9_4 Fourier, 41
74393 subcircuit exampl@49 Monte Carlg 47
noise 56
A parametric 79
A/D and D/A converters286 sensitivity 78

ABM, 137 sensitivity/worst-cased5
defined 347 temp_eratureg
transient 90
analysis options
flag options 59

polynomial transfer functigrL38
absolute value (ABSXix
ABSTOL (.OPTIONS) 61

AND, 256

AC, 32 3 o5
AC analysis 32 ANhD3, &165
ACCT (.OPTIONS) 59 Zgnﬁ;ﬁgﬁ_
ACOS(x), xix i
ACO 2(8)7_ defined 347
AFFECFS 207 annotation symbol

T o107 defined 347
air-gap 165, 166 AO, 256

4de, 199, 170, 109, £UF, 21/ arc tangent (ATAN and ARCTANXix

defined 347 ! AN
alias 338 arccosine fUIletIO,rm

defined 347 ARCOS(X) Xix
ALTER, 103 arcsine xix.

amplitude, peakl50, 151 arctangentxix
anaﬁog dev![::eas’SB_ o argument85s, 86, 236, 347
passive o arithmetic expressiongx

semiconductor ﬁi,la\Nl\?z() &

analog parts attribute1s),(i
breakout s129, 163, 172, 216 .
capacitorggitG_ T definition, 53, 60, 347
ideal switches220, 233
inductor coupling (KBREAK) 163 B

inductors 216 base-

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

emitter voltage73 reference function298
terminal abbreviation/1 CHEBYSHEYV, 136
behavioral primitives249, 291 CHGTOL (.OPTIONS) 61
constraint chegk304 circuit, 106, 128, 236, 237, 347
logic expression292 circuit topology 77
pin-to-pin delay 295 CLEAR, 305
bias point 58 CLOCK, 304
.NODESET 55 CLRBAR, 300
SKIPBP, 90 Cohen, Ellis 339
small-signal 43 collector, 71
biaspoint command
transient 43 reference 30
bidirectional delay ling223 syntax formatxvii.
bidirectional transfer gate848, 261 command files
binary notation format313 Probe xxii_
bipolar transistqr204 command line options
summary 105, 107 PLogic, xxvii_
bipolar transistor model PSpice xxvii
quasi-saturation effec12 PSpice A/D xxvii
bipolar transistor, PNFA1 comment 99, 347
block, 236, 347 bias point files46
BOOLEAN, 296, 297, 304 included files 44
Boolean expression JKix in-line, 100
breakout partsl29, 172, 216 comment ling99
inductor coupling163 common simulation data file (CSDR9
BSIM3 model compiler, 336, 345, 347
advanced parameters31 compiling, 345
BUF, 256 complex digital device291
BUF3, 259 component106, 170, 215, 237, 347
bulk, MOSFET terminal (substrate)l conductancebl
bus 63 conductance matrjpx337
defined 347 connectors348
CONSTRAINT, 294, 302, 304, 308
C PSpice messages3
constraint check304
call, 69, 85, 106, 236, 347 FREQ 307
CAP device models1 GENERATL, 307
capacitoy 51, 128 SETUP_HOLD 304
summary 105, 107 WIDTH, 306
capacitors216 continuation line277, 281, 283
voltage coefficients102 conventions30
CASE 300 expression30
CHANGED . numeric value30
reference function298 convergence hazaré3
CHANGED_HL convergence problemg?7
reference function298, 300 corrections 103
CHANGED_LH converters286, 289

354

AlBlc D EF G | J KL M

convolution 225

CORE device modebl

core model167, 170

cosine (COS)xix.

CPTIME (.OPTIONS)61

CPU time 61

current source32, 348
EXP parametersl44
PULSE parameterd4s
SIN parametersl51
SSFM parameteyd 50

current-controlled
current sourcel05, 107, 141
resistor 232
switch 51, 105, 107, 232

voltage sourcel05, 107, 141

H

D

D device model51
DAC, 289
damping factor
current sourcel51
data
file, xxvi_
.DC, 34
DC analysis34
DC gain 89
DC sweep34
Ddt(x), xix.
declarative statemeri?48
DEFAD (.OPTIONS) 61
DEFAS 61
default temperature (TNOMB2
defined function37, 42, 348
DEFL (.OPTIONS) 61
DEFW (.OPTIONS)61
DEG, 137
DELAY, 136
delay, 299
line, 248, 274
values 251
DEV tolerance52, 98
DEVEQU, 345
device 178, 179, 181, 348
header file 342
model change337

355

O P Q R S u v W X Y

topology, 342

device equations

adding a new devi¢ceg41, 342
adding a paramete838

changing a parameter’s nan@s8
changing the device equatiQrdsS9
example 342

giving a parameter an alig®38
making device model changes7
recompiling and linking345

device temperatures, customizé@
devices 105, 107

A/D converter 286

bipolar transistqr204

capacitor 128

complex digital 291

current-controlled current sourc41

current-controlled switgh232

current-controlled voltage sourcg41

D/A converter 286

digital input 324

digital output 328

digital primitive, 105

digital stimulus 105

digital-to-analog interface824

diode 131

GaAsFET 110

independent current source & stimylag?2

independent current source & stimulus
(sinusoidal waveform)L51

independent voltage source & stimylag?2

inductor, 170

inductor coupling105

inductor coupling (transformer core)60

input/output model322

insulated gate bipolar transist@37

interface 246

JFET, 153

MOSFET, 105, 108, 174

passive 53

primitives 247

programmable array logiG34

resistor 215

semiconductqrs3

stimulus 246

subcircuit instantiation236

subcircuits 105

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

transmission ling223 digital input voltage63
transmission line couplind.05, 109, 160 glitch suppressigro4
voltage-controlled current sourcE36 net state confligte3
voltage-controlled switgh219 persistent hazarg4
voltage-controlled voltage sourcE36 zero-delay-oscillation64
DFF, 265 digital-to-analog
DIBL, 181, 189, 190, 348 convertey51
differential function xix. interface devices324
DIGDRVF (.OPTIONS) 61 DIGMNTYMX (.OPTIONS), 61, 251
DIGDRVZ (.OPTIONS) 61 DIGMNTYSCALE (.OPTIONS) 61, 252
DIGERRDEFAULT (.OPTIONS)61, 308 DIGOVRDRYV (.OPTIONS) 61
DIGERRLIMIT (.OPTIONS) 61, 308 DIGTYMXSCALE (.OPTIONS) 61
DIGFREQ (.OPTIONS)61 DINPUT device model51, 324
DIGINITSTATE (.OPTIONS) 61 diode model51, 105, 108, 131
DIGIOLVL, 251 display file xxvii_
DIGIOLVL (.OPTIONS) 61 .DISTO (small-signal distortion)}L.02
digital delay linge 51 .DISTRIBUTION, 37, 60
digital input 51, 324 distribution
digital input model parameters325 user-defined37
C (capacitance)325 using an include file37
FILE, 325 distribution name
FORMAT, 325 GAUSS 52
Sn (state "n")325 user-defineds2
TIMESTEP, 325 distributions
digital libraries 332 UNIFORM tolerances namé2
digital output 51, 328 DLTCH, 270
.VECTOR 92 DLYLINE, 274
digital output model parameteis28 doping tai] 190, 206, 348
CHGONLY, 328 dot commangdl128, 142, 348
CLOAD, 328 DOUTPUT device modebl
FILE, 328 drain 71
FORMAT, 328 area 61
RLOAD, 328 bulk, 175
Sn (state "n")328 induced 186
SXNAME, 329 drive resistancebl
TIMESCALE, 329
TIMESTEP, 329 E
digital power supplies322, 323, 333) _
digital primitives 247 edge-triggered flip-flopss1, 265
format 250 truth_ tables 268, 269
digital simulation ELSE Xix, 348
results in files 92 emitter, 71
worst-case timing64 ENABLE, 301
digital time step61 -END, @)
digital worst-case timings3 end of circuif 39
convergence hazaré3 end subcircuit definition84
cumulative ambiguity hazayé3 ENDREPEAT, 313

356

.ENDS 84
environment variables
LIBPATH, 45
equation
changing 339
ERRORLIMIT, 308
examples
CONSTRAINT primitive 309
EXPAND (.OPTIONS) 46, 59
exponential (EXB)xix
exponential temperature coefficient (TCEL7
expressionsxx, 42
conventionsxviii
numeric conventionsix
text, 88
.EXTERNAL, 40
external port specificationg0

F
FALSE, 306

ferromagnetic 169
Ferroxcubel62
FET, 51
file, xxvi, 317
datg xxvi.
header317
input, Xxv_
output xxvi.
stimulus 317
transitions 317
files
log, xxiii_, xxvi_
stimulus 93
filter shift, 80
final time value 90, 142
flip-flops and latches248, 264
initialize, 264
timing constraints264
X-level handling 264
flush interva) xxvi
FORMAT, 326
format array 316
.FOUR 41
Fourier analysis30, 41, 90, 348
FREQ (constraint check307

I J K L M

357

frequency
expressionl36
modulation 143
response, AC analysis82
FSTIM, 86, 88, 317, 319, 348
.FUNC, 42
function definition 42
functions
absolute value (ABSXix
arc tangent (ATAN and ARCTANXix
arccosine (ACOSXix.
arctangent (ARCTAN)xix
arsine (ASIN) xix
ATAN2, xix
cosine (COS)xix.
cosine hyperbolicxix
differential (Ddt) xix
exponential (EXP)xix
hyperbolic tangent (TANH)xx
IF, Xix
imaginary (IMG) xix.
integral (Sdt) xx
limit (LIMIT) , xix
log base 10 (LOG10QXix
log base E (LOG)xix.
MAX, Xix
MIN, Xix_
phase (R)xix
power (PWR) xx, Xxi
real (R) xx
signed power (PWRS$SXx
signum (SGN)xx
sine (SIN) xx
square root (SQRTXxx
step (STP)xx
table (TABLE) xx
tangent (TAN) xx

u v W X Y

G

GaAs MESFET51
device model51
illustration, 342
Level 1 parametersd 13
Level 2 parametersd 13
Level 3 parameteyd 15

AlBlc D EF G | J KL M

Level 4 parameters
parameters for all leveld12
gate 348
gated
latch 270
gates 51, 71, 254
bidirectional transfer261
flip-flops
number in model258
number of inputs255
standargd255
tri-state 258
gate-source
voltage 70
Gaussian52
GENERAL (constraint checkB07
glitch, 348
suppressionc4
global
node nameL5
parameters348
ports 348
GMIN (.OPTIONS) 61
goal functions
command linexxvii
group delay73
AC analysis 32
Gummel-Poon transistor model
guasi-saturation effec12

H

harmonics41l
header

file, 317
HEX radix functions 317
hexadecimal notatiqgr314
HEXFET, 203
HOLDTIME, 305
hyperbolic tangent (TANH)xx
hysteresis165

I
I/O mode| 311
AC, 43, 55
bias point
.IC setting 43

358

O P Q R S u v W X Y

IC=, 90, 128, 170

icon, xvi, 348

ideal transmission line224
IF, Xix, 348

IGBT

extracting model parameters from data sheets

239
imaginary part73
IMG(X), xix
INC, 42, 44, 50
included file 31, 85, 96, 348
.DISTRIBUTION commang60
including files 42, 44
INCR BY, 315
IND device model51
independent current source & stimyl@85, 108,
142
sinusoidal waveforml51
independent sources
AC analysis 32
independent voltage source & stimylag5, 108,
142
inductor, 51, 105, 108, 170
coupling 105, 108, 161
coupling (transformer corgl60
inductors 216
current coefficients102
initial bias point condition43
in-line comment100
input file, xxv.
input/output model parametef®s1, 322
AtoD, 322
DIGPOWER 322
DRV, 322
DtoA, 322
OuT, 322
TPWRT, 322
instance nameL07, 348
instantiate 84, 348
insulated gate bipolar transistor (IGBTP5, 108,
237
integral (Sdt) xx
Intel hex format279, 283
interface 246
internal time step91
INTERNAL_NODE, 344
INV, 256

AlBlc D EF G | J KL M

INV3, 259

invoke, 349

IO _LEVEL, 251, 311
IO_STM, 311, 313, 320
ionization kneel57, 349
IS =, 326

ISAS, 348

ISWITCH device model51
iteration 149, 349

ITL3, 102

ITLn ((OPTIONS) 61

J

JEDEC file 86, 88, 275, 277, 278, 334
JFET, 105, 108, 153, 343

illustration, 342
Jiles-Atherton modell63, 165, 349
JKFF, 265
job statistics (ACCT,)59
junction

definition, 175, 178, 349

K

KBREAK (inductor coupling) 163
KEYWORD, 136, 148, 349
DEG, 137
MAG, 137
PARAMS, 236
R_I, 137
RAD, 137
Knuth, Donald 48

L

labels 349
Laplace variable42, 136
latch, 264

gated 270
lateral PNP51
LIB, 45
LIBPATH, 45, 349
LIBRARY (.OPTIONS) 59
library file, 45
limit (LIMIT) , xix
LIMPTS (.OPTIONS) 62

359

O P Q R S u v W X Y

LIMTIM , 102
linear
temperature coefficient (TC1317
link, 345, 349
LIST (OPTIONS) 59
.LOADBIAS, 76
load bias point file46
log (logarithmic)
base 10 (LOG1QXix
base E (LOG)xix
log files, xxiii_
PSpice xxvi_
log Probe commandgxiii
logic expression292
LOGICEXP, 292, 293, 295
lossy transmission ling1, 225
lot tolerance52, 96, 98, 349
LPNP device modebl
Isb, 93, 349
LVLCOD, 102
LVLTIM , 102

M

M.H, 337
macro file xxvii
MAG, 137
magnetic corgl6l, 163
magnitude 62, 73
M(x), functions xix
master library file45
MAXFREQ, 307
maximum
(MAX), xix
MAXORD, 102
.MC, 47
memory primitives249
RAM, 283
ROM, 279
message$3, 308
DIGITAL INPUT VOLTAGE, 63
FREQUENCY, 63
GENERAL, 63
hazard and timing violatiqré3
HOLD, 63
NET-STATE CONFLICT 63
PERSISTENT HAZARD 64

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

persistent hazardg0 Level 6 advanced parametei$1
RELEASE, 63 Levels 1, 2, and 3 descriptiond 78
SETUR 63 model declarationbl
Timing Violations 63 model parameterd 78
WIDTH, 63 mouse 349
ZERO-DELAY- OSCILLATION 64 msh 93, 349
metafilg 349 msim.inj, 45, 349
METHOD, 102 multi-bit A/D convertey 249, 286
Microsoft compiler for the device equations option timing mode] 287
345 multi-bit D/A converter 249, 286, 289
MIN_LO, 306 timing mode) 289
MINFREQ, 307 MXPR macrg 338
minimum (MIN), xix
MNTYMXDLY , 251 N
mobility, 181, 185, 186, 191, 240, 241, 349
.MODEL, 50 N device 324
model Nagel, Lawrence339
library, 45, 349 NAND, 256
temperature customizatiph3 NAND3, 259
model breakout parts NBTG, 261
resistors 216 N-channel 51
D (diode) 132 GaAsMESFET 51
GASFET (GaAsFET)111 IGBT, 51
IGBT, 238 JFET, 51
ISWITCH (current-controlled switchp33 NMOS, o1
LPNP (bipolar transistor205 nested subcircuitg. 02
NJF (JFET) 154 nesting 236, 349
NMOS (MOSFET) 177 netlist
NPN (bipolar transistor205 definition, 349
PJF (JFET)154 device declarationsl07
PMOS (MOSFET) 177 intrinsic device typesL07
PNP (bipolar transistor205 proper syntax106
VSWITCH (voltage-controlled switchR20 NIGBT device model51
X (diode), 132 NJF deV|ce_ modebl
models, using in circuit designs06 NMOS device modeb1l
Monte Carlo analysjs37, 47, 76 NOBIAS (.OPTIONS) 59
default distribution value$0 NODE (.OPTIONS) 59, 306
read-in error80 .NODESET 46, 55, 76
MOS.C and device model chang&s? nodeset30, 46, 55, 77, 349
MOS.C and state vector informaticd¥.1 NOECHO (.OPTIONS)39
MOSFET, 105, 174 .NOISE 56
BSIM3 version 3.1 model descriptioh81 noise
BSIM3 version 3.1 model parametgt§2 analysis 56
device declarationl08 bipolar transistqr214
EKV version 2.6 model descriptipfi79 diode 135
EKV version 2.6 model parametefis37 flicker, 126, 135, 159, 202, 214
Level 4 description178 JFET, 159

360

MOSFET, 202

shot 126, 159, & 214
NOM.LIB, 45
nominal temperaturg7, 117, 130, 134, 156, 173,

198, 209, 218

NOMOD (.OPTIONS) 60
nonlinear controlled sources8
NOOUTMSG (.OPTIONS)60
NOPAGE (.OPTIONS)60
NOPRBMSG (.OPTIONS)60
no-print value 90
NOR, 256
NOR3 259
NOREUSE (.OPTIONS)60
NOREUSE flag 60, 77, 349
NOSUBCKT, 75, 350
NPN bipolar transistoisl
number of times to repeat (1312
NUMDGT (.OPTIONS) 62, 68, 350
numeric expression conventionx
NXOR, 256
NXOR3, 259

O

O device 328

OA, 256

object 345, 350

OCT radix functions317

OMITTED, 339

.OP, 58

operator 88, 350

.OPTIONS 59, 61
ABSTOL, 61
CHGTOL, 61
CPTIME, 61
DEFAD, 61
DEFAS 61
DEFL, 61
DEFW, 61
DIGDRVF, 61
DIGDRVZ, 61
DIGERRDEFAULT,
DIGERRLIMIT, 308
DIGFREQ 61
DIGINITSTATE, 61

08

I J K L M

361

DIGIOLVL, 61
DIGMNTYMX, 61

DIGMNTYSCALE, 252

DIGOVRDRY, 61
DIGTYMXSCALE, 61
DISTRIBUTION, 60
EXPAND, 46
GMIN, 61
ITL1, 61
ITL2, 61
ITL4, 61
ITL5, 61
LIBRARY, 59
LIMPTS, 62
LIST, 59
NOBIAS, 59
NODE, 59
NOECHQ 59
NOMOD, 60
NOOUTMSG 60
NOPAGE 60
NOPRBMSG 60
NOREUSE 60
NUMDGT, 68
OPTS 60
PIVREL, 62
PIVTOL, 62
RELTOL, 62
STEPGMIN 60
TNOM, 62
VNTOL, 62
WIDTH, 68
ACCT, 59
options xxv, 59

options not available in PSpicg02

MAXORD, 102
OPTS (.OPTIONS)60
OR, 256
OR3 259

OUTPUT ALL, 47, 95, 96,

output file xxvi
and flag options59
resistances39
output files

u v W X Y

35

digital simulation result92

output variables
DC sweep/0

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

transient analysjs’0 PLNAND, 276
PLNOR, 276
P PLNXOR, 276
PLOR 276
package350 PLOT, 66
page options for simulation outp@O plot, 66
page, definition350 PLXOR, 276
.PARAM, 65 PMOS device modebl
parameter350 _ _ _ PNP device modebl
adding with the device equations opti@38 POLY, 350
definition, 65 polynomial transfer function (for ABM controlled
global 112, 130, 133, 348 sources)138
name change using the device equations option ports 350 o
338 _ _ _ _ global 348
value calc.ulatlon using the device equations power (PWR) xx, xxi
_options 339 .prb file, xxvii
parametric analysig9 primitives, 246, 247, 29
PARAMS, 84 PRINT, 68
subcircuits 236 print, 68
part 350 step value90, 142
definition, 350 tables 68
instance 350 Probe 69 o
path definition 296 data files 58
PBTG, 261 output files 39
P-channel51 .PROBE 69
JFET, 51 Probe command line options
MOSFET, 51 -C, XXVi
peak amplitudel50, 151 -p, @
phase73 programmable logic array PLE234
phase ('P,)& data values277
piecewise linear37 overview 275
pin, 215, 291, 333, 350 PLAND, 276
pin current 350 PLANDC, 276
pin names equivalent to node narigs PLNAND, 276
pins _ _ PLNANDC, 276
and capacitor node polarjt%28 PLNOR 276
and inductor node polarity. 70 PLNORC_276
as external interface points of netwqrké PLNXOR, 276
subcircuit nodes34 PLNXORQ_276
voltage out of ranges3 PLOR 276 o
pin-to-pin delay (PINDLY) 294, 295, 296, 303 pLORQ_276
PIVREL (.OPTIONS) 62 PLXOR, 276
PIVTOL (.OPTIONS) 62 PLXORC,_276
PJF device modebl syntax 276
PLAND, 276 nod

timing mode] 278
PLD, 86, 88, 275 types 248, 276
overview 275 propagation delgy252

362

AlBlc D EF G | J KL M

PSpice
log file, xxvi
PSpice command line options
-d, xxvi
'I, w
-0, XXVi
PSpice messages
hazard and timing violation$3
Persistent Hazargdg0
PSPICE.MAK 345
PULLDN, 273
PULLUP, 273
pullup and pulldown resistarg48, 273
Q

QBAR, 69

guadratic temperature coefficient (TC2L7

guasi-saturation effect (BJT212

R

R device 215

R_I, 137

RAD, 137

RAM, 283

random access memory
timing mode] 284

read only memory279
timing mode] 282

real function (R)xx

real part 73

recompiling and linking345

reference function98
CHANGED, 298
CHANGED_H]I, 298
CHANGED _LH, 298

relative accuragy62

RELEASETIME, 305

RELTOL (.OPTIONS) 62

REPEAT, 149, 313
ENDREPEAT, 149
FOREVER 149

RES device modebl

resistance multiplier217

resistor 51, 105, 108, 215

model definition 21

O P Q R S u v W X Y

pullup and pulldown273
RMS, 56
roll-off

S device 219
save
bias point to file 75
.SAVEBIAS, 46, 75
scale factar61
SCBE 181, 190, 350
schematic 350
Schmitt triggey 322
Sdt(x) integral functionxx
semiconductor modeld 03
semiconductor partd32, 177
.SENS 78
sensitivity
analysis 78
worst-case analysi§5
setpoint 350
setting initial conditions43
SETUP_HOLD
constraint check304
SETUPTIME, 305
SGN(X) signum functionxx
shot noise126, 159, 202, 214
shunt conductan¢cé&5
SIGNAME, 320, 327
signed power (PWRSXx
SIMLIBPATH, 351
simulation 137, 225, 351
lossy transmission lineg€25
transmission ling223
simulation command line options
-bf, xxvi
-bn, xxvi.
-bs, xxvi.
-€, XXVi_
-1, XXVI
-WDAT, xxvii_
-wNO_NOTIFY, xxvii_

-WONLY, xxvi

-WwOUT, xxvii_

-WPAUSE xxvii_

-WTXT, Xxvii_
SIN(x) function xx
sine (SIN) xx
skip bias point, SKIPBF20
skipbp 60, 90, 351
small-signal 58

bias point 43

DC gain 89
small-signal distortion analysi$02
source 71
SPICEZ2 options102
SPICE2G 340

PSpice differences02
square root (SQRTXxx
SRFF, 270
standard gate$1, 247, 255, 256

AND, 256

ANDA, 256

AO, 256

AOlI, 256

BUF

BUFA, 256

INV, 256

INVA, 256

NAND, 256

NANDA, 256

NOR, 256

NORA, 256

NXOR, 256

NXORA, 256

OA, 256

OAl, 256

OR, 256

ORA, 256

XOR, 256

XORA, 256
Statz model110, 124, 351
STER 79

usage examplegl
step ceiling valug90
step function (STRXx
STEPGMIN (.OPTIONS)60
stepping a resistpB1

I J K L M

364

STIM, 311
.STIMLIB, 82
STIMULUS, 83
stimulus definition 83
stimulus devices246, 310
examples313
file stimulus 317
stimulus generatp811
stimulus library files 82
STP(x) xx
struct m,, 340
subcircuit 105, 107, 108, 225, 351
definition, 84
device declarations
instantiation 84, 236
intrinsic device types
library, 45
usage example§6
.SUBCKT, 84
usage example§6
substrate71
sweep variable48, 76
DC analysis 36
switch
current-controlled105, 107
voltage-controlled105, 109
switches, ideal220, 233
SXNAME, 330
symbol| 351
symbols
ideal switches220, 233
BBREAK (GaAsFET) 111
C (capacitor)129
C_VAR (capacitor) 129
CBREAK (capacitor)129
DBREAKX (diodes) 132

E (ABM controlled analog source)38
EPOLY (ABM controlled analog source)38
F (ABM controlled analog source)38
FPOLY (ABM controlled analog sourge)38
G (ABM controlled analog source})38
GPOLY (ABM controlled analog sourge)38
H (ABM controlled analog source)l 38
HPOLY (ABM controlled analog sourcel38

JBREAKX (JFET) 154
K_LINEAR (transformer) 163, 171
KBREAK (inductor coupling) 163

u v W X Y

I J K L M

KCOUPLERN (transmission line coupling matrix)

227
L (inductor) 171
LBREAK (inductor) 172
MBREAKx (MOSFET) 177
QBREAKX (bipolar transistor)205
R (resistor) 216
R_VAR (resistor) 216
RBREAK (resistor)216
SBREAK (voltage-controlled switch220
T (transmission ling)226
TLOSSY (transmission lingR26
TnCOUPLED (transmission ling227
TnCOUPLEDX (transmission lingp27
WBREAK (current-controlled switch233
XFRM_LINEAR (transformer)163, 171

XFRM_NONLINEAR (nonlinear transformer)

163
ZBREAKN (IGBT), 238
syntax xvii, 52, 83, 351

T

T device 223
T_ABS (.MODEL) 53
T_MEASURED (.MODEL) 53
T_REL_GLOBAL (.MODEL), 53
T_REL_LOCAL (.MODEL), 53
table (TABLE) xx
tangent (TAN) xx
tangent hyperbolic (TANH)xx
TC, 217
1 (linear temperature coefficienf17
2 (quadratic temperature coefficigrf)L 7
E (exponential temperature coefficigrit)l 7
.TEMP, 87
temperaturgts, 87
customization53
temperature customizing3
TEXT
subcircuit 236
.TEXT, 88
text expressions8
text parameter definitiqré8
TEXTINT, 88, 351
.TF, 89
thermal noisel26, 135, 159, 202, 214, 235

365

thermal voltage65
tick number 326, 351
TIMESCALE, 317, 331
TIMESTEP, 312, 314, 326, 330
timing constraint253
timing hazards
convergencet3
cumulative ambiguity63
timing mode] 251
delay ling 274
gated latch270
general discussiQi252
multi-bit A/D converter 287
multi-bit D/A converter 289
programmable logic arrag78
random access memoi384
read only memory282
TNOM (.OPTIONS) 62
tolerances52, 98
DEV, 52
distribution name52
GAUSS 52
LOT, 52
specification 52
UNIFORM, 52
user-defined52
TOM mode] 110, 351
topology, 77, 342
.TRAN, 90
transfer function89
transformer51
transient analysjgil, 90
final time value
internal time step91
no-print value 90
print step valug90
SKIPBP, 90
step ceiling valug90
transient bias poing3
transistor, bipolgr204
transition functions299
TRN_$H, 299
TRN_S$L, 299
TRN_H$ 299
TRN_HL, 299
TRN_HZ 299
TRN_LS$, 299

u v W X Y

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

TRN_LH, 299 UDAC device model51, 289

TRN_LZ, 299 UDLY device model51, 274

TRN Z$ 299 UEFF device modebl, 265

TRN_ZH, 299 UGATE, 293

TRN_ZL, 299 UGATE device model51, 255, 292
transitions UGFF device modebl, 270

file, 317 UIO device model51, 322
transmission line UPLD, 275

ideal ling 224 URAM, 283

illustration, 224, 225 UROM, 279

lossy ling 225 user-defined distributiqrB7

transmission line couplind.05, 109, 160, 167, 223 UTGATE device model51, 258
transmission line devi¢c&23

transmission lines V
coupled 228
ideal 226 VARY BOTH, 96, 351

VARY DEV, 95, 351

lossy, 226
simulating 228 VARY LOT, 96, 351
TRISTATE, 296 @ VECTOR 92
tri-state gatess1, 248, 258, 259 VIEWSsim A/D, 327
AND3, 259 VNTOL (.OPTIONS) 62
AND3A, 259 Voltage Source
BUF3, 25_ PWL Parametersl48
BUF3A, 259 voltage-controlled
INV3, 259 current sourcel05, 107, 136
INV3A, 259 switch 51, 105, 109, 219
NAND3, 259 voltage sourcel05, 107, 136
NAND3A, 259 VSWITCH device model51
NOR3 259 VTO temperature351
NOR3A, 259
NXOR3, 259 W
CN)EOE?BS - W device 232
OR::; \ 259 \WATCH, 94
XOR'?’: 259 watch analysis result84
TRN device model51 WIDTI’—IT)Z
TSTER 142 ' 1 ==£
TSTOR 142 IN= option 102
P . . WIDTH (.OPTIONS) 62, 68, 99
typographical conventiongvi WIDTH (constraint check)306
wildcard characters<xv.
U window meny 351
U.C. Berkeley 337 Windows xvi, 63 .
address203, 339 worst-case analysi87, 76, 95
UADC device model51, 287
UBTG, 261

366

AfBlc D EF G | J KL MIWMOPQRSHIUVWXY

X

X devices 84
XOR, 256
XOR3, 259

Z

zero impedance voltage source, DAB9

367

	Contents
	How to Use This Online Manual
	Commands
	Analog devices
	Digital devices
	Customizing device equations
	Glossary
	Index

	How to Use This Online Manual�
	How to print this online manual
	Welcome to OrCAD
	Overview
	Typographical conventions
	Command syntax formats
	Numeric value conventions
	Numeric expression conventions

	Command line options for OrCAD applications
	Command files
	Log files
	Simulation command line specification format

	Commands
	Command reference for PSpice and PSpice A/D
	.AC�(AC�analysis)
	.ALIASES,�.ENDALIASES� (aliases and endaliases)
	.DC�(DC�analysis)
	Linear sweep
	Logarithmic sweep
	Nested sweep

	.DISTRIBUTION�(user-defined�distribution)
	Deriving updated parameter values

	.END�(end�of�circuit)
	.EXTERNAL�(external�port)
	.FOUR�(Fourier�analysis)
	.FUNC�(function)
	.IC�(initial�bias�point�condition)
	.INC�(include�file)
	.LIB�(library�file)
	.LOADBIAS�(load�bias�point�file)
	.MC�(Monte�Carlo�analysis)
	.MODEL�(model definition)
	Parameters�for�setting�temperature

	.NODESET�(set�approximate�node voltage�for bias�point)
	.NOISE�(noise�analysis)
	.OP�(bias�point)
	.OPTIONS�(analysis�options)
	PSpice A/D digital simulation condition messages

	.PARAM�(parameter)
	.PLOT�(plot)
	.PRINT�(print)
	.PROBE�(Probe)
	DC Sweep and transient analysis output variables
	AC analysis
	Noise analysis

	.SAVEBIAS�(save�bias�point�to�file)
	.SENS�(sensitivity�analysis)
	.STEP�(parametric�analysis)
	Usage examples

	.STIMLIB�(stimulus�library�file)
	.STIMULUS�(stimulus)
	.SUBCKT (subcircuit)
	.ENDS�(end subcircuit)
	Usage examples

	.TEMP�(temperature)
	.TEXT�(text parameter)
	.TF�(transfer)
	.TRAN�(transient analysis)
	.VECTOR�(digital output)
	.WATCH�(watch analysis results)
	.WCASE�(sensitivity/worst-case analysis)
	*�(comment)
	;�(in-line�comment)
	+�(line�continuation)
	Differences between PSpice and Berkeley SPICE2

	Analog devices
	Analog devices
	Device types
	Analog device summary (continued)

	GaAsFET
	Capture parts
	Model parameters
	GaAsFET equations
	References

	Capacitor
	Capture parts
	Capacitor model parameters
	Capacitor equations

	Diode
	Capture parts��
	Diode model parameters
	Diode equations
	References

	Voltage-controlled voltage source
	Voltage-controlled current source
	Basic SPICE polynomial expressions (POLY)

	Current-controlled current source
	Current-controlled voltage source
	Basic SPICE polynomial expressions (POLY)

	Independent current source & stimulus
	Independent voltage source & stimulus
	Independent current source & stimulus (EXP)
	Independent current source & stimulus (PULSE)
	Independent current source & stimulus (PWL)
	Independent current source & stimulus (SFFM)
	Independent current source & stimulus (SIN)

	Junction FET
	Capture parts
	Model parameters
	JFET equations
	Reference

	Inductor coupling (and magnetic core)
	Transmission line coupling
	Inductor coupling������ ��
	Capture parts
	Inductor coupling model parameters�
	Transmission line coupling
	References

	Inductor����������
	Capture parts
	Inductor model parameters
	Inductor equations

	MOSFET
	Capture parts��
	MOSFET model parameters
	MOSFET Equations
	References

	Bipolar transistor
	Capture parts
	Bipolar transistor model parameters
	Bipolar transistor equations
	References

	Resistor
	Capture parts
	Resistor model parameters
	Resistor equations

	Voltage-controlled switch
	Capture parts
	Voltage-controlled switch model parameters
	Voltage-controlled switch equations

	Transmission line
	Ideal line ��
	Lossy line
	Capture parts
	Transmission line model parameters
	References

	Independent voltage source & stimulus
	Current-controlled switch
	Capture parts
	Current-controlled switch model parameters
	Current-controlled switch equations

	Subcircuit instantiation
	IGBT
	Capture parts
	IGBT device parameters
	IGBT model parameters
	IGBT equations
	References

	Digital devices
	Digital device summary
	Digital primitive summary
	General digital primitive format
	Timing models
	Gates
	Flip-flops and latches
	Pullup and pulldown
	Delay line
	Programmable logic array
	Read only memory
	Random access read-write memory
	Multi-bit A/D and D/A converter
	Behavioral primitives

	Stimulus devices
	Stimulus generator
	File stimulus

	Input/output model
	Input/output model parameters (continued)

	Digital/analog interface devices
	Digital input (N device)
	Digital output (O Device)

	Digital model libraries���
	7400-series TTL and CMOS library files
	4000-series CMOS library
	Programmable array logic devices

	Customizing device equations
	Introduction to Device Equations
	Making device model changes
	Changing a parameter name
	Giving a parameter an alias
	Adding a parameter
	Changing the device equations
	Adding a new device
	Specifying new internal device structure

	Recompiling and linking the Device Equations option
	Personalizing your DLL

	Simulating with the Device Equations option
	Selecting which models to use from a Device Equations DLL

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

