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Section |
Introduction

The Numerical Electromagnetics Code (NEC-2) 1s a user-oriented computer
code for the analysis of the electromagnetic response of antennas and other
metal structures. It is bullt around the numerical solution of integral
equations for the currents induced on the structure by sources or incident
fields. This approach avoids many of the simplifying assumptions required by
other solution methods and provides a highly accurate and versatile tool for
electromagnetic analysis.

The code combines an integral equation for smooth surfaces with one
specialized to wires to provide for convenient and accurate modeling of a wide
range of structures. A model may include nonradiating networks and transmission
lines connecting parts of the structure, perfect or imperfect conductors, and
lumped-element loading. A structure may also be modeled over a ground plane
that may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an
incident plane wave of linear or elliptic polarization. The output may include
induced currents and charges, near electric or magnetic fields, and radiated
fields. Hence, the program is suited to either antenna analysis or scattering
and EMP studies. NEC and its predecessor AMP have been used successfully to
model a wide range of antennas including complex environments such as ships.
Results from modeling several antennas with NEC are shown in refs. 36, 37,
and 38 with measured data for comparison.

The integral—-equation approach is best suited to structures with dimen—
sions up to several wavelengths. Although there is no theoretical size limie,
the numerical solution requires a matrix equation of increasing order as the
structure size is increased relative to wavelength. Hence, modeling very large
structures may require more computer time and file storage than is practical on
a particular machine. 1In such cases standard high-frequency approximations
such as geometrical or physical opties, or geometric theory of diffraction may
be more suitable than the integral equation approach used in NEC,

The code NEC-2 is the latest in a series of electromagnetics codes, each
of which has built upon the previous one. The first in the series was the code
BRACT which was developed at MBAssociates in San Ramon, California, under the
funding of the Air Force Space and Missiles Systems Organization (refs. 1 and

2). BRACT was specialized to scattering by arbitrary thin-wire configurations.
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The code AMP followed BRACT and was developed at MBAssociates with
funding from the Naval Research Labofatory, Naval Ship Engineering Center,
U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications
Command, and Rome Air Development Center under Office of Naval Research
Contract NOOQ14-71-C-0187. AMP uses the same numerical solution method as
BRACT with the addition of the capability of modeling a structure over a
ground piane and an option to use file storage to greatly increase the maximum
structure size that may be modeled. The program input and output were
extensively revised for AMP so that the code could be used with a minimum of
learning and computer programming experience. AMP includes extensive
documentation to aid in understanding, using, and modifving the code (refs.
3, 4 and 5).

A modeling option specialized to surfaces was added to the wire model-
ing capabilities of AMP in the AMP2 code (ref. 6). A simplified approximation
for large interaction distances was also included in AMP2 to reduce running

time for large structures.

The code NEC-1 added to AMP2 a more accurate current expansion along
wires and at multiple wire junctions, and an option in the wire modeling
technique for greater accuracy on thick wires. A new model for a voltage
source was added and several othgr modifications made for increased accuracy
and efficiency. I ‘

| NEC-2 retains all featﬁres of NEC-1 except for a restart option. Major
additions in NEC-2 are the Numerical Green's Function for partitioned-matrix
solution and a treatment for lossy grounds that is accurate for antennas very
close to the ground surface. NEC-2 also includes an option to compute maximum
coupling between antennas and new options for structure input,

Part I of this document describes the equations and numerical methods
used in NEC. Part III: WEC User's Guide (ref. 7) contains instructions
for using the code, including preparation of input and interpretation of
cutput., Part II: WEC Program Description — Code (ref. 8) describes the
coding in detail. The user encountering the code for the first time should
begin with the User's Guide and try modeling some simple antennas. Part II
" will be of interest mainly to someone attempting to modify the code,

Reading part I will be useful to the new user of NEC-2, however, since an
understandfng of the theory and solution method will assist in the proper

application of the code,



Section 11
The Integral Equations For Free Space

The NEC program uses both an electric-field integral equation (EFIE)
and a magnetic-field integral equation (MFIE) to model the electromagnetic
response of general structures. Each equation has advantages for particular
structure types. The EFIE is well suited for thin-wire structures of small
or vanishing conductor volume while the MFIE, which fails for the thin-wire
case, 1s more attractive for voluminous structures, especially those having
large smooth surfaces. The EFIE can also be used to model surfaces and is
preferred for thin structures where there is little separation between a
front and back surface. Although the EFIE is specialized to thin wires in
this program, it has been used to represent surfaces by wire grids with
reasonable success for far-field quantities but with variable accuracy for
surface fields. For a structure containing both wires and surfaces the EFIE
and MFIE are coupled. This combination of the EFIE and MFIE was proposed
and used by Albertsen, Hansen, and Jensen at the Technical University of
Denmark (ref. 9) although the details of thelr numerical solution differ from
those in NEC. A rigorous derivation of the EFIE and MFIE used in NEC is given
by Poggio and Miller (ref. 10). The equations and their derivation are

outlined in the following sections.

1. THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

The form of the EFIE used in NEC follows from an integral representation

for the electric field of a volume current distribution j,

E@ =72 [ 3¢ - EE, T av, (1)
v
where
T(r, ) = T + WgE, 1),
g(?, ') = exp(-jk[; - ;'[)/]; -7 s



and the time convention is exp(jwt). I is the identity dyad (X% + $§ + 23).
When the current distribution is limited to the surface of a perfectly
conducting body, equation (1) becomes

B2y = ﬁf [SESG') « G(F, T') aa', (2)

- . -+
with JS the surface current density. The observation point r is restricted

to be off the surface S so that ¢ # £'.
If r approaches § as a limit, equation (2) becomes

> > _.:_jﬂ -> -, .=+ +' ' )
E(f) = 740 jg J.ED - TG, T aa, (3)

e
where the principal value integral,jf, is indicated since g{r, r') is now

unbounded.

An integral equation for the current induced on § by an incident field
-

EI can be obtained from equation (3) and the boundary condition for ; £ 3,
8(F) x [ESG) + EIG)] - 0, (4)

~ -+ "'S, .
where n(r) is the unit normal vector of the surface at r and E”° is the field
> >
due to the induced current Js. Substituting equatien (3) for E® yields the

integral equation,
A < E@ = 2D A

ffs(?') T+ g, T dar. (5)
s

The vector integral in equation (5) can be reduced to a scalar integral
equation when the conducting surface S is that of a cylindrical thin wire,
thereby making the solution much easier. The assumptions applied for a thin

wire, known as the thin-wire approximation, are as follows:

a. Transverse currents can be neglected relative to axial currents

on the wire.
b. The circumferential variation in the axial current can be neglected.
c. The current can be represented by a filament on the wire axis.

by



d. The boundary condition on the electric field need be enforced in

the axial direction only.

These widely used approximations are valid as long as the wire radius is
much less than the wavelength and much less than the wire length. An
alternate kernel for the EFIE, based on an extended thin-wire approximation
in which condition c¢ is relaxed, is also included in NEC for wires having too
large a radius for the thin-wire approximation {(ref. 11).

From assumptions a, b and c, the surface current 35(¥) on a wire of

radius a can be replaced by a filamentary current I where

~ > >
I(s8)8 = ZﬁaJs(r),
- 3 >
s = distance parameter along the wire axis at r, and
~ -+
s = unit vector tangent to the wire axis at r.

Equation (5) then becomes
SAE x BN = A
r
_/ 1(5')(k2§' -V 527) g(?, ') ds', (6)
L

where the integration is over the length of the wire. Enforcing the boundary

condition in the axial direction reduces Eq. (6) to the scalar equation,

-8 - EI(?) =—;—3£ f I(S')(k2§ -+ §' -
L

a2

- —)—' '
8385') g(x, r') ds'. (7)

> >
Since r' is now the point at s' on the wire axis while r is a point at s on

> >
the wire surface |r - r' > a and the integrand is bounded.

2. THE MAGNETIC FIELD INTEGRAL EQUATION (MFIE)

The MFIE 1s derived from the integral representation for the magnetic

field of a surface current distribution js,
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—)-S+

R - j%—Jé JEY < v @G T aar, (8)

. >

where the differentiation is with respect to the integration variable r'
> T

If the current JS is induced by an external incident field H » then the total

magnetic field inside the perfectly conducting surface must be zero

Hence,
for r just inside the surface S,

@ + 8% =0, (9)

>
where HI is the incidenc field with the structure removed,

>s
and H” is the
scattered field given by equation (8).

The lntegral equation for J may be
obtained by 1etting r appreach the surface point r

from inside the surface
along the mormal n(r ).

The surface component of equation (9) with equation
(8) substituted for H° is then

4
r+r O
o

i >1 - Ay 1 . -+ >
_n(ro) X H (ro) = n(ro) X == +11m -[ Js(r.) x

V' g(r, £') da’,

where n(r ) is the outward directed normal vector at r The limit can be

evaluated by using a result of potential theory (ref. 12) to yield the
integral equation

=t

~ L >T - >
n(ro) x H (ro) a - > Js(ro) +

i%— [ a(?a) x [35<?') x g g(;;, ') (10)

For selution in NEC, this vector integral equation is resolved into two

scalar equations along the orthogonal surface vectors El and EZ where

~ -> "™ o A~ -~
tl(ro) X tz(ro) = n(ro).



o . . -+ -+ > -+ > >
By using the identity u » (v X w) = (u X v) * w and noting that El X A= -t

and E2 X n o= El’ the scalar equations can be written,

£, ) - B ) = - e,G) - J @) -

e NGRS ERCIRE DR ) PIUTY
_gl(r ) « BN ) = --% Ez(r ) I (x )+

41_“ fs El(;o) . [js(;_fv) x v*g(?o, ?')] da'. (12)

These two components suffice since there is no normal component of equation
(10).

3. THE EFIE-MFIE HYBRID EQUATION

Program NEC uses the EFIE for thin wires and the MFIE for surfaces. For
a structure consisting of both wires and surfaces, ? in equation (7) is
restricted to the wires, with the integral for ES(¥), extending over the
complete structure. The thin-wire form of the integral in equation (7) is
used over wires while the more general form of equation (5) must be used
on surfaces. Likewise, ;0 is restricted to surfaces in equations (11) and
(12), with the integrals for HS(;) extending over the complete structure. On
wires the integral is simplified by the thin-wire approximation. The

-
resulting coupled integral equations are, for r on wire surfaces,

. 2
P O 1 . 20 Ay _ 3 + >, '
s E " (r) = Tk 4 I{s )(k ] 8 Seas’ g{r,r') ds

_ _dn T o, 20 gy O Z '
e _é‘ Js(r§ [k 8 -V as] g(r,r ) dA', (13)
1



>
and for r on surfaces excluding wires

L, F® = e® - 1(s'>(:=:' x v g(if,?')) ds'
L
l ~ - -+ -3
-5 5@ - J () -
w F oo - ["J’s(?') x v'g&’,?')} da’, (14)
5

1

and
@ E® - Eed - [ (s x ve@ ?')) ds’
1 4m 1 L s 8T,
R ANCER G
2 72 s

a—wé @ - [33(;') x V'g(?,;")} da'. (15)
1

The symbol IL represents integration over wires while fSl represents
integration over surfaces excluding wires. The numerical method used to

solve equations (13), (14) and (15) is described in section ITI.



Section 111
Numerical Solution

The Iintegral equations (13), (14), and (15) are solved numerically in
NEC_ by a form of_the method of moments.. An excellent_general introduction to_
the method of moments can be found in R. F. Harrington's book, Field

Computation by Moment Methods (ref. 13). A brief outline of the method

follows.

The method of moments applies to a general linear-operator equation,
Lf = e, (16)

where f is an unknown response, e is a known excitation, and L is a linear
operator (an integral operator in the present case). The unknown function f

may be expanded in a sum of basis functions, f,, as

3

N
f= > a £, . (1n

A set of equations for the coefficients o, are then obtained by taking the

3

inner product of equation (16) with a set of weighting functions ‘wil,

<wi, Lf> = <wi, e> ' (18)

Due to the linearity of L equation (17) substituted for f yields,

N
za<w,Lf>=<w,e>,
i 3 i i L i=1, ... N,

This equation can be written in matrix notation as

[6] [A] = [E] , | (19)
where

i <_W1’ LEs> s

Aj = aJ ,



The soluticn is then

1

[A}l = [G]" (E)

For the solution of equations (13), (14), and (15), the inner product is

defined as

el -
<f, g> = [ f(r)g(r)da ,
'S
where the integration is over the structure surface. Various choices are
possible for the weighting functions {wi} and basis functions {fj}. When
w,.= fi’ the procedure is known as Galerkin's method. 1In NEC the basis and

weight functions are different, wi being chosen as a set of delta functions

wi(¥) = 8(r - ‘Ei) ,

with {;i} a set of points on the conducting surface. The result is a point
sampling of the integral equations known as the collocation method of solution.
Wires are divided into short straight segments with a sample point at the
center of each segment while surfaces are approximated by a set of flat patches
or facets with a sample point at the center of each patch.

The choice of basis functions is very important for an efficient and
accurate solution. In NEC the support of fi is restricted to a localized

>

subsection of the surface near r;- This choice simplifies the evaluation of
the inner-product integral and ensures that the matrix G will be well condi-
tioned. For finite N, the sum of fj cannot exactly equal a genmeral current
distribution so the functions fi should be chosen as close as possible to the
actual current distribution. Because of the nature of the integral-equation
kernels, the choice of basis function is much more critical on wires than on

surfaces. The functions used in NEC are explained in the following sections.

1. CURRENT EXPANSION ON WIRES

Wires in NEC are modeled by short straight segments with the current on
each segment represented by three terms — a constant, a sine, and a cosine.
This expansion was first used by Yeh and Mei (ref. 14) and has been shown to
provide rapid solution convergence (ref. 15 and 16). 1Ir hag the added advan-
tage that the fields of the sinusoidal currents are easily evaluated in closed

form. The amplitudes of the constant, sine, and cosine terms are related such

-10~



that their sum zatisfies physical conditions on the local behavior of current
and charge at the segment ends. This differs from AMP where the current was
extrapolated to the centers of the adjacent segments, resulting in disconti-
nuities in current and charge at the segment ends. Matching at the segment
ends improves the solution accuracy, especially at the multiple-wire junctions
of unequal length segments where AMP extrapolated to an average length segment,
often with inaccurate results.

The total current on segment number j in NEC has the form

= B i - -
Ij(s) Aj + 3 sin k(s sj) + Cj cos k(s Sj) s (20)

|S—S,| <A f2 H]
] ]

where Sj is the value of s at the center of segment j and Aj is the length of
segment j. Of the three unknown constants Aj’ Bj’ and Cj’ two are eliminated
by local conditions on the current leaving one constant, related to the
current amplitude, to be determined by the matrix equation. The local
conditions are applied to the current and to the linear charge density, q,

which is related to the current by the equation of continuity

aI

At a junction of two segments with uniform radius, the obvious
conditions are that the current and charge are continucus at the Jjunetion.
At a junction of two or more segments with unequal radii, the continuity of
current is generalized to Kirchoff's current law that the sum of currents
into the junction is zero. The total charge in the vicinity of the junction
is assumed to distribute itself on individual wires according to the wire
radii, neglecting local coupling effects. T. T. Wu and R. W. P, King
(ref. 17) have derived a condition that the linear charge density on a wire

at a junction, and hence 31/3s, is determined by

9I(s) - (22)
os 8 at junction ln(ﬁ%) -y

where a = wire radius,

k = 2n/XA ,

-11-



Y = 0.5772 (Euler's constant).

Q is related to the total charge in the vicinity of the junction and is
constant for all wires at the junction.

At a free wire end, the current may be assumed to g0 to zero, On a
wire of finite radius, however, the current can flow onto the end cap and
hence be nonzero at the wire end. 1In one study of this effect, a condition
relating the current at thé wire end to the current derivative was derived
(ref. 18). For a wire of radius a, this condition is

-~

-(s‘ﬁc) Jl(ka) 3I(s)

I(S) = >
s at end k Jo(ka) 3s S at end
where JO and J1 are Bessel functions of order 0 and 1. The unit vector fi 1is
normal to the end cap. Hence, § -+ ﬁc is +1 if the reference direction, 8, is
toward the end, and -1 if § is away from the end.
Thus, for each segment two equations are obtained from the two ends:
J.(ka ) 3I, (s)
*1 1 b j
I. (s, = A /2) = — (23)
3 J k Jo(kaj) 9s s =38, * A /2
3 k|
at free ends, and
31_(s) Q;
(s .
.]a.__s._ = ~——--]—.—--2 (24)
s =g, * A /2 En(———) -¥
i i kaj

at junctions. Two additional unknowns Q; and Q; are associated with the
junctions but can be eliminated by Kirchoff's current equation at each
junction. The boundary-condition equations provide the additional equation-
per-segment to completely determine the current function of equation (20)
for every segment.

To apply these conditions, the current is expanded in a sum of basis
functions chosen so that they satisfy the local conditions on current and
charge in any linear combination. A typical set of basis functions and their
sum on a four segment wire are shown in figure 1. For a general segment i in

, .th ) .
figure 2, the i basis function has a peak on segment 1 and extends onto
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Figure 1. Current Basis
Functions and Sum on a
Four Segment Wire.

N+ Figure 2. Segments

‘e, Covered by the ith
// /////// Basis Function.

every segment connected to i, going to zero with zero derivative at the outer
ends of the connected segments.

The general definition of the ith basis function is given below. For
the junction and end conditions described above, the following definitions

apply for the factors in the segment end conditionms:

-1
a = al = [an (iﬁ—) - v] : (25)
' i
and
X, = Jl(kai)/Jo(kai)

i
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The condition of zero current at a free end may be obtained by setting X

Zero.

The portion of the ith basis function on segment i is then

[a) Q (o] Q
fi(s) Ai + Bi sin k(s si) + Ci cos k(s si)

[s - sil <4,/2 .

~ +
If N #0 and N # 0, end conditions are

3 _o - -
— . (s) = a R
ds i | s=s. - A /2 i 74
i i
3 + +
s fi(s) [ e Q
s =3, +A, /2
i 1
If N =0 and N' # 0, end conditions are
o 1 d .0
fi(si - Ai/2) o Xi s fi(s)

3 .0
3s fi(S)

s =s, + Ai/2

s =s, - Ai/2

- +
If N #0 and N = 0, end conditions are

9 .o
as fi(s) s = s
i
o -1
fi(si + Ai/Z) = -

Over segments connected to end 1 of segment 1, the ith basis function is

f;(é) = A; + B; sin k(s - s

ls - s

i

- A, /2
i

3 _o
Xy 38 £4(9)

< A

3

j/2 j=1s
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N

s =8, + Ai/2

)+ C} cos k{s - s,)

]

i

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)



End conditions are

f.(s. - A,/2) =0, 34
J(SJ j/ ) (34)
§’—f‘.(s)| -0, (35)
s s = sj - Aj/Z
3 - + -
— £, (8) [ =a_ Q, . (36)
98 ] s =38, +A4./2 j i :
3 3
Over segments connected to end 2 of segment 1, the ith basils function is
f;(s) = ; + B; sin k{s - sj) + C; cos k(s - Sj) (37
ls - s,| <A,/2 3=1, ... , N .
J j .
End conditions are
+ - _+
aa_sf.(s) = a, Qi ) (38)
d s =8, - A, /2 J
i J
fi(s, +8,/2) =0 (39)
joa h| ’
3 _+
35 Li(s) =0. (40)
J 5 = sj + Aj/2

Equations (26}, (33), and (37), defining the complete basis function,
- + -
involve 3(N + N + 1) unknown constants. Of these, 3(N -+ N+) + 2 unknowns
are eliminated by the end conditions in terms of Q; and QI which can then be

determined from the two Kirchoff's current equations:

=
Zl £i(sy +6,/2) = £{(s; = B,/2) , and (41)
j:
+
. + o]
> (s - 85/2) = £(sy + 8,/2) . (42)
j=1
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The complete basis function is then defined in terms of one unknown
constant. In this case Ag was set to -l since the function amplitude is
arbitrary, being determined by the boundary condition equations. The final

result is given below:

_ af Q;
Aj T sin k Aj ’ (43)
+ -
- a, Q.
B = ] 1 » (44)

3 2 cos k Aj/Z

cT = J_i , (45)

At - —3 1 (46)

L , ' (47)

- +
ct - 3 % (48)
j 2 sin k Aj/Z
- +
For N # 0 and N # O,

[n]

Ai = - 1 ) (49)
sin k A, /2 .

o - - + 4+ i

By (ai Q +ay Qi) sin k &, (50)
cos k A,/2

) - - + i

€1 (ai G-y Qi) sin k 4, ° (51)

-16-



For N = 0 and

For N # 0 and

+ +
ai(l - cos k Ai) - Pi sin k Ai

= s (52)
- F . -+ L. -+ _ o+ -
(Pi Pi + ai ai) sin k Ai + (Pi ai Pi ai‘)cos k Ai
- - - P, si A
) ai(cos k Ai 1) Pi sin k { 53
-+, -+ - +  _+ -
(Pi Pi + ai ai) sin k Ai + (Pi ai Pi a,i )cos k Ai
Nt # 0,
= -1, (54)
) sin k Ai/2 . a+ Q+ cos k Ai/Z - Xi sin k Ai/2
cos k Ai - Xi sin k Ai i *i cos k Ai - Xi sin k Ai
(55)
i cos k Ai/2 Lt Q+ sin k Ai/z + Xi cos k Ai/2
cos k Ai - Xi sin k Ai i"i cos k Ai-Xi sin k Ai
(56)
cos k Ai -1 - Xi sin k Ai
=T+ ¥ ¥ ¥ (57)
( i + xi Pi) sin k Ai + (ai Xi - Pi) cos k Ai
+
N 0,
=-1, (58)
- sin k A,/2 -
) sin l/ e o cos k Ai/Z Xi sin k Ai/Z
cos k Ai - Xi sin k Ai i %1 cos k Ai - Xi sin k Ai
(59)
cos k A, /2 i
) s l/ o sin k Ai/Z + Xi cos k Ai/z
cos k Ai - Xi sin k Ai i i cos k Ai - sin k Ai '
(60)
1l - cos k Ai + Xi sin k Ai
= (61)

(ai - Xi Pi) sin k Ai + (Pi + Xi ai) cos k Ai

17~



For all cases,

N /1 ~ cos k A +
P, = 2 sin k A : &y 0 (62)
i 5=1 i
N+ 7
+ cos k A, = 1
Po= D i a” (63)
j=1 sin k Aj i’

where the sum for P, is over segments connected to end 1 of segment i, and
+ - +

the sum for P, is over segments connected to end 2. If N = N = 0, the
i

complete basis function is

N

cos k(s - si)

i cos k Ailz - Xi sin Ai/2

1. (64)

When a segment end is connected to a ground plane or to a surface
modeled with the MFIE, the end condition on both the total current and the
last basis function is

3
_I() -.Os
JS

as s =5_t A /2
3 J

replacing the zero current condition at a free end. This condition does

not require a separate treatment, however, but is obtained by computing the
last basis function as if the last segment is connected to its image segment
on the other side of the surface.

It should be noted that in AMP, the basis function fi has unit value at
the center of segment i and zero value at the centers of connected segments
although it does extend onto the connected segments. As a result, the
amplitude of fi is the total current at the center of segment i. This is not
true in NEC so the current at the center of segment i must be computed by

summing the contributions of all basis functions extending onto segment i.

2. CURRENT EXPANSION ON SURFAGES

Surfaces on which the MFIE is used are modeled by small flat patches.
The surface current on each patch is expanded in a set of pulse functions

except in the region of wire connection, as will be described later. The

pulse function expansion for Np patches is

~18-



(65)

where

t2j =t, rj R
;, = position of the center of patch number j ,
]
- -
Vj(r) = 1 for r on patch j and 0 otherwise.

The constants Jlj and sz, representing average surface~current density
over the patch, are determined by the solution of the linear system of
equations derived from the integral equations. The integrals for fields,
due to the pulse basis functions, are evaluated numerically in a single step
so that for integration, the pulses could be reduced to delta functions at
the patch centers. That this simple approximation of the current yvields good

accuracy is one of the advantages of the MFIE for surfaces.

A more realistic representation of the surface current is needed,
however, in the region where a wire connects to the surface. The treatment
used in NEC, affecting the four coplanar patches about the connection point,
1s quite similar to that used by Albertsen et al. (ref. 9). 1In the region
of the wire connection, the surface current contalns a singular component
due to the current flowing from the wire onto the surface. The total surface
current should satisfy the condition,

v o« J (x,y) = J (x,y) + I 8(x,y) ,
s 3 o) 0
where the local coordinates x and y are defined in figure 3, VS denotes
surface divergence, Jo(x,y) is a continuous function in the region ARBRCD,

and IO 1s the current at the base of the wire flowing onto the surface. One

expansion which meets this requirement is

N 4
J (x,y) = Io_f(x,y) + z g

- >
s j=1 j(X,Y) (Jj = IO £ ) > (66)

]
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where

| Teo o &+ y9
f(x,y) = xxz 5
27(x" + y7)

J, =3¢ )
= x.’ s ¥
3 s+ %573

fj = f(xj,yj) , and

(xj.yj) = (x,y) at the center of patch

j. The interpolation functions gj(x,y)

are chosen such that: g.(x y) is

dlfferentiable on ABCD; gj(xi,y ) =

Figure 3. Detail of the & d z = ].. The specific
Connection of a Wire to ij’ an gj(x »¥) € sp
a Surface. funccionsjused in NEC are as follows:
1 1
g, (x,y) = =5 (d+x) (d+y) gz(x,y) = == (d-x) (d+y)
4d 4d
g8,(x,y) = == (d-x) (d-y) g,(x,y) = =5 (d+x) (d-y)
4d 4d

Equation (66) is used when computing the electric field at the center
of the connected wire segment due to the surface current on the four sur—
rounding patches. In computing the field on any other segments or on any
patches, the pulse-function form is used for all patches including those at
the connection point. This saves integration time and is sufficiently

accurate for the greater source to observation-point separations involved.

3. EVALUATION OF THE FIELDS
The current on each wire segment has the form
Ii(s) = Ai + Bi sin k(s - Si) + Ci cos k(s - si) 675

|s - s,| < Ai/2 R

(|
where k = w#uoeo, and Ai is the segment length. The solution requires the
evaluation of the electric field at each segment due to this current. Three
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approximations of the integral equation kernel are used: a thin-wire form
for most cases, an extended thin-wire form for thick wires, and a current
element approximation for large interaction distances. In each case the
evaluation of the field is greatly simplified by the use of formulas for the
fields of the constant and sinusoidal current components.

The accuracy of the thin-wire approximation for a wire of radius a and
length A depends on ka and A/a. Studies have shown that the thin-wire
approximation leads to errors of less than 1% for A/a greater than 8 (ref. 11).
Furthermore, in the numerical solution of the EFIE, the wire is divided inteo
segments less than about 0.1X in length to obtain an adequate representation
of current distribution thus restricting ka to less than about 0.08. The
extended thin-wire approximation is applicable to shorter and thicker segments,
resulting in errors less than 1% for Afa greater than 2.

For the thin-wire kernel, the source current is approximated by a
filament on the segment axis while the observation point is on the surface of
the observation segment. The fields are evaluated with the source segment on

the axis of a local cylindrical-coordinate system as illustrated in figure 4.

z Figure 4. Current=-
- Filament Geometry
P P p for the Thin-Wire
Kernel.
|
7 A
z Jl rO
2
'l 2
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Then with

G, = exp(---jkro)/r0 , (68)

2]1/2

r = 02 + (z - z")

. . (69)

the p and z components of the electric field at P due to a sinusoidal current

filament of arbitrary phase,

I = sin{kz' - Go) » 2y < z' < zZ, (70)
are
c —in [ 3G,
E (p,2) = —2 |(z'-2) 1 — + 16
e 2k2)\o 3z ©
(71)
z
, a1 | 2
- (z'-2) G0 327 s
%1
2.
3G
£ - _in ol 0
Ez(p'z) 2 [Go az' I dz' ] - (72)
2kTA zl

For a current that is constant over the length of the segment with strength
I, the fields are

23
Ef(p,2) = L A0 [EG—° (73)
p A 2k2 a3p 2

1

Z
£ I in )% ? 2 %2
E (p2) = - ¢ 4% J1=¢ +kj G dz'( . (74)
2k z z1 zl °

These field expressions are exact for the specified currents. The integral

over z' of GD is evaluated numerically in NEC.
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Substituting sine and cosine currents and evaluating the derivatives

yields the following equations for the fields. For

I=1 (sin kz') , (75)
)

cos kz'

f —Io 3 cos kz'
Ep(p,z) = —2 0 Go k(z—-z'") ( )

- 1 ]
A Zkzp sin kz
(78)
22
a1y 2 . 1 | /sin ko’
1L (z~2") (l+3kro) 2 cos kz' ’
r z
o] 1
£ Io in cos kz'
Ez(p’z) =3 036 :k (-sin kz')
2k
7
i)
_ _1y 1 (sin kz’
(1+jkr0)(z z') 2 \cos kz' )
r z
0 1
For a constant current of strength IO,
z
f Lo g Go ’
E (p,2z) = - =2 408 | (14jpr ) -2 , (78)
p A 2 o 2
2k ro 2
1
z
; 1. c 1 ?
E (p,z) = - => L ) (+jkr )(z-z") -2
z A 2 o 2
2k r_ .
1
| (79)
z
+ k2 f 26 ag'd,
o]
5

Despite the seemingly crude approximation, the thin-wire kernel does
accurately represent the effect of wire radius for wires that are sufficiently

thin. The accuracy range was studied by Poggio and Adams (ref. 11) where an
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extended thin-wire kernel was developed for wires that are too thick for the
thin-wire approximation.

The derivation of the extended thin-wire kernel starts with the current

on the surface of the source segment with surface density,
J(z") = 1(z")/(2ma) ,

where a is the radius of the source segment. The geometry for evaluation
of the fields is shown in figure 5. A current filament of strength Id¢/(27)
is integrated over ¢ with

p' = [02 + a2 - 2ap cos ¢Il/2 , (80)

2.1/2

25 (zm2n)H)M (81)

r = [p'

Thus, the z component of the field of the current tube is

2m

t 1 £, .
EC(0,2) = 2 fo £ (o7, 20d0 (82)

Figure 5. Current

P Geometry for the
Extended Thin-Wire
Kernel.
Z
2
Zl
a
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For the p component of field, the change in the direction of B' must be
considered. The field in the direction f is

2m

t o1 £, , Ao
Ep(p,z) = o £ Ep(o »2){(P+B")de , (83)

where

_Pp-acos ¢ _ 9p'
p' ap

pep’

The integrals over ¢ in equations (82) and (83) cannot be evaluated in
closed form. Poggio and Adams, however, have evaluated them as a series in
powers of a2 (ref. 11). The first term in the series gives the thin-wire
kernel. For the extended thin-wire kernel, the second term involving a2 is
retained with terms of order 34 neglected. As with the thin-wire kernel,
the field observation point is on the segment surface. Hence, when
evaluating the field on the source segment, p = a.

The field equations with the extended thin-wire approxXimation are given

below. For a sinusoidal current of equation (70),

Ted
E_(p,z) =';%F1 [(z'—z)I-g—% + 16,
e 2k“) z
(84)
P
2
(e oI
(z Z)Gz 3zl] >
31
z
E ( ),_..U]_Gﬂ_,_lﬁ_ ‘ (85)
z P22 2 1 3z’ oz! i
2k z,
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For a constant current of strength Io’

on [acl} )
E (D.Z) = 3 rves ]
P Ao? Lop 2

. 3G, ] %2
E (p,z) = - I.n [—"l]
-4 by

The term Gl is the series approximation of
2n
o 1
Gl T om _[ G de,
o]
where

G = exp (-jkr)/r.

Neglecting terms of order aa,

2 2 2
G, =G 1 - -2 (tjkr ) + 22 |30045kr ) - k2
1 o 2 o 4 o
_ 2r 4T
o Q
2

aGl

2

r 2r
o

o

~26=

2 2
- EL{%- [jk3r3 + 6k2r§ - 15(l+jkro)J

2
r
o

o Lz=2") . _a” . 2.2
Y > G0 (l+_1kro) - [3(1+Jk1‘°) -k ro]

It

(86}

(87)

(88)

(89)

(90)



oG oG . 2
_1___o _a_ . 22
Y > (l+jkr°) 3 [3(1+3kro) -k ro]
r. o
(91)
a%? [, 33 2 2
- 4 jk r + 6k"r_ - 15(1+jkr )
4r o o
o
The term G2 is the series approximation of
2
t _ 1 P - a cos ¢
Gy = 25 Jf ) G d¢ . (92)
0 p
To order az,
€ ap? 2.2
G2 = ry 1+ 4 3(l+Jkr0) -k ro] , (93)
4t
o
9G 22
2 _ (z=2') _a’p” 3.3 2.2
52t = 2 GD (1+jkr0) 4 jk ry + 6k r 15(l+jkro)
pr 4r J
o o
(94)
Equation (86) makes use of the relation
~ey OG 3G 3p' 3G
Bt = = 2=
while equation (87) follows from
2 2 2
G, = |1 -l 27 3 |, (96)
1 4 4 2 o :
dz
When the observation point is within the wire (p<a), a series expansion in
P rather than a is used for G_ and G,. For G, this simply involves inter-
0 2 1

changing p and a in equations (89) and (90). Then for p < a, with

1/2
r, = a2 + (z-z')2] , (97)
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G, = exp(~jkr_)/r_, (98)

the expressions for Gl’ G, and their derivatives are

2
2 a2 2 2 2
G, = G {1 - & (+jkr ) + 2L |3(1+jkr ) - Kk°r , (99)
1 a 2 a & a a
2r 4r
a a
3G 2
1 (z-z") . __p . _,2.2
5al = > Ga (1+Jkra) 2 [3(1+Jkra) k r,
r 2r
a a
{100)
a%p? [, 33 2.2
- 28 l3k’c? + 6k°r® - 15(1+jkr ) ,
4 a a a
4 .
G 2
—Lt_._L G (1+Jkr y - ———-[3(l+3kr ) - kzrz] , (101)
ap 2 "a 2 a
r 2r
a a
= - B :
G2 = 5 Ga (l+3kra) . {102)
2r
a
oG
2 _ (2290 _ .22
5T = T 2r4 Ga [3(1+jkra) k ra] . (103)
a

Special treatment of bends in wires is required when the extended thin-
wire kernel is used. The problem stems from the cancellation of terms
evaluated at z; and 2, in the field equations when segments are part of a
continuous wire. The current expansion in NEC results in a current having a
continuous value and derivative along a wire without junctions. This ensures
that for two adjacent segments on a straight wire, the contributions to the
z component of electric field at z, of the first segment exactly cancel the
contributions from 21 representing the same point, for the second segment.
For a straight wire of several segments, the only contributions to E with
either the thin-w1re or extended thin-wire kernel come from the two wire ends
and the integral of G along the wire. For the p component of field or
either component at a bend, while there is not complete cancellation, there

may be partial cancellation of large end contributions.
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The cancellation of end terms makes necessary a consistent treatment of
the current on both sides of a2 bend for accurate evaluation of the field.
This is easily accomplished with the thin-wire kernel since the current
filament on the wire axis is physically continuous around a bend. However,
the current tube assumed for the extended thin-wire kernel cannot be continuous
around its complete circumference at a bend. This was found to reduce the
solution accuracy when the extended thin-wire kernel was used for bent wires.

To avoid this problem in NEC, the thin-wire form of the end terms in
equations (71) through (74) is always used at a bend or change in radius. The
extended thin-wire kernel is used only at segment ends where two parallel
segments join, or at free ends. The switch from extended thin-wire form to the
thin-wire form is made from one end of a segment to the other rather than
between segments where the cancellation of terms is critical.

When segments are separated by a large distance, the interaction may
be computed with sufficient accuracy by treating the segment current as an
infinitesimal current element at the segment center. In spherical coordinates,

with the segment at the origin along the © = 0 axls, the electric field is

E (r,0) = Mn exp(—jkr)(l --j~) cos @ ,
r 2ﬂr2 kr

2 kr

E.(r,0) = Mn exp(—jkr)(1+jkr - 4L) sin @ .
© 4T

The dipole moment M for a constant current I on a segment of length Ai is

M=T4, .
For a current I cos[k(s - si)] with |s - Sil < Ai/Z ,
21
M= " sin(kAi/Z) .

while for a current I sin{k(s - si)],

M=0.
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Use of this approximation saves a significant amount of time in
evaluating the interaction matrix elements for large structures. The minimum
interaction distance at which it is used is selected by the user in NEC. A
default distance of one wavelength is set, however.

For each of the three methods of computing the field at a segment due
to the current on another segment, the field is evaluated on the surface of
the observation segment, Rather than choosing a fixed peint on the segment
surface, the field is evaluated at the cylindrical coordinates p', z with
the source segment at the origin. If the center point on the axis of the

observation segment is at p, z, then

¥

1/2
. 2 2
p' = [ o + ao]

where a is the radius of the observation segment. Also, the compenent of

Ep tangent to the observation segment is computed as

E ~ (A /\) p E
* 8 = *s) — .
o) P o' p

Inclusion of the factor p/p', which is the cosine of the angle between P and

)

p', is necessary for accurate results at bends in thick wires.

4. THE MATRIX EQUATION FOR CURRENT

For a étructure having NS wire segments and Np patches, the order of
the matrix in equation (19) is N = Ns + ZNP. In NEC the wire segment
equations occur first in the linear_system so that, in terms of submatrices,
the equation has the form

A B 1 T [E
W L24

| C D B IPJ _Hp_I

with equations derived from equation (14) in odd numbered rows 1in the lower

set and equation {(15) in even rows. I,, is then the column vector of segment

=30~



basis function amplitudes, and Ip is the patch-current amplitudes (Jlj, sz,
j=l,...,Np). The elements of EW are the left-hand side of equation (13)
avaluated at segment centers, while Hp contains, alternately, the left-hand
sides of equatiocns (14) and (15) evaluated at patch centers.

A matrix element Aij in submatiix A represents the electric field at
the center of segment i due to the j segment basis function, centered on
segment j. A matrix element Dij in submatrix D represents a tangential
magnetic field component at patch k due to a surface-current pulse on patch

% where

Int [(i—l)/Z] + 1,

=
It

=
n

Int [(j-l)/zJ +1,

and Int[] indicates truncation. The source pulse 18 in the direction El when

j is odd, and direction t, when j is even. When k = £ the contribution of

2
the surface integral 1s zero since the vector product is zero on the flat

patch surface, although a ground image may produce a contribution. However,
for k = &, there is a contribution of * 1/2 from the coefficient of 35(;) in
equation (14) or (153). Matrix elements in submatrices B and C represent
electric fields due to surface-current pulses and magnetic fields due to
segment basis functions, respectively. These present no special problems

since the source and observation points are always separated.

5. SOLUTION OF THE MATRIX EQUATION

The matrix equation,

[G] [I]) = [E] , (104)

is solved in NEC by Gauss elimination (ref. 19). The basic step 1s factori-
zation of the matrix G into the product of an upper triangular matrix U and

a lower triangle matrix L where

6 = [L] [U] .
The matrix equation is then

[L] [u] f%} = [E] , (105)
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from which the solutiomn, I, is computed in two steps as

(L} (F]

(E] , (106)

and

(ul (1] = [F] . (107)

Equation (106) is first solved for F by forward substitution, and
equation (107) is then solved for 1 by backward substitution.

The major computational effort is factoring G into L and U. This takes
approximately 1/3 N3 multiplication steps for a matrix of order N compared
to N3 for inversion of G by the Gauss-Jordam method. Solution of equations
(106) and (107}, making use of the triangular properties of L and U, takes
approximately as many multiplications as would be required for multiplication
of G_l by the column vector E. The factored matrices L and U are saved in
NEC since the solution for induced current may be repeated for a number of
different excitations. This, then, requires only the repeated solution of
equations (106) and (107).

Computation of the elements of the matrix G and solution of the matrix
equation are the two most time-consuming steps in computing the response of
a structure, often accounting for over 90% of the computation time. This
may be reduced substantially by making use of symmetries of the structure,
either symmetry about a plane, or symmetry under rotation.

In rotational symmetry, a structure having M sectors is unchanged when
rotated by any multiple of 360/M degrees. If the equations for all segments
and patches in the first sector are numbered first and followed by successive

sectors in the same order, the matrix equation can be expanded in submatrices

in the form

M-l B M Agez By2| I3 | = Eq (108)




If there are Nc equations in each sector, Ei and Ii are Nc element column
vectors of the excitations and currents in sector 1i. Ai is a submatrix of
order Nc containing the interaction fields in sector 1 due to currents in
sector 1. Due to symmetry, this is the same as the fields in sector k due
to currents in sector 1 + k, resulting in the repetition pattern shown.
Thus only matrix elements in the first row of submatrices need be computed,
reducing the time to fill the matrix by a factor of 1/M.

The time to solve the matrix equation can also be reduced by expanding

the excitation subvectors in a discrete Fourier series asg

M

E, = 2 Sy B i=1,...,M , (109)
k=1
1 M *

By =% 2 S B 1=l (110)

k=1
where
S; = exp[i2n(i-1) (e-1)/M ] , (111)

j=v-1, and * indicates the conjugate of the complex number. Examining a
component in the expansion,

Sik Ex

Sor Fx
E = . (112)

E
Mk %k |
it is seen that the excitation differs from sector to sector only by a
uniform phase shift. This excitation of a rotationally symmetric structure

results in a solution having the same form as the excitation, i.e.,
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1= | . (113)

It can be shown that this relation between solution and excitation holds for
any matrix having the form of that in equation (108). Substituting these
components of E and I into equation (108) yields the following matrix equation

of order Nc relating Ik to Ek:

Si AL T Sy Ayt eee + Sy AM] [Ik] =S, [Ek] X (114)

The solution for the total excitation is then obtained by an inverse

transformation,
M
I, = égl S, Iy i=1, ..., M. (115)

The solution procedure, then, is first to compute the M submatrices Ai and

Fourier-transform these to obtain

M
Ay = égl Sik A i=1, ..., M. (116)

The matrices Ai, of order Nc, are then each factored into upper and lower
triangular matrices by the Gauss elimination method. For each excitation
vector, the transformed subvectors are then computed by equation (110) and

the transformed current subvectors are obtained by solving the M equations,

{Ai] {Ii] = {Ei] . (117)

The total solution is then given by equation (115).
The same procedure can be used for structures that have planes of
symmetry. +The Fourier transform is then replaced by even and odd excitations

about each symmetry plane. All equations remain the same with the exception
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that the macrix S with elements Sij’ given by equation (111), is replaced by
the following matrices:

For one plane of symmetry,

For two orthogonal planes of symmetry,

1 1 1 1
st v 1 1} .
1 1 -1 -1
1 -1 -1 1

and for three orthogonal symmetry planes,

(1 1 1 1 1 1 1 1]

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

s-|t -1 -1 1 1 -1 -1 1]

1 1 1 1 -1 -1 =1 =1

1 -1 1 -1 -1 1 -1

1 1 -1 -1 -1 =1 1

1 -1 -1 1 -1 1 1 =1

For either rotational or plane symmetry, the procedure requires factoring

of M matrices of crder NC rather than one matrix of order MNc' Bach excitation
then requires the sclution of the M matrix equations. Since the time for
factoring is approximately proportional to the cube of the matrix order and

the time for solution is proportional to the square of the order, the

symmetry results in a reduction of factor time by Mﬁz'and in solution time

by M_l. The time to compute the transforms is generally small compared to

the time for matrix operations since it is proporticnal to a lower power of

Nc' Symmetry also reduces the number of locations required for matrix

storage by M—l since only the first row of submatrices need be stored. The

transformed-matrices, Ai, can replace the matrices Ai as they are computed.
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NEC includes a provision to generate and factor an interaction matrix
and save the result on a file. A later run, using the file, may add to the
structure and solve the complete model without unnecessary repetition of
calculations. This procedure is called the Numerical Green's Function (NGF)
option since the effect is as if the free space Green's function in NEC were
replaced by the Green's function for the structure on the file. The NGF is
particularly useful for a large structure, such as a ship, on which various
antennas will be added or modified. It also permits taking advantage of
partial symmetry since a NGF file may be written for the symmetric part of a
structure, taking advantage of the symmetry to reduce comp:tation time.
Unsymmetric parts can then be added in a later run.

For the NGF solution the matrix is partitioned as

A B Il El

C D 12 E2

where A is the interaction matrix for the initial structure, D is the matrix
for the added structure, and B and C represent mutual interactions. The

current is computed as

-1
-lo- o] e - et g ]
I, [D cA™ "B E, -Cca” E|

after the factored matrix A has been read from the NGF file along with other
necessary data.

Electrical connections between the new structure and the old (NGF)
structure require special treatment. If a new wire or patch connects to an
old wire the current basis function for the old wire segment is changed by the
modified condition at the junction. The old basis function is given zero
amplitude by adding a new equation having all zeros except for a one in the
column of the old basis function. A new column is added for the corrected
basis function. When a new wire connects to an old patch the patch must be
divided into four new patches to apply the connection condition of equation (51).
Hence both the current basis function and match point for the old patch are

replaced.
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Section IV
Effect of a Ground Plane

In the integral equation formulation used in NEC, a ground plane changes
the solution in three ways: (1) by modifying the current distribution through
near-field interaction; (2) by changing the field illuminating the structure;
and (3) by changing the reradiated field. Effects (2) and (3) are easily
analyzed by plane-wave reflection as a direct ray and a ray reflected from
the ground. The reradiated field is not a plane wave when it reflects from
the ground, but, as can be seen from reciprocity, plane-wave reflection gives
the correct far-zone field. Analysis of the near-field interaction effect
is, however, much more difficult.

In Section II, the kernels of the integral equations are free-space
Green's functions, representing the E or H field at a point T due to an
infinitesimal electric current element at T'. When a ground is present the
free space Green's functions must be replaced by Green's functions for the
ground problem. The solution for the fields of current elements in the
presence of a ground plane was developed by Arnold Sommerfeld (ref. 20).
While this solution has been used directly in integral-equation computer
codes, excessive computation time greatly limits its use. Numerous approxima-
tions to the Sommerfeld solution have been developed that require less time
for evaluation but all have limited applicability.

The NEC code has three options for grounds. The most accurate for
lossy grounds uses the Sommerfeld solution for interaction distances less than
one wavelength and an asymptotic expansion for larger distances. To keep the
solution time reasonable, a grid of values of the Sommerfeld solution is
generated and interpolation is used to find specific values. This method is
presently implemented only for wires in NEC but could be extended tc patches.
The solution for a perfectly conducting ground is much simpler since the
ground may be replaced by the image of the currents above it. The third
option models a lossy ground by a modified image method using the Fresnel
plane—wave reflection coefficients. While specular reflection does not
accurately describe the behavior of near filelds, the approximation has been
found to provide useful results for structures that are not too near to the
ground (refs. 21, 22). The attraction of this method is its simplicity and
speed of computation which are the same as for the image method for perfect

ground.
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1. THE SOMMERFELD/NORTON METHOD

The Sommerfeld/Norton ground option in NEC originated with the code
WFLLL2A (ref. 23) which uses numerical evaluation of the Sommerfeld integrals
for ground fields when the interaction distance is small and uses Norten's
asymptotic approximations (ref. 24) for larger distances. Since evaluation
of the Sommerfeld integrals is very time consuming, a code, SOMINT, was
developed (ref. 25) which uses bivariate interpolation in a table of pre-
computed Sommerfeld integral values to obtain the field values needed for
integration over current distributions. This method greatly reduces the
required computation time. NEC uses a similar interpolation method with
modifications to allow wires closer to the air-ground interface and to further
reduce computation time. Although the code WFLLL2A allows wires both above
and below the interface, both NEC and SOMINT are presently restricted to wires
on the free-space side. The method used in NEC to evaluate the field over
ground is described below, and the numerical evaluation of the Sommerfeld
integrals to fill the interpolation grid is discussed in Section IV-2.

The electric field above an air-ground interface due to an infinitesimal
current element of strength IR also above the interface, with parameters shown

in figure 6, is given by the following expressions:

v 32 2

E) = €, 3032 [czz - G,y + i sz} : (118)
v 3¢ 2 2

E, = Cl(g;i + k2) (622 = Gy + k] sz) , (119)
a 52 2 2

E, = C, cos¢ 202 (5, - G0 + Ky ".22) + k2(‘322 Gy 7t Uzz) » (120)

- 19 _ 2
Ey = =Cy sin¢[p 55 (922 Gyy + K5 sz) +

2
K (6, - G * Uzz)] » (12D
1 32 2
E, = €1 cos? 355 (Gzz TGk sz) » (122)
-ijQuo
Cl I R (123)
4wk2
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Source ¢ 2z

Air €as Hg
Y
¢ P
Ground €1s Mg, 01
X
Figure 6. Coordinates for Evaluating the Field of a Current Element Over
Ground.
E jo
2 _ 2 1 1
k1 W H, EO(F we ) : (124)
o 0
2 2
k2 w' M Eg (125)
where the superscript indicates a vertical (V) or horizontal (H) current
element and the subscript indicates the cylindrical component of the field
vector. The horizontal current element is along the x axis.
G22 and G21 are the free space and image Green's functions
Gy, = exp (-jszz)/R2 . (126)
G21 = exp (-jszl)/R1 , (127}
where
2 9 1/2 _
Rl = [p + (z + z2") } ’ (128
1/2
2 2
,Rz = [p + (z - z') } s (129)
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and U22 and V22 are Sommerfeld integrals involving the zeroth order Bessal

function, JO

c
|

Texpl-y,{z + z')] J (Ap)ArdA
2 [ 2 0 : (130)

Texp[-v,(z + 2')] J_(Ap)Ad)

= (131)
22 - 7 7 ,
k) Y vk vy

where
Y, = (Az - kf)llz s (132)
Y, = (Az - kg)l/z ] (133)

In NEC we need to compute the fields due to current filaments with
arbitrary length and orientation by combining the field components in
equations (118) through (122) and integrating over current distributions
composed of constant, sine, and cosine components. Direct numerical integra-
tion over the segments is difficult due to singularities in the fields.

G22 has a l/R singularity while G21, U22 and V22 each have 1/R singularities.
The derivatives in the field expressions result in l/R 51ngularities with a
triplet-like behavior in the field components parallel to the current filament.
The resulting cancellation makes accurate numerical integration near the
singularity very difficulr.

The free-space field has a similar singularity, but as discussed in
Section III-3, the integral over a straight filament may be evaluated in
closed form for a sinusoidal ecurrent with free-space wavelength and involves
only a numerical integration of G22 for a constant current. The dominant
singular component of the ground field may be integrated in the same way. The
terms involving G22 in equation (118) through (122) are, in fact, the field of
the current element in free space, and their integral is obtained from the
free-space routines in NEC.

The remaining terms represent the field due to ground and are singular
at Rl = 0. The singularities in U22 and V 29 result from the failure of the

integrals in equatlons (130} and (131) to converge without the exponential and
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Bessel functions as p and z + z' go to zero. The singular behavior of U22 and
V22 as p and z + z' go to zero may be found by setting Yy = Y2 = ) since the
dominant contributions to the integrals for small p and z + z' come from A
much greater than k1 or k2‘ Here, however, we only replace Yl by Y2 and use

the integrals

“exp(-Y,(z + 2z')] J_(Ap)Adi 2G
v, ~2 2 0 - 2L

= s (134)
22 2 2 2 2
o] Yz(k1 + kz) kl + kz
Rexp(-v,(z + 2')] J (Ap)AdX
U ~ ]ﬂ 2 o =G
22 A Y, 21
{135)

|k1|p << 1, Ikll(z +z') << 1,

which have the correct singular behavior and can be combined with the G21

terms. The fileld components due to ground [equation (108) through (122) with-

out the G22 terms] may then be written as

a2 k

2
Gy = C1 50z 1 Vo * C

-k 2

2

2 3

2 9p3z C21 ° (136)
2

<

1?4k

P PO B

LAV I o]

2 2

2 kI -k

\' 3 2 . 1 2
G Cl(—_f + k ) kl V22 + Cl 2 5
1 2

2
3 2
( 5 + k2) G21 (137)
3z

3 (138)
ki ~ k% ( 52 2)
- C, coso + k G
1 2 2 2 2 21 °
kl + k2 ap
H _ 1 9.2 ., 2 _,
G¢ = C1 sing (p 55 k2 V22 + k2 Uzé)
(139)
2 2 '
kT - k
1 2f{1 9 2
+ —_— ——
Cl sing 2 > (p 7o + k2) G21 ,
kl + k2
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GH = ~cosp GV . (140)
zZ o)

where
2k§
U, =U,, - —=—— G
22 22 2 2 21 °
ky + k]
® 1 k§
= ZJ- - expl-v,(z + z") ] (141)
o [Yl Y, Yz(ki + kg) 2

X JO(Ap)AdA ,

1 - — ———
Voo * Vo2 T 37 691

2J. [ 7 7 .2 ] (142)

7
b Yy vl Yy Ykt Ky

x exp[-yz(z + z'})} Jo(Ap)AdA .

In equations (136) through (140) the dominant singular component has

been subtracted out of sz and combined with GZl' The integral for Véz

converges without the exponential or Bessel function factors and remains
finite as p and z + z' go to zero. The derivatives of Véz in the field
expressions have l/Rl singularities, but this is much less of a problem for
numerical integration than the previous l/Ri singularity. The singularity
could be taken out of U22 also, but, instead, a term is taken out that results
in the final terms in equatioms (136) through (139) being the image field
multiplied by (ki - kg)/(ki + kg). The integral over the current filament of
these image terms is evaluated by the free-space equations leaving only the
Uéz and Véz terms to be integrated numerically. U.. still has a 1/R1

22

singularity, but that 1s no worse than the derivatives of Véz. With the
thin-wire approximation, Rl is never less than the wire radius so the

integration is not difficult in practical cases.
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The components left for numerical integration over the current

distribution are then

Since
closed form

over A:

2

v o 3% 2,
Fo= €y 357 X1 Va2 o (143)
v A DY)
- - 1
F_= cl( 5+ kz) kD VY, (144)
9z
B 3% 2 2
= ' 1
Fp Clcos¢(ap2 kz V22 + k2 U22) , (145)
H _ . {1 3 .2 ., 2
F¢ = -C151n¢ b 30 k2 V22 + k2 UZZ) R (146)
FS = -cosd Fg : (147)

the integrals in equations (141) and (142) cannot be evaluated in

the following terms must be evaluated by numerical integration

2., .

3 V22 . 3
- = D, exp|-Y,(z + z")[J" (Ap)A~dx , (148)

2 2 2 o

ap o -

azvéz T 2

—;—5— = D2 Yy exp[-Yz(z + z')} Jo (Ap)AdX , (149)
z Q

9_22 _ _ j D.y. expl-v.(z + z')| 3" (Ap)a2dr (150)
300z | T2h2 P71 0 ’

1822 1" 2

1222 Efo D, exp[-Yz(z + z'>] 3t oentar (151)

Véz = Jﬂ D, exp[‘Yz(z + z')]JO(AD)J\dA > (152)

Q
0, - fo b exp|-v, G + 2D)]3, Conar (153)
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where

s (154)

E vy + S ¥y Va5 o

Evaluating these integrals over A for each point needed in the numerical
integration over the current distribution is slow on even the fastest computers.
Hence an interpolation technique is used for thg remaining field components as
was done in the code SOMINT for the total field due to ground. Since the
integrals depend only on p and z + z' grid of values 1is generated for the
field components of equations (143) through (146) and bivariate interpolation
is used to obtain values for integration over a current distribution.

To facilitate interpolation in the region of the l/Rl singularity, the
components are divided by a function having a similar singularity and interpo-
lation is performed on the ratio. The field éomponents,of equations (143)
through (146) are divided by exp(—ijl)/Rl for all values of R] to remove the
singularity and the free-space phase factor before interpolation. The factors
sing or cos¢ are also omitted until after interpolation to avoid intreducing

the ¢ dependence. The surfaces to which interpolation is applied are then

2

v 3 2 .,
Ip = Cl Rl exp(ijl) 3092 kl sz . (156)
1V = c. R (jkR. ) 22, k2 Y k2 v (157)
z 1 Ty SFPUIKRy 5 g2 2)%1 Y22 » .
H 2?2 2 2

= : g ' 1
ID Cl Rl exp(Jle) apz k2 V22 + k2 U22 R (158)
H o _ s 1l 3 2 1 2
Iqb C1 Rl exp(Jle)(p 35 k2 sz + k2 U22) . (159)

After interpolation on the smoothed surfaces the results are multiplied by the
omitted factors to give the correct values.

With the singularity removed, interpolation may be used for arbitrarily
small values of p and z + z', The values for R1 = 0 in the interpolation grid

must be found as limits for Rl approaching zero, however, since the integrals
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do not cenverge In this case. When p and z + z' approach zere the dominant
contributions in equations (148) through (153) come from large A. Hence the
singular behavior can be found by setting Yl and Y2 equal to A, First, how-

ever, it is necessary to approximate D1 and D2 for IAI >> ]k1| as

K-
Dl = CZ/)\ . C2 = m s (160)
1 2
3 kg(ki - kg)
D2 = C3/A7, C3 = ) ; N (161)
(kl " kz)
For |kl[p << 1 and lkll(z + z') << 1 the integrals become
2V' )
3 22 o C3 -[ exp[—k(z + z')} J; (hp) dx ,
2
ap ° (162)
_ 1 - sinf _ 1
= C3[ 7 l] R,
cos O 1 .
20
o V22 _ ® , ‘s
2 ~‘C3 exp|-A(z + 2') | J_ (Ap)dA = T (163)
oz o ° 1
2V'
3 V22 . o \ : , C3(1 - sinB)
3p3z B-L exp[; (z + z )] Jo(kp)dk = Rl py s (le4)
VI C o0 -C (l - Sine)
1l2 %o exp[—l(z + z'):lJc') (Ap) 3§ dA = —3 , (165)
P I o Y R, cos’e
UL, ~ C, [ exp|-A(z + 2' 2
22 = Cy exp [-A(z z") Jo (Ap) dX = o (166)
a 1
where
1/2
2 2
Rl=[D + (z+2") ] , (167)
B = tan—l (z +2z")/
z")/p | . (168)
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Véz remains finite as Rl goes to zero and hence is neglected. Equations (156)

through (159) for Rl approaching zero are then

v 211 - sind o
ID ClC3kl ( cost ) ’ : (169)
v 2
I, = CCk) (170)
H _ 2- 1l - sind
1 = cliglc, = ¢y ¥ c3( : )] , (171)
3 cos B
H _ 2( 1l ~ sind
I¢ = Clk2 C2 C3( 2 )} . (172)
cos 0
Since the limiting values as Rl goes to zero are functions of 8 it is necessary
te use Ri and 6 as the interpolation variables rather than p and z + z'.

Figures 7 through 10 are plots of the surfaces to which interpolation is
applied for typical ground parameters. The width of the region of relatively

rapid variation along the R1 axis appears to be proportional to the wavelength

(a} {b)
Max = 0 Max =0
Min = -80.65 Min=-137.9

Figure 7. Real (a) and Imaginary (b) Parts of Iv for El/E = 4, o, = 0.001
mhos/m, frequency = 10 MHz. P °e 1
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{a) {b)

Max = -16.31 Max = 219.9
Min = -163.8 Min = -98.16
|
1
R1
90 50 00
)

Figure 8. Real (a) and Imaginary (b) Parts of Iv for e. /e = 4, o, = 0.001
z 1" "o 1
mhos/m, frequency = 10 MHz.

(a) : {b)
(| /
Max = -1.045 Max = 29,25 A
Min = -74.07 i
, Y Min = -121.3 /
e g )/ 4
r’/ /
L’ v
b %
R, L | R,
: |
20 50 00 90 50 00
6 9

Figure 9. Real {(a) and Imaginary (b) Parts of IH for Ellso = 4, o, = 0.001
mhos/m, freguency = 10 MHz. P
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{a) (b}

Max = 102.1 Max = 109.8
Min = 14.77 Min = -75.86

%
90 50 00 90 50 00

Figure 10. Real (a) and Imaginary (b) Parts of % for e, /e_ =4, o, = 0,001
¢ 1" "o 1
mhos/m, frequency = 10 MHz.

in the lower medium and hence 1is concentrated closer to R, = 0 for larger

1
dielectric constants. At a finite Rl’ the functions approach zero as El and
9y become large. When loss is small the strong wave in the lower medium

results in a significant evanescent wave along the interface in the upper

medium as shown in figure 11.

In NEC the interpolation region from 0 to 1 wavelength in Rl is divided
into three grids, as shown in figure 12, on which bivariate cubic interpolation
is used. For a given point, the correct grid region is determined and cubic

surfaces in R1 and 6, fit to a 4-point by 4-point region containing the desired
v .V _H

point, are evaluated for each of the four quantities Ip, Iz’ Ip, and Ig. The
grid point spacings used are:
Grid ARI AD
1 0.02A 10°
2 0.05A 5°
3 0.1A 10°
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(a) { (b)
Max = 32.856 [l arar e ariar 2o v :’ Max = 84,85
Min = -142.2 z Min = -166.2

jﬁannqﬂnqzmmgﬁgr

Ll 777 T

1
//
)/ R4
90 50 0 0
g i}

= Q.

Figure 11. Real (a) and Imaginary (b) Parts of Ig for El/&:0 = 16, 01

These were determined by numerical tests to keep relative errors of interpola-

3 to 10_4. A smaller ARl could be needed in

tion generally in the range of 10
grid 2 for large € and small g, to handle the rapidly oscillating evanescent
wave, but this is easily changed in the code.

The field evaluation in NEC uses variable-interval-width Romberg
integration over the current distribution. At each integrand evaluation, the
components Ig, IZ, Ig, and Ig are obtained by interpolation, and the field
components are combined according to the direction of the current. The
numerical integral is then combined with the free-space field and with the
image field multiplied by (ki - k%)/(ki + kg) to obtain the total field over
ground.

When R1 from the observation point to the center of a wire segment is
greater than one wavelength, the field is evaluated by Norton's asymptotic
approximations (ref. 26) rather than the above method. Norton's formulas are
given in Part II of this manual under subroutine GWAVE, Although they are
less accurate than the Sommerfeld integral forms and require longer to
evaluate than the interpolation, their use permits truncating the interpolation
tables. Another approximation used for Rl greater than a wavelength is to
treat the current distribution on a segment as a lumped current element with

the correct moment ratrher than integrating over the current distribution,
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90°
I Grid 3
= Grid 1 -
\ ¥
Ay
20° o , ,
Grid 2
|
0° | [
0 0.22 1.0A
Ry

Fig. 12. Grid for Bivariate Interpolation of I's.

2. NUMERICAL EVALUATION OF THE SOMMERFELD INTEGRALS

The integrals in equations (148) through (153) are evaluated by numerical
integration along contours in the complex A plane. Although these integrals
differ from the usual Sommerfeld integrals in the D1 and D2 terms, they are
the same in the properties important to numerical integration — the locations
of poles and branch cuts and the exponential behavior of the Bessel and
exponential functions. The behavior of the integrands and numerical methods

for evaluatiné the integrals are discussed in detail by Lytle and Lager
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{ref. 27). This section describes the particular method used in NEC, which
is basically the same as in the code WFLLLZ2A.

Since the integrands of the six integrals are similar, Véz will be
considered as typical. The integrands have branch cuts from tkl to infinity
and tkz to infinity due to the square roots in Y1 and Yo respectively. The
branch cuts are chosen to be vertical, as shown in figure 13. The implications
of this choice of branch cuts and the choice of Reimann sheets are discussed in
ref. 27.

The key to rapid convergence in the numerical integration is to exploit
the exponential behavior of the exponential and Bessel functions for large A.
The integration contour is deformed from the real axis into the complex plane,
avoiding branch cuts and taking account of poles, to optimize convergence.

With the vertical branch cuts chosen, there are no real poles on the primary
Reimann sheet althaugh virtual poles from Dl or D2 result in a near singularity
in the region of 1k2 when kl approaches k2 (free-space limit). Hence the

integration contour should avoid the real axis in this regiomn.

Figure 13. Contour for Evaluation of Bessel Function Form of Sommerfeld
Integrals. -
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The contour used with the form of the integrals in equations (148)
through (153) is shown in figure 13. The dominant factor for convergence in
this case is the exponential function as AR increases. The Bessel function
oscillates with slow convergence for increasing AR and grows exponentially as
]AI[ increases. Hence it is of little help in convergence but restricts the
contour to small p[AI[. The break in the contour is at A = p + jp where p is
the minimum of 1/p and 1/(z + z').

Integration along this contour becomes difficult when (z + z')/p 1is
small since there may be many oscillations of the Bessel function before
convergence. In this case an alternate form of the integrals is used which

t N
for V22 is

Vi, =-%J- D, exp[;Yz(z + z')} H§2) (Ap)Adxr . (173)

Since the Hankel function of type 2 decays exponentially as AI becomes negative,
it provides rapid ceonvergence without the exp —Yz(z + z') factor. The behavior

of the integrand can be seen from the large argument approximation

exp[—yz(z + z')]HéZ)(AD)== /;%% {exp Al (z + 2') + jD]} -

where, for the vertical branch cuté, the * sign is

+ for AR > -k2 and AI >0,
+ for AR > k2 and AI <0,

- otherwise.
Thus, an integration path having

AI < 0

and

by /AR = -p/(z + 2') for AR > k

I 2

or

) - .
AI/AR p/{(z + 2") for AR < k2

results in exponential convergence with little oscillation. The basic contour

used with the Hankel function form is shown in figure 14 where

d=-3 0.4 k2 s

b= (0.6 +3 0.2)k, ,



Ao

Figure 14. Contour for Evaluation of Hankel Function Form of Sommerfeld
Integrals.

(L.02 + j 0.2)k

2 b ]
d =1.01 k +j 0.99 k s
1R 1I
g = tan_l(*—il*—r)
z + z

To avoid the near singularity as kl approaches k2’ the real part of 4 is
not allowed to be legs than 1.1 k2. This contour provides rapld convergence
except when z + z' is small, |klp[ is large, and klI/klR is small. There may
then be many oscillations between ¢ and d with little convergence. ILn such a

case the contour in figure 15 is used where

e = kl + (-0.1+ 3 0.2) ,

f=kl+(0.l+j0.2).
The Hankel function form of the integrals provides rapld convergence for
small z + z' including the case of z = z' = 0, For small 0, however, the pole
at Ap = 0 requires special treatment. In NEC the Hankel function form with
the contour of figure 14 or 15 1s used when p is greater than (z + z')/2 and
the Bessel function form is used otherwise.
Integration along the contours is accomplished by adaptive interval-width

Romberg integration. On the sections going to infinity, adaptive Romberg
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Y |

Figure 15. Contour for Hankel Function Form when Real Part k is Large and
Imaginary Part kl is Small.

integration is applied to successive subsections of iength P, where p is the
minimum of 0.2n/p or 0.2n/(z + z'), and Shanks' nonlinear transformation

(ref. 28) is applied to the sequence of partial sums to. accelerate convergence.
When p and z + z' are both small, the integration interval, p, may be large
since the exponential and Bessel functions change slowly and the remaining
factors are easily integrated once A becomes large. For the Bessel function
form of the integrals the minimum for Rl = [p2 + (z + 2z") ]1/2 is limited only
by the maximum number size for the computer. For the Hankel function form the
minimum R1 is about 10-5 wavelengths due to the pole at Ap = 0. Either p or

z + z' may be zero.

The numerical integration results for small R1 were checked against
results from a series approximation (ref. 25) and were in very close agreement.
For larger values of R1 the results from different integration contours were
compared as a validation test. Results for the modified Sommerfeld integrals
were also checked with normal 1ntegrals used in the code WFLLL2A. Earlier

studies for the code WFLLL2A, which is capable of computing the field across

—54-



the interface, verified the continuity of the computed tangential E field
across the interface (ref. 44}.

The average time required to evaluate the integrals for a given p and
z + z' on a CDC 7600 computer is about 0.06 s. Thus about 15 s are required
to fill the interpolation grid. Once the grid has been computed and stored,
the time to fill an interaction matrix, using interpolation and the Norton

formulas, is about four times that for free space.

3. THE IMAGE AND REFLECTION-COEFFICIENT METHODS

The use of a reflected image is a simple and fast wav to model the effect
of a ground plane. If the ground is perfectly conducting, the structure and
its image are exactly equivalent to the structure over the ground. Since use
of the image only doubles the time to compute the field, it is always used with
a perfect ground. NEC also includes an image approxiﬁation for a finitely
conducting ground in which the image fields are modified by the Fresnel plane-
wave reflection coefficients. Although this is far from exact for a finite
ground, it has been shown to provide useful results for structures that are
not too near to the ground (refs. 21 and 22). When it can be used, the
reflection coefficient method is about twice as fast as the Sommerfeld/Norton
method and avoids the need of computing the interpolation grid.

Implementation of the image and reflection coefficient methods in the
code 1s very simple. The Green's function for a perfectly conducting ground
is the sum of the free-space Green's function of the source current element
and the negative of the free-space Green's function of the image of the source
reflected in the ground plane. For the electric field, with free-space Green's

= =+ >
dyad G (r,r') defined in equation (1), the Green's dyad for a perfect ground is

T @3 =G (5,") + 6. (£, , (174)
Pg I

where
= > = = & = -
GI (r,x') = -Ir + G (r,Ir - "), (175)
T = %% + 9% - 22 .

T
fr is a dyad that produces a reflection in the z = 0 plane when used in a dot

product. For the magnetic field with free-space Green's dyad

— -+ > = -+ &>
I (¢,r') =1 x V' g (r,c") (176)

w
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the Green's dyad over a perfect ground is

?pg = ?(F,;') + T (;,F') (177)
T (f,r") = -1 - T(,T. + o) (178)

The reflection coefficient method for finitely conducting ground uses
the image fields modified by the Fresnel reflection coefficients. The Fresnel
reflection coefficients, which are strictly correct only for an infinite
plane-wave field, depend on the polarization of the incident field with
respect to the plane of incidence (i.e., the plane containing the normal to
the ground and the vector in the direction of propagation of the wave). The
two cases are illustrated in figure 16 where the wave with E in the plane of
incidence is termed vertically polarized and E normal to the plane of incidence
as horizontally polarized. The Fresnel reflection coefficient for vertically

polarized waves is

2

cos O - ZR Vﬁ - Z_, sin” ©

Rva

sin2 @

Aol im

cos @ + ZR /ﬁ -2

where

A

~
cos O =~k = z ,

The reflected fields are then

>y = av
ER - RV(IR E ) .

It
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Figure 16. Plane-Wave Reflection at an Interface.
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For horizontally polarized waves, the reflection coefficient is

/ 2 2 >
- ) - - i
i (;R cos O vl ZR sin” O

ZR cos @ + /i - Zi sin2 o

Ry

’ (180)

and

Tt
~ T
il
———
—

sl
=
oy
e

An arbitrarily polarized incident plane wave must be resolved into horizontal
and vertical components to determine the reflected field. Thus, if § is the
unit vector normal to the plane of incidence, the reflected field due to an

incident field E is

£ B R, (B - @ -9
ER %(EI PP Ry I *r:I P)p

R, B, + (R - R)(E, « BB, (181)

where EI is the incident field reflected in a perfectly conducting ground, or
the field due to the image of the source. Use of the image field in equation
(181) accounts for the changes in sign and vector direction of the incident

field that were shown explicitly for the vertically and horizontally polarized

cases. For the magnetic field,
fi = Ry + ST
g = Ryflp + (Ry - Ry - §)B (182)

with ﬁI the field of the image of the source.
Applying the Fresnel reflection coefficients to the near fields, the

-+ -
electric field at r due to the image of a current element at r' can be written

GR(r,r') = RVGI(r,r')

+ (R - Rv)[ﬁl(if,?') - ;’5]13 : (183)
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where

=p/1p| ,

>

S ->
=(r-r')yx2z,

oY

and EI is the Green's function for the image of the source in a perfect ground

as defined in equation (175). For magnetic field, the Green's dyad for the
modified image is

?£(¥,?') = R, ?1(¥,¥')

+ Ry = R [?I( ) - ﬁ]ﬁ : (184)

The Green's functions for electric and magnetic fields over an imperfectly

conducting ground, resulting from the reflection coefficient approximation are

then
Eg(?,"r") = G(r,t") + ER(}’,}’-) , (185)
i”g(?,if') = T(r,r') + ?R(?E,?') i (186)

Use of the Green's function's Eé and %; results in a straightforward extension
of the EFIE and MFIE for structures over an imperfect ground.

NEC also includes a reflection coefficient approximation for a radial
wire ground screen, as used by Miller and Deadrick (ref. 29). This is based
on an approximation developed by Wait (ref. 30) for the surface impedance of
the radial-wire ground screen on an imperfectly conducting ground, as the

parallel combination of the surface impedance, Cl’ of the ground plane

Ju w 1/2
Cl - Ul + jelw ’

and an approximate surface impedance Zg of the ground screen

. Ju wp
o= 9 4
O s "”(Nco) i
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The ground screen impedance assumes a parallel wire grid having the wire
- spacing that the radial wires have at a distance P from the center. N is the
number of radial wires in the screen, and C0 is the radius of the wires. The

surface impedance of the ground screen on an imperfect ground is then

L = Cl -
e Cl + Zg

From the definition of surface impedance,

Etangential = Ce Htangential

at the surface. Using the fact that E and H in the incident wave are related

by n the free-space impedance, reflection coefficients are derived as

n - Ce cos (O
RH n + Ee cos O

and

n cos @ - Ce
RV n cos @ + Ce

This is the form the Fresnel reflection coefficients take when the index
of refraction is large compared to unity (IZR[2 << 1). This condition is
satisfied in most realistic problems; furthermore, the surface-impedance
boundary condition is a wvalid approximation only when the refractive index of
the ground 1s large compared to unity. The surface impedance is used in
conjunction with the reflection coefficient method previously discussed to
provide an approximate model of a radial-wire ground screen.

Due to the assumption of specular reflection, only the propertiés of the
ground directly under a vertical antenna will affect its current distribution.
At the origin of the radial-wire ground screen, the impedance 1s zero (Z8 is
not allowed to be negative) so the impedance and current distribution of a
vertical antenna at the origin will be the same as over a perfect conductor.
The far fields, however, will demonstrate the effect of the screen as the

specular point moves away from the origin. For antennas other than the vertical
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antenna, it should be pointed out that the inherent polarization sensitivity
of the screen (i.e., E parallel or perpendicular to the ground wires) has not
been considered in this approximation. When limited accuracy can be accepted
this ground screen approximation provides a large time saving over explicit
modeling with the Sommerfeld/Norton methed since the ground scfeen does not

increase the number of unknowns in the matrix equation.
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Section V
Modeling of Antennas

Previous sections have dealt with the problem of determining the
current induced on a structure by an arbltrary excitation. We now consider
some specific problems in modeling antennas and scatterers, including models
for a voltage source on a wire, lumped and distributed loads, nonradiating
networks, and transmission lines. Calculations of some observable quantities

are also covered including input impedance, radiated field, and antenna gain.

1. SOURCE MODELING

. The approach used in NEC is applicable to a number of electromagnetic
analysis problems. For receiving antennas and EMP studies, the excitation is
the field of an incident plane wave and the desired response is the induced
current at one or more points on the structure. In scattering analysis the
excitation 1s still an incident plane wave, but the desired response is the
field radiated by the induced currents. In the case of a wire transmitting
antenna, however, the excitation 1s generally a voltage source on the wire.
The antenna source problem has received a considerable amount of attention
in the literature. A rather thorough exposition on the appropriate source
configuracion for the linear dipole antenna has been given by King (ref. 31).
The delta-function source, which may be visualized as an infinitesimally thin,
circumferential belt of axially directed electric field [or, alternatively,
as a frill of magnetric curremt at the antenna feed point (ref. 32)}, is
convenlent mathematically, but of somewhat questionable physical realizability.
Since the excitation can be specified only at discrete points in NEC, a
delta-function source 1s not feasible.

A useful source model, however, is an electric field specified at a
single match point. For a voltage source of strength V on segment i, the
element in the excitation vector corresponding to the applied electric field

at the center of segment i is set to
\'

i =3 (187)
i

where Ai is the length of segment 1. The direction of Ei is toward the
positive end of the voltage source so that it pushes charge in the same

direction as the source. The field at other match points is set to zero.
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The actual effective voltage is the line integral of the applied field along
the wire. This cannot be determined beforehand since the field is known

only at segment centers, but can be determined after the solution for current
by integrating the scattered field produced by the current. For equal length
segments in the vicinity of the source this field, which must be the negative
of the applied field at every point on the wire, is nearly constant over
segment i and drops sharply at the segment ends., This results in an actual

voltage of approximately AiE ag assumed in equation (187). When the source

segment and adjacent segmenti are not of equal length, however, the actual
voltage, obtained by integrating the scattered field, may differ from the
intended value.

Ideally, this source model applies a voltage V between the ends of the
source segment. Hence, the antenna input admittance could be computed as the
current at the segment ends or, in an unsymmetric case, the average of the
current at the two ends, divided by the applied voltage. 1In practice the
segment is sufficiently short so that the current variation over its length
is small and the current at the center can be used rather than the ends.

When segment lengths in the source region are unequal, the computed input
admittance may be inaccurate due to the discrepancy between the actual and
assumed voltages. Use of the acrual voltage, obtained by integrating the
near field, will generally give an accurate admittance although it will
require additional effort for computation.

An alternate source model that is less sensitive to the equality of
segment lengths in the source region is based on a discontinuity in the
derivative of current. This source model is similar to one used by Andreasen
and Harris (ref. 33), and its use in a program similar to NEC was reported
by Adams, Poggio, and Miller (ref. 24). For this model, the source region is
viewed as a biconical transmission line with feed point at the source locatioen,
as illustrated in figure 17. The voltage between a point at s and the
symmetric point on the other side of the line is then related to the derivative

of the current by the transmission line equation,

3I(ks)

Vis) = - jzo 9 (ks) ?

(188)

where Z0 is°the characteristic impedance of the transmission line. The

characteristic impedance of a biconical transmission line of half-angle O is
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5 — Figure 17. Biconical
Transmission Line
Model of Source
Region.

Z =120 in (cot —') ,
o

or for small angles,

Z = 120 in (g)
o

5 (189)

For a source on a wire, however, the proper choice for & in figure 17,
defining the angle O, is unclear. Adams at al. (ref. 24) used an average

value of ZD obtained by averaging equation (189) for § ranging from zero to
d as

d
7 a2 f 120 %n (ig) dé
avg d a

Q
- 120 |en(2) -]
a
where d is set equal to the distance from the source location at the segment

end to the match point at the Segment center. The voltage across the line is
then

Vis) = - 7 120 [Rn(a’) 1} 3 (ks)

Allowing for a current unsymmetric about the source, the voltage V0 of a

source at s, is related to a discontinuity in current derivative as

Lim |2LLES) - 91(ks) -
£+0 3 (ks) s =38 +¢ 3 (ks) s =35 =-¢

Q o
. -jv

. o (190)
60 {;(35‘1) - 1]
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This discontinuity in current derivative is introduced into NEC by modifying
the current expansion on the wire. The normal expansion for Ns wire segments

is

8

a, £,.(s) ,

Le) = 1 13

N/

bt o=

where the basis functions, fj’ are defined in section III-1 such that I(sg)
has continuous value and derivative along wires, and satisfies Kirchoff's law
and a condition on charge density at junctions.

For a current-slope~discontinuity source at the first end of segment £,

the current expansion is modified to

s
L) = 2 a, £.(s) + 8 £(s) , (191)

p

v o=

|

where f; is a basis function for segment %, as defined in section IIT-1, but
computed as if the first end of segment L were a free end and the segment
radius were zero. Hence, fz goes to zero with nonzero derivative at the
source location.

If f; on segment % is

*

f;(s) = Az + Bz sin k(s - sz) + C, cos k(s ~ SE)

b

XIS—SRI <A2’/2 ]

then

3 * * *
3 (ka) fg(s), G m s - A 82 cos(kAlfz) + Cl sin(kAQ/Z)
2 £

Since the sum of the normal basis functions has continuous value and

derivative at 8 = Sy = AR/Z’ the current in equation (191) has a discontinuity

in derivative of

3
lim }Jo——ono I(8)
e+0 3 (ks) |

3
METOTS) I(S)I =

s=s, - 62/2 + € s=s, - ARIZ - €

82 ‘B; cos(kARIZ) + Cz sin(kAl/Z)!.
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Hence, from equation (190), a source voltage of Vo requires a value of BE in

the current expansion of

_jvo AR *
Bg iy n E; -1 BZ cos(kAR/Z)

-1 (192)
*
+ CR sin(kAZ/Z)
The linear system for the current expansion constants, obtained by

substituting equation (191) for f in equation (18), is

s
2

e> - B, <w £%s (193)
j=1

i* "L

< > = <
wi, ij wi,

3

In matrix notation, corresponding to equation (19),

[6) {a) = [E] + B, [F) , (194)

where Fi is the excitation for segment or patch equation number 1 due to the
field of fz, and E1 is the excitation for segment or patch equation number i
from other sources (if there are any). The interaction matrix G is independent
of this source as it is of other sources. The solution for the expansion

coefficients 1is then

(a1 = 167 {151 + 8, 171}

where A supplies the coefficients aj in equation (191) to determine the
current. This method is easily extended to several sources. The modified
basis function f; appears to introduce an asymmetry into the current, but
this is not the case since the other basis function awmplitudes are free to
adjust accordingly.

The current-slope-discontinuity source results in an effective applied
field that is wuch more localized in the source region than that of the
constant-field source defined by equation (187). The difference is shown in

near~field plots for the two source models in figure 18, taken from Adams
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4 et al. (ref. 24). The near fields
]0 If['frl!lllllll[llT

are for a half wavelength dipole
- . antenna with Q = 15 [ = 24n(L/a),

102 - — L = length, a = radius] and with 190
SOURCE REGION

segments on half of the antenna
covered by the plots. The constant-
field source is seen to result in a

nearly rectangular field distribution

_—
o
1
™o

in the source region while the field

. = of the slope-discontinuity source

1
9

taad s eabiaatbiraliyy approaches a delta function. The

—
o

ol

—
o

LR B LB LB B integrals of these two source-field

. distributions yield approximately the

("]

same voltages, however.

—
<

—

TANGENTIAL FIELD {V/m)

SOURCE REGION\\\ With the slope-discontinuity-

source model, the input admittance is

the ratio of the current at the
segment end, where the source is
located, to the source voltage.

Adams et al. also present results

showing the effect on admittance of

vl e d e gy gty

0 0.1 0.2 0.3 0.4 0,5 varying the source-segment length
END z/L CENTER relative to the lengths of adjacent

Figure 18. Field Plots for a segments, showing that the slope-
Linear Dipole, 2=15. discontinuity source is much less
sensitive to segment length than is
the constant-field source. The two
segments on opposite sides of the source must have equal lengths and radii,
however. For very short segment lengths, the slope—discontinuity model may
break down although, as with the constant-field source, the correct admittance

can be obtained by integrating the near field to obtain the source voltage.

2. NONRADIATING NETWORKS

Antennas often include transmission lines, lumped circuit networks, or
a combination of both connecting between different parts or elements. When
the currents oa transmission lines or at netwark ports are balanced, the

resulting fields cancel and can often be neglected, greatly simplifying the
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modeling problem. The solution procedure used in NEC is to compute a
driving-point-interaction matrix from the complete segment-interaction matrix.
The driving-point matrix relates the voltages and currents at network connec—
tion points as required by the electromagnetic interactions. The driving-
point-interaction equations are then solved together with the network or
transmission line equations to obtain the induced currents and voltages. 1In
this way the larger segment-interaction matrix is not changed by addition or
modification of networks or transmission lines.

The solution described below assumes an electromagnetic interaction

matrix equation of the form,

(G [1] = - [E], (195)

where Ei is the exciting electric field on wire segment i and Ii 1s the
current at the center of segment i. In NEC the interaction equation has the

form,
(G] (Al = - [E] ,

where Ai is the amplitude of the ith basis function fi in the current

expansion,

N

s
I(s) = £§1 Ai fi(s)

The same solution technique can be used, however, by computing I from A
whenever I is needed. This must be done in computing the elements of the
inverse of G, GZ;, which below represent the current on segment i due to a
unit field on segment j.

A model consisting of NS segments will be assumed with a general M-port
network connected to segments 1 through M, The network is described by the

admittance equations,
> LTI i=1, ..., M, (196)

where Vi and I; are the voltage and current at part i, with reference
directions as shown in figure 19.
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t The connection of a network

port to a segment is illustrated in

1 figure 20. The segment is broken,

and the port is connected so that

v, M-PORT 177t (197)
. NETWORK

where Ii is the segment current.

t
. M Figure 21 shows a voltage source of

v strength Vi connected across the
M .

network port at segment 1. In this

case,

Figure 19. Voltage and current t g
Reference Directions at 1 Ii - I, . (198)
Network Ports.

In either case, the port voltage may be related to the applied field on the

segment by the constant-field voltage source model of equation (187).

We will assume that segments 1 through M1 are connected to network
ports without voltage sources, and segments Ml + 1 through M are comnected to

network ports with voltage sources. The remaining segments have no network

/ /
r // // \
/, //I
J
|
Ii 1}
I
SEGMENT i -J v, 1 Y > SEGHENT J
Yi1 Vi3
/// I,
\_ / // i

Figure 20. Network Connectlon to Segments.
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Figure 21. Network Port and Voltage Source Connected to a Segment.

connections but may have voltage sources. In addition all of the segments
may be excited by an incident field represented by Ei on segment 1. The

toral field on segment i is then

where Vi is a gap voltage, due either to a network port or voltage source, and

Ai is the segment length.

Equation (195) may be solved for current as

$° o1
1, = - 2 6l E =1, ..., N_, (199)

where G-l is the (1,j)':h element of the inverse of matrix G. Before

1j

evaluating equation (199), however, the unknown port voltages, V for

1’
i= l,...,Ml must be determined. Hence, equation (199) is written with all
known quantities on the right-hand side as

M
! -1 _P
G = i= ‘e s
El 1y Byt It By i=1, ..., M, (200)



where

o
i
DL<.‘.
L n

and

NS
-1

- 2 G E
3o M

M
L 11
B, = - G ;s Ej
j=1

Similarly, the network equations (196) are written using equation {197) as

M
1 .,
> Y. E +1I,=c, i=1, ..., M, , (201)
. ij i i i 1
i=1
where
Y., =4, Y
ij j i3’
)
cC, = - v,
i =M +1 13 3

M
Zl et -y ) £ =B, -¢ 1=1 M (202)
jop V1l i/ 7j 1 i AR

P
The solution procedure is then to solve equation (202) for Ej for 3 = l,...,Ml.
Then, with the complete excitation vector determined, use equation (199) to
determine Ii for i = l,...,NS. Finally, the remaining network equations with

equation (198) are used to compute the generator currents as

g = =
I = 2 Yoy Vy+ 1y 1=M 41, oo ML (203)

The currents If determine the input admittances seen by the socurces.
In NEC the general M-port network used here is restricted to multiple

two-port networks, each connecting a pair of segments.
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3. TRANSMISSION LINE MCDELING

Transmission lines interconnecting parts of an antenna may be modeled
either explicitly by including the transmission line wires in the thin~wire
model, or implicitly by the method described in the preceding section for
nonradiating networks. For an implicit model, the short-circuit-~admittance
parameters of the transmission line viewed as a two-port network are

Yll = Y22 = - j YO cot (ki) ,

le = Y21 = j Y0 csc(kl) ,
where Yo is the characteristic admittance of the line, k is the wave number
(2n/A), and % is the length of the line. 1If a separate admittance element

is connected across the end of a transmission line, its admittance is added to
the self-admittance of that network port.

The implicit model is limited, however, in that 1t neglects interaction
between the transmission line and the antenna and its environment. This
approximation is justified if the currents in the line 4are balanced, i.e., in
a log periodic dipole antenna, and in general if the transmission line lies
in an electric symmetry plane. The balance can be upset, however, if the
transmission line is connected to an unbalanced load or by unsymmetric
interactions. If the unbalance is significant, the transmission line can be
modeled explicitly by including the wires in the thin-wire model. The
explicit model is completely general, and yields accurate results since the
sine, cosine, and constant curfent expansion in NEC is a good representation
of the sinusoidal transmission line currents. The accuracy 1s demonstrated
in figure 22 for transmission lines terminated in short circuit, open circuit,
and matched loads.

The explicit transmission line model is, of course, less efficient in .
computer time and storage because of the additional segments required. In
capes where the physical line presence does have a significant effect on the
results, the effect may Ee modeled by explicitly modeling a single conductor
of the line while using the implicit model to represent the halanced current

component. .
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Figure 22. Current Distribution on a Two-Wire Transmission

Line from NEC Compared with the Ideal Transmission Line
Solution.

-13=



4. LUMPED OR DISTRIBUTED LOADING

Thus far, we have assumed that all structures to be modeled are perfect
electric conductors. The EFIE is easily extended to imperfect conductors by

modifying the boundary condition from equation (4) to

AT < [ES(D) + EI(‘E)} -z (D [ﬁ&) xJ_ @]
where Zs(;) is the surface impedance at T on the conducting surface. For a
wire, the boundary condition is

~ *g g

s [E°( +E (D] =z (s) Ls) ,

- l\-' ! I
with r and 5 the position vector and tangent vector at s on the wire and

Zw(s) the impedance per-unit-length at s. The matrix equation can then be

written,
Ns Zi
> Gigoy=-Eg +3- 1, i=1, ..., N_, (204)
=1 1

where

o, = amplitude of basis fupction j,

E., = the incident field on sagment i,

I, = current at the center of segment i,
2, = total impedance of segment {,

A, = length of segment {i.

The impedance term can be viewed as a constant field model of a voltage source,
as described in section V-1, where the voltage is proportional to current.

Tt is assumed that the current is essentially constant, with value Ii' aver

the length of the segment, which is a reasonaple assumption for the electri-~
cally short segments used in the integral equation solution.

The impedance term can be combined with the matrix by expressing Ii in
terms of the o, as '

3
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NS
I, = > o, (A?+CT),
ol R B O j

where A% and C% are the coefficients of the constant and cosine terms,
J ]
respectively, in the section of basis function j extending onto segment 1.

. i i
If basis function j does not extend onto segment i, then Aj and C, are zero.

3

The matrix equation modified by loading is then

N
> 6. a, =-E i=1, ..., N , (205)

. P E . s 2

For a lumped circuit element, Zi is computed from the circuit equations. For
a distributed impedance, Zi represents the impedance of a length Ai of wire,

- which in the case of a round wire of finite conductivity is given by

;2% il [Ber(a) + i Bei(q)
i a; 270 | Ber'(q) + j Bei'(q) |’

where

q = (wuo)l/2 a;s

ai = wire radius,
¢ = wire conductivity,

Ber, Bei = Kelvin functiouns.

This expression takes account of the limited penetration of the field into an

imperfect conductor.

5. RADIATED FIELD CALCULATION

The radiated field of an antenna or reradiated field of a scatterer can
be compute& from the induced current by using a simplified form of equation
(1) valid far from the current distribution. The far-field approximation,

valid when the distance from the current distribution to the observation
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point is large compared to both the wavelength and the dimensions of the
current distribution, treats the distance ]; - ;'[ as constant within the
integral except in the phase term, exp(-jkl? - ;'I). For a structure
consisting of a wire portion with contour L and current distribution f(s),

e
and a surface portion § with current js(r), the far-zone field is

i, - Yin TP
Q
x {/L [(12 - 1(s)) & - T(s) ]exp(j'ﬁ-'{)ds (207)
+ /S [(12'38(;)) ﬁ-js(;) exp(j-l:-;)dA} s

where ;o is the position of the observation point ﬁ = ;o/l;ol’ k = 2m/A, and

k = kk. The first integral can be evaluated in closed form over each straight
wire segment for the constant, sine, and cosine components of the basis
functions, and reduces to a summation over the wire segments. With the
surface current on each patch represented by a delta function at the patch
center, the second integral becomes a summation over the patches.

The radiation pattern of an antenna can be computed by exciting the
antenna with a voltage source and using equation (207) to compute the radiated
field for a set of directions in space. Alternatively, since the transmitting
and receiving patterns are required by reciprocity to be the same, the pattern
can be determined by exciting the antenna with plane-waves incident from the
same directions and computing the currents at the source point. The solution
procedure in NEC does not guarantee reciprocity, however, since the different
expansion and weighting functions may produce asymmetry in the matrix. Large
differences between the receiving and transmitting patterns or a significant
lack of reciprocity in bistatic scattering are indications of inaccuracy in
the solution, possibly from too coarse a éegmentation of the wires or surfaces.

The power gain of an antenna in the direction specified by the

spherical coordinates (O,¢) is defined as

Gp(@,¢) = 4r B0
in
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where P(0,9) is the power radiated per unit solid angle in the direction
(©,9), and Pin is the total power accepted by the antenna from the source.

Pin is computed from the voltage and current at the source as

1
= - *
Pin 3 Re (VI*) ,
and
1 .2 > R2 <> >k
P(0O, ) =2 R™ Re(ExH ) = —H (E-E )

=
E is obtained from equation (207) with ;o in the direction (0,¢), and ro= R.

Directive gain is similarly defined as

LS

G(0,0) = 4m L2at)

rad

where Prad is the total power radiated by the antenna,

P, =P - P

rad in loss °’

and PlOSS is the total ohmic loss in the antenna.

The radiated field of an antenna over ground is modified by the ground
interaction, as discussed in section IV. When the range from the antenna
to the observer, R, approaches infinity, the Sommerfeld formulation for the
field reduces exactly to a direct field determined by equation (207) and a
field from the image modified by the Fresnel reflection coefficlent, In some
cases, however, when the observer 1s at a finite distance from the antenna,
the field components proportional to l/R2 may be significant. While the 1/R
terms are generally much larger than the l/R2 terms at practical observation
distances from an antenna, the 1/R terms vanish at grazing angles over an
imperfect ground plane leaving only the l/R2 terms, domjpated by a term known
as the ground wave. The ground wave 1is, of course, included in Sommerfeld's
expressions. Norton's asymptotic approximations (ref. 26) are used, however,
since they are mare easily evaluated and give adequate accuracy. Norton's
formulas, which are in Part II of this manual under subroutjine GWAVE, arg valid
for R greater than a few wavelengths and to secopnd order ig kilkg. When the

ground wave 1s included, the field has radial as well as trapsverse compaonents.
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6. ANTENNA COUPLING

Coupling between antennas is often a parameter of interest, especially
when a receiving system must be protected from a nearby transmitter. Maximum
power transfer between antennas occurs when the source impedance and receiver
load impedance are conjugate-matched to their antennas. Determination of this
condition is complicated by the antenna interaction, however, since the input
impedance of one antenna depends on the load connected to the other antenna.
NEC-2 includes an algorithm for determining the matched loads and maximum
coupling by a method that was added to specilal versions of the previous codes
NEC-1 and AMP (ref. 34).

The coupling problem can be solved in closed form by the Linville method
(ref. 35), a technique used in rf amplifier design. The first step is to
determine the two-port admittance parameters for the coupled antennas by
exciting each antenna with the other short-circuited and computing the self

and mutual admittances from the currents computed by NEC. The maximum coupling

is then
1/2
1, - o2 ]
GMAX L[l (1-L%) N
where
L. [¥15¥9 |
2Re(Yll) Re(Y22) - Re(YlZYZI)

The matched load admittance on antenna 2 for maximum coupling is

+

1-op -
Y [—-——-l 5+ 1] Re(Y,,) - ¥,, ,

where

GMAX(Y 2Y21)*
p-—l—\'——-%—.r——-'p
12721

and the correspopding input admittapce of antepna ] is

ooy - 2tz
IN 11 YL + Y22
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